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Dave Witte 

Abstract. Lattices and parabolic subgroups are the obvious examples of cocompact 
subgroups of a connected, semisimple Lie group with finite center. We use an argument of 
C. C. Moore to show that every cocompact subgroup is, roughly speaking, a combination 
of these. 

We study a cocompact subgroup H of a connected, semisimple Lie group G with 
finite center. The case where H is discrete is very important and has been widely studied 
[6, 91, though it is not yet fully understood. Apparently, C. C. Moore [5] made the first 
(and, up to now, the only) assault on the case where H is not discrete: he treated the 
case where the identity component of H is nilpotent. In this paper, we modify Moore's 
argument to eliminate the assumption of nilpotence. Given G, we will explicitly describe 
what subgroups can arise as the identity component of a cocompact subgroup H. This 
essentially reduces the problem of finding all the cocompact subgroups to the problem of 
finding discrete cocompact subgroups. 

The identity component of H plays a key role in the proof of Moore's theorem [ 5 ] .  
Perhaps the only major difference between Moore's proof and ours is that we have selected 
a different subgroup-the unipotent radical of H-to play this key role. 

For the statement of the main theorem, it will be convenient to construct a refinement 
of the Langlands decomposition of a parabolic subgroup. 

Notation. For any Lie group X, we let X O  be the identity component of X. 

Definition 1.1. Suppose P is a parabolic subgroup of a connected, semisimple Lie 
group G with finite center. Recall that P has a Langlands decomposition P = MAN [8, 
p. 811. Let L be the product of all the noncompact simple factors of MO,  and let E be 
the maximal compact factor of MO. Then Po = LEAN; we call this the refined Langlands 
decomposition of Po .  

Main Theorem 1.2. Let G be a connected, semisimple Lie group with finite center, 
let P be any parabolic subgroup of G, and let Po = LEAN be the refined Langlands 
decomposition of Po .  For any connected, normal subgroup X of L, and any connected, 
closed subgroup Y of EA, there is a closed, cocompact subgroup H of G such that (a) H 
is contained in P, and (b) HO = XYN. 

Conversely, given any closed, cocompact subgroup of H of G, there is a parabolic 
subgroup P and corresponding subgroups X and Y satisfying (a) and (b). 
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The proof of the main theorem will employ a number of results from the theory 
of real-algebraic groups. Humphreys' book [4] is a good introduction to the theory of 
algebraic groups; the books of Raghunathan [6] and Zimmer [9] contain useful information 
specifically on algebraic groups over R. 

Definition 1.3. A real-algebraic group is a Lie group that is a subgroup of finite index 
in the real points of an (affine) algebraic group defined over R.  A real-algebraic subgroup 
of a real-algebraic group G is a Lie subgroup that is of finite index in a Zariski-closed 
subgroup of G. 

Definition. Let G be a real-algebraic group. A subgroup U is unipotent  if every 
element of U is a unipotent element of G. Recall that a connected, unipotent subgroup of 
G is necessarily Zariski closed 16, 5P.2.2, p. 91. 

If H is any subgroup of G, we let unip H be the unique largest connected, unipotent, 
normal subgroup of H (the unipotent  radical of H). 

A semisimple element of G is hyperbolic if each of its eigenvalues is real and positive; 
it is elliptic if each of its eigenvalues lies on the unit circle in the complex plane. 

Theorem 1.4. ("The Bore1 Density Theorem," S. G. Dani 13, Corollary 2.61). Sup- 
pose H is a Zariski-closed subgroup of a real-algebraic group G, and let v be a finite 
measure on G/H. Set 

Gu = {g ? G 1 the g-action on G/H preserves v} and 

Nu = {g ? G 1 g s  = sfor all5 6 supp v}. 

Then Gu and N,, are Zariski-closed subgroups of GI and N y  is a cocompact, normal 
subgroup of G,,. 

Corollary 1.5. Suppose H is a real-algebraic subgroup of a real-algebraic group GI 
and that G/H has a finite G-invariant volume. Then H contains a cocompact, normal, 
real-algebraic subgroup of G. In particular, H contains every unipotent element and every 
hyperbolic element of G. 

Corollary 1.6. Suppose H is a closed subgroup of a real-algebraic group GI and that 
G/H has a finite G-invariant volume. Then every unipotent element of G normalizes HO.  

Proof. Let be the Zariski closure of H in G. The G-invariant probability measure 
on G/H pushes to a G-invariant probability measure on G/E, so Corollary 1.5 implies 
that z contains every unipotent element of G. Because z C NG(HO), this implies that 
every element of G normalizes H O .  I 

Lemma 1.7. (cf. [7, Theorem 3.8.3(ii), p. 2061). Let G be a connected, real-algebraic 
group. Then [G,rad G] C unip G. 
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Lemma 1.8. [5, Lemma 11. Let 2 be a locally compact group, with a closed, 
unimodular, cocompact subgroup H. Then 2 is unimodular, and H/H has a finite z- 
invariant measure. 

Lemma 1.9. If H is a Lie group, and [H,rad H] = e, then H is unimodular. 

Proof. Every automorphism of H/rad H (indeed, of any semisimple Lie group) is 
volume-preserving. So any inner automorphism of H is volume-preserving on H/rad H ,  
and (by assumption) trivial-hence volume-preserving-on rad H. Thus any inner auto- 
morphism of H is volume-preserving on H. I 

Lemma 1.10. Let H be a Lie subgroup of a real-algebraic- group G. If unip H = e, 
then H is unimodular. 

Proof. We may assume that H is Zariski dense in G, and, by replacing H with a 
subgroup of finite index, that G is connected. It is clear that (i) [G, rad H] is connected. 
Because G normalizes rad H (since H is Zariski dense in G), we have rad H c rad G. 
Then, because [G, rad G] C unip G (see Lemma 1.7), it is immediate that (ii) [G, rad HI c 
unip G. Because H normalizes both G and rad H,  it is clear that (iii) H normalizes 
[G,rad HI. Because G normalizes rad H,  it must be true that (iv) [G,rad HI c rad H.  
Putting (i), (ii), (iii), and (iv) together, we see that [G,rad H] is a connected, unipotent, 
normal subgroup of H. By hypothesis, then [G,rad H] = e. This implies [H,rad HI = e. 
So Lemma 1.9 asserts that H is unimodular. 1 

Lemma 1.11. (a trivial exercise in group theory). Let H be a subgroup of a semidi- 
rect product A K N, and assume that H contains N. Then H = ( H  n A) K N. 

Proof of the main theorem (cf. C. C. Moore [5]). (+) Because L/X is a connected, 
semisimple Lie group, a fundamental theorem of A. Borel [I] (or see [6, Theorem 14.1, p. 
2151) asserts that L/X has a discrete cocompact subgroup Fl; let Hl be the inverse image 
of Fi in L. Thus HI is a cocompact subgroup of L, and (Hi)' = X. 

Now A is a simply connected abelian group, and Y E  n A is a connected, closed 
subgroup. Let V be a subgroup of A complementary to Y E  n A in A; let F2 be a lattice 
in V, and let H2 = Ty, . Y. Thus Ha is a cocompact subgroup of AE, and (H2)0 = Y. 

Let H = Hi . H2 . N. Then H O  = (Hi)" + (H2l0 N = X . Y . N. Because the map 
L x EA x N -+ LEAN : ( l , a ,  n) +t ?an is a finite cover, hence proper, we know that H 
is closed. By construction, H C P ,  and H is cocompact in LEAN = Po. Because Po is 
cocompact in G, we conclude that H is cocompact in G. 

(e) Because G is semisimple with finite center, it finitely covers a real-algebraic group 
[9, Proposition 3.1.6, p. 351. In studying the identity component of H ,  there is no loss in 
simply ignoring this finite cover and assuming that G itself is a real-algebraic group. Thus, 
we may let be the Zariski closure of H in G, and let U be the unipotent radical of H. 

By definition, U is a connected, unipotent subgroup o h h e  semisimple group G,  so 
a theorem of A. Borel and J. Tits [2, Proposition 3.11 asserts that there is a parabolic 
subgroup P of G such that P contains NG(U\ and the unipotent radical of P contains U. 
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Because p c N@), then we have c P. Let Po = LEAN be the refined Langlands 
decomposition of Po;  then N is the unipotent radical of P ,  so we have U c N. 

Step 1. W e  have A c p and N c unip E. Now is cocompact in G (because H is 
cocompact), and m N  is closed (because it is a real-algebraic subgroup), so we conclude 
that n AN is cocompact in AN. Because AN is a real-algebraic group with no elliptic 
elements, and n AN is a real-algebraic subgroup, this implies that f~ AN = AN (for 
example, this follows from Corollary 1.5). We conclude that AN c p. This implies that 
A c and, because N is a connected, unipotent, normal subgroup of P, that N c unip z. 

Step 2. W e  have U = N .  It follows from Lemma 1.10 that H/U is unimodular. 
Then, because H/U is cocompact in H/U, Lemma 1.8 implies that H/U is unimodular. 

Step 1 asserts that A c g, so it follows from the unimodularity of H/U that the action 
of A by conjugation on H / U  is volume-preserving. From the structure of the parabolic 
subgroup P ,  we know that A centralizes P I N  (because P = MAN and A centralizes M in 
the Langlands decomposition); because c P, this implies that A centralizes z / N .  By 
combining the conclusions of the preceding two sentences, we conclude that the action of 
A by conjugation on N/U must be volume-preserving. From the structure of P (namely, 
because N is a subgroup corresponding only to positive roots of A), we see that this implies 
U = N as desired. 

Step 3. W e  have H = Hl x N ,  where Hi is a closed subgroup of LEA such that 
(Hi)' is normalized by L. Let Hi = H fl LEA. Because N c H (by Step 2), and 
H C P = LEA x N, Lemma 1.11 asserts that H = Hi K N. So we need only show that 
(Hi)0 is normalized by L. 

Because HI E H/N (= H/U), Lemma 1.10 shows that Hi is unimodular. Because Hi 
is cocompact in LEA, then Lemma 1.8 implies that LEA/H1 has a finite LEA-invariant 
volume. So S. G. Dani's version of the Bore1 Density Theorem (see Corollary 1.6) implies 
that (Hi)Â is normalized by L. 

Step 4. W e  have (H1)O = X Y ,  where X is a connected, closed, normal subgroup 
of L, and Y is a connected, closed subgroup of EA. Let 7i be the Lie algebra of the 
subgroup Hi. Because L normalizes (Hi)Â¡ we see that 'H is L-invariant. Because every 
finite-dimensional representation of L is completely reducible, this means that 'H has an 
L-invariant decomposition 'H = X (S y where [L, XI = X and [L,y] = 0. Thus X is the 
Lie algebra of a connected subgroup X of [L, LEA] = L, and y is the Lie algebra of a 
connected subgroup Y of Cm*(L)O = EA. Because X and y are L-invariant, we know 
that X and Y are normalized by L. Since X = (Hi n L)' and Y = (Hi n EA)O, we see that 
each of X and Y is the identity component of the intersection of two closed subgroups. 
Hence X and Y are closed. i 
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