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COCOMPACT SUBGROUPS OF SEMISIMPLE LIE GROUPS

Dave Witte

Abstract. Lattices and parabolic subgroups are the obvious examples of cocompact
subgroups of a connected, semisimple Lie group with finite center. We use an argument of
C. C. Moore to show that every cocompact subgroup is, roughly speaking, a combination
of these.

We study a cocompact subgroup H of a connected, semisimple Lie group G with
finite center. The case where H is discrete is very important and has been widely studied
(6, 9], though it is not yet fully understood. Apparently, C. C. Moore [5] made the first
(and, up to now, the only) assault on the case where H is not discrete: he treated the
case where the identity component of H is nilpotent. In this paper, we modify Moore’s
argument to eliminate the assumption of nilpotence. Given G, we will explicitly describe
what subgroups can arise as the identity component of a cocompact subgroup H. This
essentially reduces the problem of finding all the cocompact subgroups to the problem of
finding discrete cocompact subgroups.

The identity component of H plays a key role in the proof of Moore’s theorem [5].
Perhaps the only major difference between Moore’s proof and ours is that we have selected
a different subgroup-—the unipotent radical of H—to play this key role.

For the statement of the main theorem, it will be convenient to construct a refinement
of the Langlands decomposition of a parabolic subgroup.

Notation. For any Lie group X, we let X° be the identity component of X.

Definition 1.1. Suppose P is a parabolic subgroup of a connected, semisimple Lie
group G with finite center. Recall that P has a Langlands decomposition P = MAN |8,
p. 81}. Let L be the product of all the noncompact simple factors of M°, and let E be
the maximal compact factor of M°. Then P° = LEAN; we call this the refined Langlands
decomposition of P°.

Main Theorem 1.2. Let G be a connected, semisimple Lie group with finite center,
let P be any parabolic subgroup of G, and let P° = LEAN be the refined Langlands
decomposition of P°. For any connected, normal subgroup X of L, and any connected,
closed subgroup Y of EA, there is a closed, cocompact subgroup H of G such that (a) H
is contained in P, and (b) H° = XY N.

Conversely, given any closed, cocompact subgroup of H of G, there is a parabolic
subgroup P and corresponding subgroups X and Y satisfying (a) and (b).
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The proof of the main theorem will employ a number of results from the theory
of real-algebraic groups. Humphreys’ book [4] is a good introduction to the theory of
algebraic groups; the books of Raghunathan [6] and Zimmer [9] contain useful information
specifically on algebraic groups over R.

Definition 1.3. A real-algebraic group is a Lie group that is a subgroup of finite index
in the real points of an (affine) algebraic group defined over R. A real-algebraic subgroup
of a real-algebraic group G is a Lie subgroup that is of finite index in a Zariski-closed
subgroup of G.

Definition. Let G be a real-algebraic group. A subgroup U is unipotent if every
element of U is a unipotent element of G. Recall that a connected, unipotent subgroup of
G is necessarily Zariski closed [6, §P.2.2, p. 9].

If H is any subgroup of G, we let unip H be the unique largest connected, unipotent,
normal subgroup of H (the unipotent radical of H).

A semisimple element of G is hyperbolic if each of its eigenvalues is real and positive;
it is elliptic if each of its eigenvalues lies on the unit circle in the complex plane.

Theorem 1.4. (“The Borel Density Theorem,” S. G. Dani [3, Corollary 2.6]). Sup-
pose H is a Zariski-closed subgroup of a real-algebraic group G, and let v be a finitet
measure on G/H. Set

G, = {g € G | the g-action on G/H preserves v} and
N, ={g€G|gs=sforall s €supp v}

Then G, and N, are Zariski-closed subgroups of G, and N, is a cocompact, normal
subgroup of G,.

Corollary 1.5. Suppose H is a real-algebraic subgroup of a real-algebraic group G,
and that G/H has a finite G-invariant volume. Then H contains a cocompact, normal,
real-algebraic subgroup of G. In particular, H contains every unipotent element and every
hyperbolic element of G.

Corollary 1.6. Suppose H is a closed subgroup of a real-algebraic group G, and that
G/H has a finite G-invariant volume. Then every unipotent element of G normalizes H°.

Proof. Let H be the Zariski closure of H in G. The G-invariant probability measure
on G/H pushes to a G-invariant probability measure on G/H, so Corollary 1.5 implies
that H contains every unipotent element of G. Because H C Ng(H®), this implies that
every element of G normalizes H®. 1

Lemma 1.7. (cf. {7, Theorem 3.8.3(ii), p. 206]). Let G be a connected, real-algebraic
group. Then [G,rad G] C unip G.
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Lemma 1.8. [5, Lemma 1]. Let H be a locally compact group, with a closed,
unimodular, cocompact subgroup H. Then H is unimodular, and H/H has a finite H-
invariant measure.

Lemma 1.9. If H is a Lie group, and [H,rad H]| = ¢, then H is unimodular.

Proof. Every automorphism of H/rad H (indeed, of any semisimple Lie group) is
volume-preserving. So any inner automorphism of H is volume-preserving on H/rad H,
and (by assumption) trivial—hence volume-preserving—on rad H. Thus any inner auto-
morphism of H is volume-preserving on H. |

Lemma 1.10. Let H be a Lie subgroup of a real-algebraic group G. If unip H = e,
then H is unimodular.

Proof. We may assume that H is Zariski dense in G, and, by replacing H with a
subgroup of finite index, that G is connected. It is clear that (i) [G,rad H] is connected.
Because G normalizes rad H (since H is Zariski dense in G), we have rad H C rad G.
Then, because [G,rad G] C unip G (see Lemma 1.7), it is immediate that (ii) [G,rad H] C
unip G. Because H normalizes both G and rad H, it is clear that (iii) H normalizes
|G,rad H]. Because G normalizes rad H, it must be true that (iv) [G,rad H| C rad H.
Putting (i), (ii), (iii), and (iv) together, we see that [G,rad H]| is a connected, unipotent,
normal subgroup of H. By hypothesis, then [G,rad H] = e. This implies [H,rad H] = e.
So Lemma 1.9 asserts that H is unimodular. [ |

Lemma 1.11. (a trivial exercise in group theory). Let H be a subgroup of a semidi-
rect product A X N, and assume that H contains N. Then H = (H N A) x N.

Proofof the main theorem (cf. C. C. Moore [5]). (=) Because L/ X is a connected,
semisimple Lie group, a fundamental theorem of A. Borel [1] (or see [6, Theorem 14.1, p.
215]) asserts that L/X has a discrete cocompact subgroup I'1; let H; be the inverse image
of I'y in L. Thus H, is a cocompact subgroup of L, and (H;)° = X.

Now A is a simply connected abelian group, and YE N A is a connected, closed
subgroup. Let V be a subgroup of A complementary to YZ N A in 4; let 'y be a lattice
in V, and let H; =T - Y. Thus H; is a cocompact subgroup of AE, and (H;)° =Y.

Let H = H; - Hy- N. Then H® = (H;)° - (H;)°- N = X -Y . N. Because the map
Lx EAx N — LEAN : (l,a,n) v lan is a finite cover, hence proper, we know that H
is closed. By construction, H C P, and H is cocompact in LEAN = P°. Because P° is
cocompact in G, we conclude that H is cocompact in G.

(<) Because G is semisimple with finite center, it finitely covers a real-algebraic group
[9, Proposition 3.1.6, p. 35]. In studying the identity component of H, there is no loss in
simply ignoring this finite cover and assuming that G itself is a real-algebraic group. Thus,
we may let H be the Zariski closure of H in @, and let U be the unipotent radical of H.

By definition, U is a connected, unipotent subgroup of“the semisimple group G, so
a theorem of A. Borel and J. Tits [2, Proposition 3.1] asserts that there is a parabolic
subgroup P of G such that P contains Ng(U), and the unipotent radical of P contains U.
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Because H C Ng(U), then we have H C P. Let P° = LEAN be the refined Langlands
decomposition of P°; then N is the unipotent radical of P, so we have U C N.

Step 1. We have A C H and N C unip H. Now H is cocompact in G (because H is
cocompact), and HAN is closed (because it is a real-algebraic subgroup), so we conclude
that H N AN is cocompact in AN. Because AN is a real-algebraic group with no elliptic
elements, and H N AN is a real-algebraic subgroup, this implies that H N AN = AN (for
example, this follows from Corollary 1.5). We conclude that AN C H. This implies that
A C H and, because N is a connected, unipotent, normal subgroup of P, that N C unip H.

Step 2. We have U = N. It follows from Lemma 1.10 that H/U is unimodular.
Then, because H/U is cocompact in H/U, Lemma 1.8 implies that H /U is unimodular.

Step 1 asserts that A C H, so it follows from the unimodularity of H/U that the action
of A by conjugation on H/U is volume-preserving. From the structure of the parabolic
subgroup P, we know that A centralizes P/N (because P = M AN and A centralizes M in
the Langlands decomposition); because H C P, this implies that A centralizes H/N. By
combining the conclusions of the preceding two sentences, we conclude that the action of
A by conjugation on N/U must be volume-preserving. From the structure of P (namely,

because N is a subgroup corresponding only to pesitive roots of A), we see that this implies
U = N as desired.

Step 3. We have H = Hy X N, where Hy 13 a closed subgroup of LEA such that
(Hy)° ts normalized by L. Let Hy = HN LEA. Because N C H (by Step 2), and
HCP=LEAXN, Lemma 1.11 asserts that H = H; X N. So we need only show that
(H1)° is normalized by L.

Because Hy & H/N (= H/U), Lemma 1.10 shows that H; is unimodular. Because H;
is cocompact in LE A, then Lemma 1.8 implies that LEA/H; has a finite LE A-invariant
volume. So S. G. Dani’s version of the Borel Density Theorem (see Corollary 1.6) implies
that (H;)® is normalized by L.

Step 4. We have (H,)° = XY, where X is o connected, closed, normal subgroup
of L, and Y is a connected, closed subgroup of EA. Let H be the Lie algebra of the
subgroup H;. Because L normalizes (H,)°, we see that H is L-invariant. Because every
finite-dimensional representation of L is completely reducible, this means that M has an
L-invariant decomposition H = X @ Y where [L,X] = X and [L,)] = 0. Thus X is the
Lie algebra of a connected subgroup X of [L,LEA] = L, and Y is the Lie algebra of a
connected subgroup Y of Crpa(L)° = EA. Because X and Y are L-invariant, we know
that X and Y are normalized by L. Since X = (HyNL)° and Y = (H;NEA)°, we see that
each of X and Y is the identity component of the intersection of two closed subgroups.
Hence X and Y are closed. 1
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