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~ i f f ( T ) ,  then v can be taken to be equivalent to p x A, where 2 is Lebesgue measure on T; 
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1. Introduction 

E. Ghys [Gh] recently proved that irreducible lattices in most semisimple Lie groups 
of higher real rank do not have any interesting differentiable actions on the circle T. 

DEFINITION 1.1. A lattice Y in a connected, semisimple, real Lie group G is 
irreducible if NT is dense in G, for every closed, connected, noncompact, normal 
subgroup N of G. 

NOTATION 1.2. We use ~ i f f l ( T )  to denote the group of C' diffeomorphisms of T, 
and ~ i f f ' J T )  to denote the subgroup of orientation preserving diffeomorphisms. 

, THEOREM 1.3 (Ghys [Gh, Thm. 1 .I]). Let Y be an irreducible lattice in a connected, 
semisimple, real Lie group G, such that 

(1) R-rank G 2 2; and 

(2) there is no continuous homomorphism from G onto PSL(2, R). 

Then every homomorphism from Y to  iff(^) has finite image 
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Remark 1.4. Under the additional assumption that H2(r ;  R) = 0 (and in many 
other cases), the conclusion of the theorem was also proved by M. Burger and 
N. Monod [BMl, BM2, BM31, as a consequence of vanishing theorems for bounded 
cohomology. (The results of Burger and Monod also apply to the setting where R is 
replaced by other local fields; for example, r could be an S-arithmetic group 
(cf. 6.10 and 6.1 I).) For a more restricted class of lattices in real semisimple Lie 
groups, B. Farb and P. Shalen [FS] proved finiteness of the image of homomorphisms 
into the group DiffYM) of real analytic diffeomorphisms of some higher- 
dimensional manifolds. 

In this paper, we extend Ghys' Theorem to the context of semisimple Lie group 
actions on circle bundles, or, more generally, Lliffl(T)-valued Borel cocycles for 
ergodic actions of G. We first recall: 

DEFINITION 1.5 ([Zi, Defns 4.2.1 and 4.2.2, p. 65, and top of p. 751). Suppose M is 
a Borel G-space with quasi-invariant measure y., and H i s  a topological group (such 
that the Borel structure on H is countably generated). 

A Borel function a: G x M Ã‘ H is a Borel cocycle if, for all g, h G, we have 
a(gh, m) = a(g, hm)a(h, m) for a.e. m E M. 
Two Borel cocycles a, f i :  G x M -+ H are cohomologous if there is a Borel 
function 4: M -+ H, such that, for each g 6 G, we have p(g, m) = (f>(gm)-l 
a(g, m)(f)(m), for a.e. m e M. 
A Borel cocycle a: G x M Ã‘ H i s  strict if, for all g, h 6 G, we have a(gh, m) = 

a(g, hm)a(h,m) for every m M. For every Borel cocycle a: G x M Ã‘ H, 
there is a strict Borel cocycle a': G x M Ã‘ H, such that, for every g E G, 
we have d(g, m) = a(g, m) for a.e. m M [Zi, Thm. B.9, p. 2001. 
If a: G x M Ã‘ H is a strict Borel cocycle and 5' is a Borel H-space, the 
skew-product action M x,^ S is the Borel action of G on M x S defined by 
g . (m, $1 = (gm, a(g, 4 s ) .  

Recall that any smooth action on a circle bundle defines a  iff(^)-valued cocycle 
on the base, and that the action on the bundle is measurably conjugate to the skew 
product action defined by this cocycle. Conversely, the skew product defined by 
any   iff(^)-valued cocycle can be viewed as an action on a measurable circle 
bundle over the base. 

For M = G/r ,  cohomology classes of Borel cocycles a: G x M -+ ~ i f f l ( ~ )  are in ' 

bijective correspondence with conjugacy classes of homomorphisms a: -+ 
 iff(^) [Zi, Prop. 4.2.13, p. 701. Then the conclusion of Ghys' Theorem asserts 

I 

that a is cohomologous to a Borel cocycle whose image is a finite subgroup of 
  iff(^). However, the following example shows that this conclusion is not valid 
for Borel cocycles for more general G-spaces; not even for Borel cocycles that arise 
from a Cm, volume-preserving action of G on a principal T-bundle over a compact 
manifold. 
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EXAMPLE 1.6. Let 

H be a connected, semisimple Lie group; 
0 T be a torsion-free, cocompact lattice in H ;  

T be a subgroup of H that is isomorphic to T; 
G be a closed subgroup of H that centralizes T and acts ergodically on HIT 
(see 2.1 1); and 
M = T\H/r.  

Because T is torsion free and cocompact, we know that M is a compact manifold. 
Because G centralizes T ,  the action of G by translation on H / F  factors through 
to an action on M; we see that HIT is a principal T-bundle over M ,  and G acts 
on H / F  by bundle automorphisms. Thus, there is a Borel cocycle a: Gx 
M Ã‘ T ,  such that the action of G on H / F  is isomorphic to the skew product 
M x a  T. By assumption, the action of G on HIT is ergodic, so, if f i  is any cocycle 
cohomologous to a, then M x g  T must be ergodic. Therefore, the image of f i  cannot 
be contained in any finite group of transformations of T .  

These examples show that there can be nontrivial cocycles into Isom(T), the 
isometry group of T. Our extension of Ghys' Theorem shows that if G has 
Kazhdan's property (T) (see 2.14), then every cocycle into  iff(^) for a much more 
general G-action is cohomologous to one into Isom(T). (However, as far as we know, 
the homeomorphisms in the image of the map implementing the cohomology may 
not be differentiable, but only absolutely continuous.) In more geometric terms, this 
asserts that for G-actions on very general circle bundles, there is a measurable choice 
of metric on each fiber that is preserved by the action. I.e., the action on the bundle is 
an 'isometric extension' of the base. 

DEFINITION 1.7. Let G be a connected, semisimple Lie group, and let M be an 
ergodic G-space with quasi-invariant measure. We say that M is irreducible if every 
closed, connected, noncompact, normal subgroup of G is ergodic on M. 

NOTATION 1.8. HomeoLeb (T) denotes the group of all homeomorphisms d> of T, 
such that d>*A has the same null sets as A, where X is the Lebesgue measure on T .  

THEOREM 5.4'. Let 

G be a connected, real, semisimple Lie group, such that 

- G has Kazhdan's property ( T )  and 
- l - r a n k  G 2 2; 

M be an irreducible ergodic G-space with finite invariant measure p; and 
a: G x M ~f  iff(^) be a Borel cocycle. 

Then, as a cocycle into ~ o m e o ~ ~ ~ ( T ) ,  a is cohomologous to a cocycle with values in 
Isom(T). 
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Furthermore, i f  a(g, m )  is orientation preserving, for almost every (g,  m )  G x M ,  
then, as a cocycle into ~ o m e o ~ ' ^ ( ~ ) ,  a is cohomologous to a cocycle with values 
in the rotation group Rot(T). 

It is an open question whether Ghys' Theorem 1.3 remains valid if  iff'(^) is 
replaced with the homeomorphism group Homeo(T). (Witte [Wi] showed that 
the answer is affirmative if T is an arithmetic lattice of Q-rank at least two.) 
However, Ghys (and, in most cases, also Burger and Monod) made the following 
major step toward an affirmative answer. 

THEOREM 1.9 ([Gh, Thm. 3.11). Let F be an irreducible lattice in a connected, 
semisimple, real Lie group G, such that 

(1) R-rank G > 2; and 

(2) there is no continuous homomorphism from G onto PSL(2, R). 

Then every continuous action of T on T has an invariant probability measure. 
In fact, every continuous action of T on T has a finite orbit. 

Ghys obtained Theorem 1.3 by combining Theorem 0.2 with the Thurston Stab- 
ility Theorem 5.1. (He also proved that if G does have a continuous homomorphism 
onto PSL(2, R), then any action of r on T either preserves a probability measure or 
is semi-conjugate to a finite cover of the restriction of a G-action (cf. 6.13)) 

THEOREM 5.1' (Thurston [Th]). Suppose T is a finitely generated group, such that 
r/[T, TI is finite. If u: V Ã‘ ~iff:(T) is any homomorphism, such that u(r) has a 
fixed point, then a(r) is trivial. 

The following theorem is the natural generalization of Theorem 1.9 to the setting 
of ergodic. 

G-actions. Although Ghys did not state this result, it can be proved by translating 
his proof in a straightforward way from the setting of homomorphisms of lattices to 
the setting of Borel cocycles for ergodic G-actions. In Section 4, we provide a proof 
that is based on Ghys' ideas, but is much shorter than a direct translation. 

THEOREM 1.10. Let 

G be a connected, semisimple, real Lie group, such that 

- l - r a n k  G > 2, and 
- there is no continuous homomorphism from G onto PSL(2, R); 

M be an irreducible ergodic G-space with invariant probability measure p; and 
a: G x M Ã‘ Homeo(T) be a strict Borel cocycle. 
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Then there is a G-invariant probability measure v on M xy T, such that theprojection 
of v to M is p. 

We obtain Theorem 5.4 by combining Theorem 1.10 with the following 
generalization of Theorem 5.1. 

DEFINITION 1.1 1. Let a: G x M -+ H be a Borel cocycle, and let Y be an 
H-space. A function f :  M Ã‘> Y is a-equivariant if, for each g e G, we have 
f (gm) = a(g, m)f ( m )  for almost every m M. 

THEOREM 5.3'. Let 

G be a connected Lie group with Kazhdan's property ( T ) ;  
M be an ergodic G-space with finite invariant measure [i; 
a: G x M Ã‘  iff'(^) be a Borel cocycle; and 
f :  M Ã‘> T be an a-equivariant measurable map. ( In  bundle theoretic terms, f is 
a measurable G-invariant section.) 

Then, as a cocycle into ~omeo'^(T), a is cohomologous to the trivial cocycle. 

Theorems 5.4 and 1.10 can be generalized to allow G to be a S-algebraic group 
(see 6.5), and there are also analogues for F-actions, where F is a lattice in (7 

(see 6.3). Thus, as was already mentioned in Remark 2, Ghys' Theorem 1.3 can 
be generalized to allow F to be an S-arithmetic group (see 6.1 1). 

The paper is organized as follows. Section 2 establishes notation, and recalls vari- 
ous results from measure theory, Lie theory, ergodic theory, and Kazhdan's 
property ( T ) .  Section 3 constructs a pair of subgroups that play a crucial role in 
the proof of Theorem 1.10, which is presented in Section 4. Section 5 proves 
Theorems 5.3 and 5.4, our results on differentiable actions. Section 6 extends 
our main results to slightly different settings. 

2. Preliminaries 

2A. PROBABILITY MEASURES 

NOTATION 2.1. We use I to denote the unit interval [O, 11, and T to denote the unit 
circle. For Â£ = T or I: 

A denotes the Lebesgue measure on Â£1 and 
Prob(Â£1 denotes the space of probability measures on Â£1 with the weak* 
topology. 

DEFINITION 2.2. Measures pi and & on a Borel space X are equivalent (or in the 
same measure class) if they have the same null sets. 
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LEMMA 2.3. Let a: G x  M -+ HomeoLeb(T) be a Borel cocycle. There is a 
G-invariant probability measure on M x a  T that is equivalent to p x  A if and only 
if a is equivalent to a cocycle with values in Isom(T). 

Proof. (+) By assumption, there is a Borel cocycle 6: G x  M Ã‘ Isom(T), and a 
Borel function 4: M -+ HomeoLeb(T), such that, for each g G, we have 

for a.e. m E M. Let 

v = i (m x  4(m)'A) dp(m) e Prob(M x  T). 

Because 4(m) e HomeoLeb(T), we know that <^(m)*A is equivalent to A, for every 
m E M, so v is equivalent to p x A. Because A is invariant under Isom(T), it is easy 
to see that v is invariant under the action of G on M x a  T. 

(+) Let v be a G-invariant probability measure on M x a  T that is equivalent to 
p x A. We may write 

where vn, is a probability measure on T .  Because v is equivalent to p x  A, we know 
that vm is equivalent to A, for a.e. m M. Thus, for a.e. m e M, there exists 
+(m) HomeoLeb(T), such that vm = (f)(m)> Now define 6: G x  M -+ 

HomeoLeb(T) by P(g, m) = (b(gm)a(g, m)d)(m)l. Then p x A is a G-invariant measure 
on M xp T, so we see, for each g E G, that fS(g, m) preserves A, and hence is in 
Isom(T), for a.e. m M. 

2B. LIE THEORY [WA, Chap. 11 

Let G be a connected, semisimple, real Lie group. 

NOTATION 2.4. We use lower-case gothic letters Q, b, p ,  q, etc. for the Lie algebras 
of Lie groups G, H ,  P, Q, etc. 

DEFINITION 2.5. A subalgebra a of g is a maximal split toral subalgebra of g if 

(1) a is Abelian; 

(2) adg a is diagonalizable over R, for every a E a; and 
(3) a is maximal, with respect to (1) and (2). 

A maximal split torus of G is a closed, connected subgroup A of G, such that the 
Lie algebra a of A is a maximal split toral subalgebra of G. 

DEFINITION 2.6. Let A be a maximal split torus of G. 
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a For each linear functional a: a Ã‘ R,  we let 

g,, = { v ? g I (adga)(v) = a.(a)v for all a a}. 

A linear functional a: a + R is a real root of g if g,, # 0. 
a The relative Weyl group of G is NG(A)/CG(A). 

DEFINITION 2.7. A subalgebra p of g is parabolic if p @ C contains a maximal 
solvable subalgebra of g 18 C. 

A subgroup P of G is parabolic if 

p is parabolic and 
P = NG(p). 

Remark 2.8 ([Wa, Thm. 1.2.4.8, p. 751). If P is any parabolic subgroup of G, then P 
contains a maximal split torus A of G. We have CG(A) c P and, for any real root a 

of g, we have either g,, c p or g-,, c p. 

Remark 2.9. A proper subgroup P of SL(2, R) is parabolic if and only if P is 

conjugate to (i ;). 
LEMMA 2.10. Let P be a parabolic subgroup of G, and let L be a closed, connected 
subgroup of G that is locally isomorphic to SL(2, R). If p fl I is aparabolic subalgebra 
of I ,  then P n L is a parabolic subgroup of L. 

Proof. Because p n I is a parabolic subalgebra of I, there is a parabolic subgroup Q 
of L ,  such that QÂ = ( P  n L)'. We wish to show that Q c P. By definition, P is the 
normalizer of p, so it suffices to show that every subalgebra of g normalized 
by QÂ is also normalized by Q. 

Because SL(2, R) is simply connected as an algebraic group, the adjoint represen- 
tation of L on g must factor through either SL(2, R) or PSL(2, R). Then, because 
parabolic subgroups of SL(2, R) are Zariski connected, we conclude that every 
subalgebra of g normalized by QÂ is also normalized by Q, as desired. 

2C. ERGODIC ACTIONS 

THEOREM 2.11 ('Moore Ergodicity Theorem', cf. [Zi, Thm. 2.2.15, p. 211). Let 

a G be a connected, semisimple, real Lie group; 
a M be an irreducible, ergodic G-space with finite invariant measure; and 
a H be a closed subgroup of G, such that AdG H is not precompact. 

Then 

(1) the action of H on M is ergodic; and 

(2) the diagonal action of G on (G/H) x M is ergodic. 
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COROLLARY 2.12. Let M be an irreducible, ergodic G-space with finite invariant 
measure, and let P be a minimal parabolic subgroup of G. Then the diagonal action 
of G on (G/P)  x (G/P) x M is ergodic. 

DEFINITION 2.13. An action of G on a space X is triply transitive if G is transitive 
on the set of ordered triples of distinct points of X. 

We note that if G acts triply transitively on X, then X has no nontrivial, proper 
G-equivariant quotients. (In particular, every G-equivariant quotient of X is triply ' 

transitive.) Namely, if there are two distinct points in the same fiber of a quotient 
map, then, by double transitivity, G can move them to two points in different fibers. 
This is impossible if the quotient map is G-equivariant. 

2D. KAZHDAN'S PROPERTY (T) 

DEFINITION 2.14 (Kazhdan, cf. [Ma, Prop. III.2.8(A), p. 1161). A locally compact 
group G has Kazhdan's property (T) if, for every unitary representation p of G on a 
Hilbert space V, there is a compact subset C of G, such that, for every e > 0 there 
exists i5 = d(e) > 0, such that if v <= V is any vector with the property that 

then there is a p(G)-invariant vector w V, such that llwll = llvll and llw - vll < el[vll. 

The following well-known theorem describes exactly which connected, semi- 
simple, real Lie groups have Kazhdan's property (T). We note, in particular, that 
SL(2, R) does not have Kazhdan's property (T). 

THEOREM 2.15 (Kazhdan, Kostant, Serre, Wang). Let G be a connectedsemisimple 
real Lie group. 

(1) Assume G is simple. Then G has Kazhdan's property (T) if and only if either 

R-rank (G) 2 2 or 
G is compact, or 
G is locally isomorphic to either Sp(1, n)  or the real-rank one form of F4. . 

(2) G has Kazhdan's property (T) if and only i f  each simple factor of G has Kazhdan's 

property (TI 
(3) G has Kazhdan's property ( T )  ifand only if G/Z(G) has Kazhdan's property ( T )  

Proof. For (I), see [Ma, Thm. III.5.6(c), p. 1311. For (2+), see [Ma, Cor. 111.2.10, 
p. 1171. For (2+ and 3=+), see [Ma, Lem. 111.2.4, p. 1151. For (3<=), see [HV, 
Thm: 2.12, p. 281. 



ACTIONS ON CIRCLE BUNDLES 99 

In the proof of our generalization of the Thurston Stability Theorem 5.3, the 
following lemma is used to construct vectors v as in Definition 2.14. 

LEMMA 2.16 (cf. [Zi, 2nd par. of pf. of Thm. 9.1.1, p. 1631). Let a: G x M -+ 
~ i f f ( 1 )  be a Bore1 cocycle. For each g <= G, assume that for almost every m e M,  
we have a(g, m)(O) = 0 and ~ ( g ,  m)'(O) = 1. Then, for every compact subset C of G, 
and every s > 0, there is a nontrivial interval I' containing 0, such that, for every 
g e C, we have 

3. A Crucial Lemma 

Ghys' proof of Theorem 1.3 is based on the existence certain subgroups P and L of G, 
such that P c L, and the action of L on LIP is triply transitive. (Then this is con- 
trasted with the fact that the group of orientation-preserving homeomorphisms 
of T is not triply transitive on T.) Ghys describes P and L quite explicitly, in geo- 
metric terms, but this depends on a case-by-case study that uses the classification 
of semisimple Lie groups. By giving a uniform construction, the following lemma 
allows us to avoid case-by-case analysis (or, at least, to condense it into this one 
lemma). 

LEMMA 3.1. Let 

H be a connected, noncompact, almost simple, real Lie group; 
P be a minimal parabolic subgroup of H ;  and 
A be a maximal split torus of H contained in P. 

I f H  is not locally isomorphic to SL(2, R), then there is a connected Lie subgroup L 
of H ,  such that: 

(1) L (fP; 
(2) a n [I, I ]  is nontrivial; 
(3) Ca(I) has codimension one in a; and 
(4) LNp(L) is triply transitive on LNp(L)/Np(L). 

Proof. Let us begin by making our goal more specific. 

CLAIM. It suffices to find a connected, closedsubgroup L of H ,  a real root a. of H ,  and 
an element g of H,  such that: 

(a) L is locally isomorphic to SL(2, R); 
(b) 1 = (ba n I, 1); 
(c) g CH(A); and 
(d) g normalizes L, and acts on L by an outer automorphism. 
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Proof of Claim. (1) Because P is minimal parabolic, we know that P/RadP is 
compact, so P does not contain L (or any other noncompact, semisimple subgroup). 

(2) By definition, [I, I] contains the nontrivial subalgebra [ I j a  n I, I j P a  n I ]  of a. 
(3) Because ker(a) centralizes I, we know that Ca(I) has codimension one in a. 
(4) Because Pis  parabolic and contains A, we know that p contains either I& or 

(see 2.8). Thus, p n I is a parabolic subalgebra of I (see 2.9). Then Lemma 2.10 implies 
that P n L is parabolic in L. Thus, we may identify L/(P Fi L) with KLP1 Ã T, so there 
is an L-invariant circular order on L/(P n L), and L has only two orbits on the 
ordered triples of distinct points in L/(P n L): the positively oriented triples and 
the negatively oriented triples. Modulo inner automorphisms, there is only one outer 

- 

automorphism of L, so it is easy to verify that any outer automorphism of L that fixes 
P n L must take each positively oriented triple to a negatively oriented triple. Thus, 
because g Co(A) c P (see 2.8), we see from (d) that all ordered triples of distinct 
points in L/(P n L) are in the same (L Np(L))-orbit. 

This completes the proof of the claim. 

We now consider two cases, based on the real rank of H 

Case 1. Assume R-rank H = 1. From the classification of simple Lie groups of real 
rank one (cf. [He, Table X.V, p. 5 181) (and the fact that H is not locally isomorphic 
to PSL(2, R) E SO(1,2)), we know that H must contain a subgroup locally 
isomorphic to either SO(1, 3) (if H is locally isomorphic to SO(1, n)) or SU(1,2) 
(if H is locally isomorphic to SU(1, n), Sp(1, n), or the rank one form of F4). Then 
the proof is completed by explicitly constructing L and g for SO(1,3) and SU(1,2). 

Subcase 1.1. Assume H is locally isomorphic to SO(1,3). We may assume that 
H = SL(2, C), that A consists of diagonal matrices, and that P is the group of upper 
triangular matrices. The matrix ( _. ) acts by an outer automorphism of SL(2, R). 

Subcase 1.2. Assume H = SU(1,2). We use the Hermitian form (xly) = xlE+ 
x2E + xsyi. We may assume that A consists of diagonal matrices, and that P is 
the group of upper triangular matrices in H. Let 

Case 2. Assume R-rank H > 1. It is well known (see, for example, [Ma, Prop. 1.1.6.2, 
p. 461) that H contains a closed, connected subgroup that is locally isomorphic to 
either SL(3, R) or Sp(4, R). Therefore, by passing to a subgroup, and then passing 
to a locally isomorphic group, we may assume that H is either SL(3, R) or Sp(4, R). 
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Subcase 2.1. Assume H = SL(3, R). We may assume that A consists of diagonal 
matrices, and that P is the group of upper triangular matrices. Let 

The matrix g = 0 -1 0 acts by an outer automorphism of L, and centralizes A. (: 
Subcase 2.2. Assume H = Sp(4, R). We use the symplectic form defined by 

for xi, yi R ,  and we may assume that A consists of diagonal matrices. Let 

where 6 is the Cartan involution (transpose-inverse). The matrix 

acts by an outer automorphism of L, and centralizes A. 

Remark 3.2. By using more theory, one can give a more conceptual proof of 
Lemma 0.1, without using the classification of real simple Lie algebras. 

Case 1. Assume R-rankH = 1. Write Po = CAU, where C is a compact, con- 
nected subgroup of CH(A) and U is the unipotent radical of P. Let a be the simple 
real root of H, and assume without loss of generality that b-, c u. Because the com- 
pact, connected group C acts nontrivially on b-,, there is some g e C and u e b-,, 
such that Adg(u) = -u. From the Jacobson-Morosov Theorem, we know that u 
is contained in a subalgebra 1 that is isomorphic to sI(2, R). 

Since R-rank H = 1, we know that Nh((u)) c p ,  so p n 1 contains a maximal split 
torus of I. Thus, because all maximal split toral subalgebras of p are conjugate, there 
is some v U ,  such that (Adv)(a) is a maximal split toral subalgebra of 1 that 
normalizes (u). Then a normalizes (Advl)(u), so (Advl)u e b-,. Because u is also 
in I)-,, and [u, u] n I)-, = 0, we conclude that (Advl)u = u. Thus, replacing 1 by 
(Advl)l,  we may assume that a c I. 

Then g normalizes the parabolic subalgebra a + (u) of I, so it must normalize 1. 
Also, we know that g acts on I by an outer automorphism, because g 
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conjugates u to -u, whereas no nontrivial unipotent element is conjugate to its 
inverse in SL(2, R). 

Case 2. Assume R-rank H > 1. For simplicity, let us assume that H is R-split. 
Choose two roots a and fi, such that the fi-string through a has odd length, let 
1 = (Qa, let La be the connected Lie subgroup of H corresponding to the 
subalgebra ($, t ) ~ ) ,  and let V be the La-submodule of t )  generated by Tja. Then, 
identifying La with SL(2, R), the highest weight of V is odd, so g = (-0' acts 
as -1 on the highest weight space ha. 

4. Proof of Theorem 1.10 

The reader is encouraged to read Ghys' beautiful proof [Gh, Section 41 for the case of 
lattices in SL(3, R) before looking at the general case considered here. Many of the 
ideas of this section can be found in [Gh], but we have reorganized them, and 
changed some of the emphasis. Ghys' proof is presented in geometric terms, but 
we have reformulated the argument in group-theoretic terms. 

NOTATION 4.1. 

G, M, and a are always assumed to be as described in the statement of 
Theorem 1.10. (In particular, G has no factors locally isomorphic to SL(2, R).) 
P is a minimal parabolic subgroup of G. 
For any natural number k, > denotes the collection of all k-element subsets 
of T .  

LEMMA 4.2. We may assume a: G x M Ã‘ Homeo+(T). 
Proof. Let sgn: Homeo(T) Ã‘ {&I} be the homomorphism with kernel 

Homeo+(T), and let e = sgn o a, so e: G x M Ã‘ {&I} is a Bore1 cocycle. 
Let M+ = M x,- {Â±I} Because M+ is a two-point extension of M and M is 

irreducible, it is clear that each closed, connected, noncompact, normal subgroup 
of G has no more than two ergodic components on M+. We may assume that G 
is ergodic on M+, for, otherwise, e is equivalent to the trivial cocycle, so a is equiv- 
alent to a cocycle into Homeo+(T), as desired. Then G must act ergodically on 
the space of ergodic components of any normal subgroup. Because G, being con- 
nected, has no nontrivial action on any finite set, we conclude that M +  is irreducible. 

Define a+: G x M+ --+ Homeo(T) by a+(g, (m, Â±I) = a(g, m). If there is a . 
G-invariant probability measure v+ on M+ xa+ T ,  such that v+ projects to ,u4 
on M+, then simply let v be the projection of v+ to M x u  T. 

Now let f be any orientation-reversing homeomorphism of T ,  and define . 

a: M+ + Homeo(T) by 
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For any m+ e M+, we have 

so we see that a+ is cohomologous (via 0) to a cocycle with values in Homeo+(T). Q 

Henceforth, we assume oi(G x M) c Homeo+(T). 
It suffices to show that there is an a-equivariant Borel map I): M -. Prob(T), for 

then we may set v = l M ( m  x I)(m)) dp(m). The action of G on (G/P) x M is amenable 
(because P is amenable) [Zi, 4.1.7bis, 4.3.2, 4.3.41, and the space of measurable 
functions from (G/P) x M to Prob(T) is an affine G-space over (G/P) x M [Zi, 
Defn 4.3.11. Thus, from the definition of an amenable action [Zi, Defn 4.3.11, we 
know that there is an a-equivariant Borel map Y: (G/P) x M Ã‘ Prob(T) 
(cf. [Zi, pf. of Step 1 of Thm. 5.2.5, bot. of p. 1031). The following theorem completes 
the proof of Theorem 1.10. 

THEOREM 4.3. Suppose Y: (G/P) x M -. Prob(T) is an a-equivariant Borel map. 
For each m e M, define Yn7: G/P -. Prob(T) by Yn,(x) = Y(x, m). Then YJn is 
essentially constant, for a.e. m e M. 

Proof. If almost every Y(x, m) is atomless, the desired conclusion is given by 
Theorem 4.4 below. If there is some k, such that almost every Y(x, m) consists 
of k atoms of equal weight, the desired conclusion is given by Corollary 4.6 below. 
Because G is ergodic on (G/P) x M (see 2.1 I), it is not difficult to reduce the problem 
to these two cases. 

Namely, any v Prob(T) has a unique decomposition of the form v = VQ + v l ,  

where VQ has no atoms, and v l  consists entirely of atoms. (Either of the terms in 
the decomposition may be 0.) Thus, we may write Y = Yo + YI ,  where 
Yi(x, m) = [Y(x, m)],. Because the decomposition v = VQ + vi is Homeo(T)- 
equivariant (and unique), we see that Yo and Yi are a-equivariant. Then, because 
G is ergodic on (G/P) x M ,  we see, for .i = 0,1, that either Ti = 0 for a.e. (x, m) 
or Ti # 0 for a.e. (x, m). Thus, either Yi = 0 a.e. (in which case Y = 'PI-;'), or, after 
renormalizing, Yi defines an a-equivariant Borel map into Prob(T). Then, because 
the sum of a-equivariant functions is a-equivariant, there is no harm in assuming 
that either Y = Yo or Y = Yi.  

If Y = YO, then Theorem 4.4 shows that Yn, is essentially constant. 
Thus, we henceforth assume that Y = Yl.  For any v Prob(T) that consists 

entirely of atoms, and any rational number q e (0, I), let v>q c T be the set of atoms 
of weight > q. Because this definition is Homeo(T)-equivariant, and G is ergodic on 
(G/P) x M, we see that the cardinality of Y>q is constant a.e., so Yq is an 
a-equivariant Borel map into Ti-, for some k. Then Corollary 4.6 asserts that 
Y>q is essentially constant. Because this is true for all rational q, we conclude that 
Y,n itself is essentially constant, as desired. 
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THEOREM 4.4. Suppose Y: (G/P) x M -+ Prob(T) is an a-equivariant Bore1 map. 
For each m M, define Ym: G/P + Prob(T) by Ym(x) = Y(x, m). 

IjY(x, m) is atomless, for almost every (x, m) E (G/P) x M, then Ym is essentially 
constant, for a.e. m M. 

Proof. Let Probo(T) be the set of atomless probability measures on T. Define 

and 

where J ranges over all subintervals of T. It suffices to show that the composite 
function D o  y2: (G/P)~ x M + [O, 11 is 0 a,e. 

Step 1. D is continuous. Given pl ,  p2 e Probo(T). Because fii and are atomless, 
there is a mesh to, t , ,  . . . , tÃ = to of points in T, such that &([ti, t;+i]) < ~140 ,  for 
each i and for k = 1,2. Also, for each i, j E {O, . . . , n}, there are continuous functions 
A+,/: T + [O, 11, such that suppfy- c (tÃ tj), f̂  ([ti, tj]) = 1, and 
pk(f7 -A;) < el40 for k = I ,  2. If vk is a measure so close to that 

vk(ft,} - ̂)I < el40 for all i, j e {O, . . . , n) and e e {+, -}, then 

for all i and j. Therefore \ V ~ ( J )  - &(J)] < e/2 for every interval J ,  so 
\D(vl, v2) - D(u,, &)I < fi. This proves the continuity of D. 

Step 2. D o  f2  is essentially constant. Because y2 is a-equivariant and D is 
Homeo(T)-invariant, we know that D o y2 is essentially G-invariant. The Moore 
Ergodicity Theorem 2.12 implies that G is ergodic on (G/P)~ x M, so we conclude 
that D o Y2 is essentially constant. 

Step 3. We have D o Y2 = 0 a.e. From Lusin's Theorem, we know that Y is con- 
tinuous on some compact subset C of positive measure in G/P. Therefore, 
D o  y2 is continuous on C x C. By replacing C with a smaller compact set, we 
may assume that every conull subset of C is dense. Then, because D o y2 is 
essentially constant, we conclude that D o  Y2 is constant on C x C. Obviously, 
D o  y2 is 0 on the diagonal {(c, c)}, so we conclude that D o  Y2 is 0 a.e. 
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THEOREM 4.5. Suppose Y :  (G/P) x M -+ Tk is an a-equivariant Borel map. For 
each m M,  define Y :  G + by Y k ( g )  = Y(gP, m). Suppose L is a closed, con- 
nected subgroup of G, such that 

(1) Cp(L) is not compact; and 
(2) L Np(L) acts triply transitively on L Np(L)/Np(L). 

Then Y is essentially right L-invariant, for a.e. m e M. (That is, for each 1 e L, we 
have YL(g1) = YLt(g) for a.e. g e G.) 

Proof. Because YL is right P-invariant, we may assume that L <f. P. The inclusion 
Np(L) -LNp(L) induces a G-equivariant smooth submersion 

Define 

and 

X = { ( X I ,  x2, xs) 2 1 xi, x2, XT, distinct 1. 
Then 2 is a closed submanifold of ( G / N ~ ( L ) ) ,  and X is conull open subset of 
(with respect to any smooth measure on 2). For i = 1,2,3, let TI,: Ã G/P be 
the G-equivariant map defined by 7ii(xI, xi ,  x3) = xiP. 

Because G is transitive on G/Np(L), any G-orbit on X contains a point ( X I ,  x2, x3), 
such that xl = Np(L). Then x l , x ~ ,  x3 are three points in LNp(L)/Np(L). Thus, 
assumption (2) implies that G is transitive on X. In particular, this implies that 
the class y of Lebesgue measure is the unique a-finite G-invariant measure class 
on X. For i = 1,2,3, the projection (7rJ.y must be the G-invariant measure class 
on G/P. Thus, we have an essentially well-defined Borel map y3: x M Ã 

( T k ) 3  given by 

Note that y3 is a-equivariant. 
The stabilizer of a triple of points in LNp(L)/Np(L) obviously contains Cp(L), 

which, by (I), is not compact. Thus, we conclude from the Moore Ergodicity 
Theorem 2.11 that G is ergodic on F x M. This implies that there is a single 
Homeo(T)-orbit 0 on ( T ~ ) ~ ,  such that y3(x ,m)  E 0 for a.e. ( x ,  m). For any 
permutation a of {l ,  2,3}, and any ( q , x 2 , x 3 )  6 X, we know that (xU(1), 
xUm,xum) also belongs to X. Therefore, Lemma 4.7 implies that 0 = 

{(.A, A, A)lA e T k } .  

The map G x L~ Ã given by 
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is a submersion, so it preserves the class of Lebesgue measure. Thus, from the 
conclusion of the preceding paragraph, we see that, for almost every m M ,  
g G, and I, I' e L, we have Y;&) = YL(g1) = YL(gll). From Fubini's Theorem 
(and ignoring I/), we conclude, for a.e. m e M ,  that Y is essentially right 
L-invariant. 

COROLLARY 4.6. Suppose Y: (G/P) x M + Tk is an a-equivariant Bore1 map. 
For each m e M ,  define Ym: G/P + T k  by Y&) = Y(x, m). 

Then Ym is essentially constant, for a.e. m e M .  
Proof. Let P = MAN be the Langlands decomposition of P [Wa, p. 811. (Because 

the parabolic subgroup P is minimal, we know that A is a maximalsplit torus of G.) 
It suffices to show, for each simple factor H of G, that there are subgroups 

L l ,  L2, .  . . , Ln of H ,  such that 

(a) each subgroup Li satisfies the hypotheses of Theorem 4.5, and 
(b) {[Li, Li] f' A] generates A n H. 

To see that this suffices, let J be the subgroup generated by { P n  H]U 
{LI, L2, . . . , Ln}. Then Theorem 4.5 implies that is essentially right J-invariant. 
Because J 3 Pfl H ,  we know that J is parabolic in H; let J = MJAJNJ be the 
Langlands decomposition of J ,  with A j  c A C\ H.  Then [JO, JO] c M j N j ,  so 
[JO, JO] n A j  = e. On the other hand, we have (A n H)O c [JO, JO] (see (b)). We 
conclude that AJ is trivial, so 

Therefore YL is essentially right H-invariant. Because this is true for every simple 
factor H,  we conclude that YL is essentially right G-invariant, so YL is essentially 
constant, for a.e. m M .  

If R-rank H = 1, then Lemma 3.1 provides an appropriate subgroup L satisfying 
(a) and (b). (Because L is centralized by all the simple factors other than H ,  the 
requirement that Cp(L) be noncompact is automatically satisfied.) 

We may now assume that R-rank H > 1. Let L be as in Lemma 3.1, and let W be 
the relative Weyl group of 5 (with respect to a n  5). Because [I, I] n a is nontrivial 
and W acts irreducibly on a, we know that {w([I, I] n a)lw e W} spans a, so 
{w(L)lw e W }  satisfies (b). Because C~(W(I)) has codimension one in a (and, being 
a subspace of a, is contained in p ) ,  we know that Cp(L) is noncompact. Thus, 
we see that each w(L) satisfies the hypotheses of Theorem 4.5. 

The following result was used in the proof of Theorem 4.5. For completeness, we 
include the proof. We also remark that, as explained by Ghys [Gh, Step 3 of $4, 
bot. of p. 2101, the group Homeo+(T) has only finitely many orbits on ( T ~ ) ~ .  

LEMMA 4.7 (Ghys). Let 0 be an orbit of Homeo+(T) on ( T ~ ) ~ ,  and assume there is 
an element (Al, A2, A3) of 0, such that 
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for every permutation a of {I ,  2,3). Then 

Proof [Gh, bot. of p. 21 11. Let B = A1 U A2 U A3, and let H = {h e Homeo+(T)l 
h(B) = B}. For each permutation a of {I,  2,3}, there is an orientation-preserving 
homeomorphism ha (not unique) of T, such that ha(Ai) = Aym. Then ha ? H ,  
and the restriction of H to B is a cyclic group, so the commutator of any two 
of these homeomorphisms acts trivially on B. Because the permutation 
a = (1,2,3) is a commutator in the symmetric group S3, we conclude that hi\,2,3) 
acts trivially on B. Because h(i,2,3)(Al) = A2 and h(1,2,3)(A2) = AT,, this implies 
A1 = A2 = AT,. 

5. The Reeb-Thurston Stability Theorem 

Ghys' proof of Theorem 1.3 relies on the following one-dimensional case of the 
Reeb-Thurston Stability Theorem [Th]. (See [RS] and [Sc] for elegant proofs.) 

THEOREM 5.1 (Thurston [Th]). IfY is a finitelygeneratedgroup, such that Y/[Y, F] 
is finite, then there is no nontrivial homomorphism T Ã‘Ã ~ i f f 2 1 ) .  

For the proof of Theorem 5.4, we provide the following generalization in the 
setting of Borel cocycles. Applying this result to G/T recovers Thurston's theorem 
in the special case where I' is a lattice in G, and G has Kazhdan's property ( T )  
(see 2.14). 

THEOREM 5.2. Let 

G be a locally compact group with Kazhdan's property ( T ) ;  
0 M be a Borel G-space with invariant probability measure p; and 

a: G x M +  iff',(^) be a Borel cocycle. 

Then there is a G-invariant probability measure v on M xy. I, such that v is equivalent 
to p x /I (and v projects to p on M ) .  

' 
Therefore, as a cocycle into Home01,"~(1), a is cohomologous to the trivial cocycle. 

Before proving Theorem 5.2, let us explain how it implies Theorem 5.4. 

COROLLARY 5.3. Let 

G be a locally compact group with Kazhdan's property ( T ) ;  
M be a Borel G-space with finite invariant measure p; 
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a: G x M Ã‘ D i f f 3 ~ )  be a Borel cocycle; and 
f :  M Ã‘ T be an a-equivariant measurable map. 

Then there is a G-invariant probability measure v on M xÃ T, such that v is equivalent 
to p x A. 

Therefore, as a cocycle into ~orneo^+(T), a is cohomologous to the trivial 
cocycle. 

Proof. Cutting T open at the point f (m) yields an interval Zm, so we may define a 
cocycle a: G x M Ã‘ ~ i f f i ( 1 ) .  Then Theorem 5.2 applies. 

THEOREM 5.4. Let 

G be a connected, semisimple, real Lie group, such that 

- G has Kazhdan's property (Ti and 
- 1-rank G > 2; 

M be an irreducible ergodic G-space with finite invariant measure p; and 
0 a: G x M + ~ i f f i ( T )  be a Borel cocycle. 

Then there is a G-invariant probability measure v on M xÃ T, such that v is equivalent 
to p x A. 

Therefore, as a cocycle into +(T), a is cohomologous to a cocycle with values in the 
rotation group Rot(T). 

Proof. Because G has Kazhdan's property (T), we know that G has no factors 
locally isomorphic to SL(2, R) (see 2.15). Therefore, Theorem 1.10 implies that there 
is a G-invariant probability measure a on M xÃ T ,  such that a projects to p on M. 

Define a cocycle f i :  G x (M xu T) -> Diff',(T) by /?(g, m, s) = a(g, m). The map 
f :  M xÃ T Ã‘ T defined by f(m, s) = s is /?-equivariant, so we know, from 
Corollary 5.3, that there is a G-invariant probability measure ? on 
(M xu T )  x p  T ,  such that ? is equivalent to a x A. 

Let v be the image of ? under the projection (m, s, t) I+ (m, t). Because ? is equiv- 
alent to a x A, and o- projects to p on M ,  we see that v is equivalent to p x A, as 
desired. 

To motivate the proof of Theorem 5.2, let us sketch the analogous proof of 
Theorem 5.1, under the assumption that F has Kazhdan's property (T). (It is well 
known that, because F is discrete, Kazhdan's property (T) implies both that F 
is finitely generated [Zi, Thm. 7.1.5, p. 1311 and that r/[F, F] is finite [Zi, Cor. 7.1.7, 
p. 1311.) 

Proof of Theorem 5.1 when T has Kazhdan'sproperty (T). It suffices to show that 
the set of fixed points of F is dense in I .  Suppose not. Then, replacing I by the closure 
of a component of the complement of the fixed-point set, we may assume that there 
are no fixed points in the interior of I .  
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We have a unitary representation p of F on ~ ~ ( 1 )  given by 

Let s. = 112, and let C c F and 6 > 0 be as in Definition 2.14. Because r / [F ,  F] is 
finite, the homomorphism F Ã‘> R': yi-+ y'(0) must be trivial. Thus, yl(0) = 1, 
for every y F. Therefore, there is a nontrivial interval I' containing 0, such that 
lyl(t) - 11 < d2/4, for every y C and every t e I". Let be the characteristic function 
of 7'. Then \\p(fY - f \\ < S\[f \\, for every y 6 C, so we conclude from the choice of C 
and 6 that there is some nonzero p(F)-invariant function 4 in L2(I). Then \<i>12dA is a 
F-invariant measure on I ,  so every point in the support of this measure is fixed by F. 
This contradicts the assumption that r has no fixed points in the interior of I. 

Our proof of Theorem 5.2 is a fairly straightforward translation of this argument 
to the setting of cocycles for Bore1 actions, except that it is not convenient to 
use a topological argument in this setting. Therefore, instead of obtaining a con- 
tradiction by finding a fixed point that does not belong to the closure of the 
fixed-point set, we find a set of fixed points whose measure is greater than the 
measure of the set of fixed points. 

Proof of Theorem 5.2. By passing to ergodic components, we may assume that G is 
ergodic on M. 

The map G x  M Ã‘ R defined by (g, m) I+ a.(s, m)'(O) is a cocycle. Because G has 
Kazhdan's property (T), and R' is amenable and has no compact subgroups, the 
cocycle must be cohomologous to the trivial cocycle [Zi, Thm. 9.1 . l ,  p. 1621, so, 
by replacing a with an equivalent cocycle, we may assume, for each g 6 G, that 
a(g, m)'(O) = 1 for a.e. m e M. 

Because p is G-invariant, we have 

for any g G and I) 6 L\M x n  I). Therefore, a unitary representation p of G on 
L2(M x u  I) is given by 

for g G, <f) L2(M x m  I), and (m, s) M x u  I. 
Fix a compact subset C of G, as in Definition 2.14. 

Fix some s.1 e (0, I), and let dl = 6(eI) > 0 be the corresponding &value given 
by Definition 2.14. 
Choose s.2 > 0 small enough that 9&2 < 6?, and let & = h(s.2) > 0 be the corre- 
sponding &value given by Definition 2.14. 
Choose Â£ > 0 small enough that 13g3 < 6;. 
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We may assume that 1 > el > O i  > e; > O2 > 63 > 0. 
Lemma 2.16 tells us that there is a nontrivial interval I' containing 0, such that, for 

every g C, we have 

Let 3 be the space of all p(G)-invariant functions in L;(M x a  I), and choose 
(f) e 3, such that (p x  A)((f)'(0)) is minimal. The minimum exists, because any con- 
vex combination of (the absolute values of) countably many p(G)-invariant functions 
is p(G)-invariant. Furthermore, 

for every I) 3, we have i / /  = 0 a.e. on (f)'(0). (5.6) 

Because d> is p(G)-invariant, we know that v = \ ( f ) \2 .  (p x  2) is a G-invariant 
measure on M x a  I. (A priori, (f) could be identically 0, so this measure could be 
trivial.) To complete the proof, we will show that this measure is equivalent to 
p x  A; that is, we will show that (p x  A)((f)'(0)) = 0. (Then v projects to y. on M. 
Indeed, because G is ergodic on (M, p), we know that any G-invariant probability 
measure on M x a  I that is equivalent to p x  2 must project to p on M.) 

NOTATION 5.7. For each rn M, let An, be the Lebesgue measure on the interval 
m x  I .  Thus, An,(E) = Am(Â£ n (m x I)) for every Bore1 subset E of I ,  and we have 
p A = JM ^-mddm). 

Assume that (p x  A)(^>'(o)) # 0. (This will lead to a contradiction.) Because p is 
ergodic and (f)'(0) is G-invariant, we must have L~ , ( (~ ) ' (o ) )  # 0, for a.e. m M. 
By discarding a set of measure 0, we may assume 2 & ( 0 ) )  # 0 for every 
m M. Then we may define f :  M + I by 

f (m) = max t e I An, 0-'(0) n (m x  [O, t ] ) )  = 01. 1 I (  
Replacing M x a  I with the invariant subset 

we may assume that 

f is identically 0. (5.8) 

Step 1. There is some So > 0, such that 

(To avoid confusion, we emphasize that the integral is over m x  1', not the entire 
interval m x  I.) Let y be the characteristic function of M x I'. We will show, for 
every g C, that \p(g)y - yll < <>;lIyll (see Claim 1.1 below). From the definition 
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of &, this implies that there is some $ F, such that I\̂ \\ = llxll and 
I11 - $ 1 1  < ~211111. Therefore, 

From ( 5 . 9 ,  we conclude that the same inequality is true with 4 in the place of $. In 
other words, we have 

Thus, the desired conclusion is obtained by taking & sufficiently small. 

Claim 1.1. For each g C, we have \p(g)y, - 111 < m. Let 

For m E E. we have: 

Â£ if ( 1  + 83)s E I' 1 (p(g)x)(m, s) - d m ,  s)\ < 2 if ( 1  + Q)S$ I' and s / ( l  + Â £ 3  I' 
0 if s / ( l  + e3) $ I' 

Therefore, 

If F is any subset of M with p(F) < Â£3 then SF x IX2d (p  x 2) < e32(If) ,  because 
1x1 < 1 .  Then we must also have SF ~ I ( ~ ( g ) ~ ) ~ d ( p  x 2) < e3A(If), because p is unitary, 
g - ' ( ~  x I )  = ( g ' ~ )  x I ,  and p is G-invariant. In particular, letting F = M \ E and 
using the triangle inequality, we obtain 

Combining (5.9) and (5.9) yields 

This completes the proof of the claim. 
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Step 2. We obtain a contradiction. Let y' be the characteristic function of the 
G-invariant set 

(m,  s) M x-m, t)\1 d&(t) < do II 
We have Am(X) # 0 for a.e. m e M (see 5.7), so we may define a unit vector 
co E L ~ ( M  X J )  by 

We will show, for every g e C, that \p(g)a) - co\\ < d l  llmll (see Claim 2.2 below). 
Then the definition of S\ implies that CD is not orthogonal to 3. Thus, there is some 
if/ 3, such that if/ is not essentially 0 on X. From (5.5), we conclude that 4 is 
not essentially 0 on X. Because X c 4 * ( 0 ) ,  this is a contradiction. 

Claim. 2.2. For every g e C, we have \\p(g)w - 4 < d l  I I C D I I .  Let 

E = { m M 1 I s  21f, ]a(g-', m)'(s) - 1 1 < Â£ } 

By comparing the rightmost terms in the definitions of X and E,  we see that 
X n ( E  x I )  c E x I'. Thus, from the left term in the definition of E, we see that 

m)'(s) - 11 < Â £  for every (m,  s) X n ( E  x I) .  Therefore, form E, we have: 

Therefore, 

If F is any subset of M with p(F) < 2 ~ 2 ,  then SF x1m2d(p x A) < 282, because 
m2dAn1 = 1 for every m M .  Then we must also have x I ( ~ ( ~ ) C D ) ~  

d (p  x A) < 2fi2, because p is unitary, g ' ( ~  x I )  = ( g ' ~ )  x I ,  and p is G-invariant. 
In particular, letting F = M \ E and using the triangle inequality, we obtain 

Combining (5.10) and (5.1 1 )  yields 

\\p(g)w - mu2 ^ Â£ + 8fi2 < $ = (6111~ll)2. 

This completes the proof of the claim. It also completes the proof of Theorem 5.2. 
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Remark 5.13. For a smooth manifold X and a point x X, let Diffid(x; x) be the 
group of c1 diffeomorphisms h of X, such that h(x) = x and Dh(x) = Id. It would 
be interesting to know whether Theorem 5.2 generalizes to the cocycles 
a: G x M Ã‘ Diffid(x; x), for dim X > 1. It would also be interesting to know 
whether additional smoothness on the cocycle a yields additional smoothness on 
the function that implements the cohomology of a to a trivial cocycle. 

6. Other Versions of the Main Theorem 

The assumption that M is irreducible and ergodic is stronger than is necessary in 
Theorems 1.10 and 5.4. Namely, we may allow G to be a product of higher-rank 
normal subgroups whose ergodic components are irreducible (see 6.1). In particular, 
if no simple factor of G has real rank one, then there is no need for any ergodicity or 
irreducibility assumption on M (see 6.2). 

There are also analogous results in the more general situation where G is allowed 
to be a product of semisimple algebraic groups over local fields (see 6.5), or a lattice 
in such a group (see 6.3 and 6.9). Thus, Theorem 1.3 generalizes to the situation 
where F is an S-arithmetic group (see 6.10 and 6.11). 

The results also generalize to the case where G has PSL(2, R) as a factor, but the 
conclusion must be weakened (see 6.13 and 6.14). 

COROLLARY 6.1. Let 

G be a connected, semisimple, real Lie group, such that there is no continuous 
homomorphism from G onto PSL(2, R); 
M be a Borel G-space with invariant probability measure p; 
a: G x M Ã‘> Homeo(T) be a strict Borel cocycle; and 
Go, GI, . . . , Gr be connected, closed, normal subgroups of G, such that 

- G = GoGl . . .  G,., 
- Go is compact, 
- R-rank(Gi) ^2 for i > 0, 
- [Gi, Gj] = e for all i and j, and 
- for each i > 0, almost every ergodic component of the action of Gi on M is 

irreducible. 

Then there is a G-invariant probability measure v on M xg, T, such that the projection 
of v to M is p. 

Furthermore, i f  G has Kazhdan 's property (T) ,  and a(G x M) c Diff1(7T), then v 
can be taken to be equivalent to p x L 

Proof. If G = Go, then G is compact, so we obtain a G-invariant measure v on 
M x a  T simply by averaging over G. Thus, we may assume r > 0. Let 

G* = GoGl . . . GrPl; 
a* be the restriction of a to G* x M; 
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a, be the restriction of a to G, x M ;  and 
A = {$: M  4 Prob(T) U $ is a*-equivariant}. 

By induction on r, we may assume that there is a G*-invariant probability measure v* 
on M  x *  T ,  such that the projection of v* to M  is p. Therefore, A is nonempty. 

Let P be a minimal parabolic subgroup of G. The space of measurable functions 
from Gr/(P fl Gr) to A is an affine Gr-space over Gr/(P n G,), so, because P H G, 
is amenable, there is a 6-equivariant Borel map <I>: Gr/(P n G,) Ã‘ A. Then, defining 
Y: (Gr/(pn G,)) x M  + Prob(T) by Y(x,m) = <I>(x)(m), we see that Y is 
a,-equivariant. 

For each m E M ,  define YÃ£, G/P+  Prob(T) by Ym(x) = Y(x,m). By 
assumption, each ergodic component of the action of G, on M  is irreducible. Thus, 
Theorem 4.3 implies that Y,,, is essentially constant, for a.e. m e M .  Thus, Y induces 
an essentially well-defined Borel map Y: M Ã‘> Prob(T). By construction, Y is both 
a*-equivariant and a,.-equivariant, so Y is a-equivariant. Therefore, 
v = sM(m x *P(m))dp(m) is a G-invariant measure on M  xÃ T. By construction, 
it projects to p on M .  

COROLLARY 6.2. Let 

G be a connected, semisimple, real Lie group, such that G has no factors of real 
rank one; 

0 M  be a Borel G-space with invariant probability measure p; and 
a: G x M  Ã‘> Homeo(T) be a strict Borel cocycle. 

Then there is a G-invariant probability measure v on M  xa  T, such that theprojection 
of v to M is p. 

Furthermore, ifv.(G x M )  c  iff' (T), then v can be taken to be equivalent to fi x A. 

COROLLARY 6.3. Let 

0 G be a connected, semisimple, real Lie group, such that 

- l - rank G > 2, and 
- there is no continuous homomorphism from G onto PSL(2, R); 

T be an irreducible lattice in G; 
M  be an irreducible ergodic T-space with finite invariant measure pi/; and 
a: T x M  Ã‘ Homeo(T) be a Borel cocycle. 

Then there is a T-invariant probability measure v on M  xa T,  such that the projection 
of v to M  is p. 

Furthermore, ifT has Kazhdan's property ( T ) ,  and a(T x M )  c ~ i f f ' ( T ) ,  then v 
can be taken to be equivalent to p x A. 

Proof, (a standard argument). Let a: G/T Ã‘ G be a Borel section (i.e., o(gT) e gT 
for every gF e  G/T), and define y: G x G/T -> T by a(gx) = ga(x)y(g, x ) '  for g E G 
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and x e GIT. Then y is a Borel cocycle for the action of G on G/Y. 
Let M = 1 n d 3 ~ )  = (GIT) x,, M be the G-space induced from the F-space M. 

Then M is an irreducible, ergodic G-space. Define a Borel cocycle a: G x M -+ 
Homeo(T) by a(g, (x, m)) = a(y(g, 4, m). 

From Theorem 1 .lo, we know that there is a G-invariant probability measure ? 
on M x-; T ,  such that $ projects to p x p on (GIT) x M, where p is the G-invariant 
probability measure on G/T. We may write C = s,J%dp(x), where Cx E 

Prob(x x M x T). 
Fix a.e. g G. The measure VyV is gTgl-invariant, and projects to p on M. Define 

v by g*(eV x v) = vgF. 

Remark 6.4. For G as in Theorem 6.5, the definitions of irreducible lattice and 
irreducible action given in Section 1 (see 1.1 and 1.7) must be modified to refer 
to 'non-discrete' normal subgroups instead of 'connected' normal subgroups. 

THEOREM 6.5. Let 

S be a finite set of local fields (not necessarily of characteristic zero); 
GF be a connected, semisimple algebraic group over F, for each F S; 
G be a closed, cocompact, normal subgroup of f T F  6 SGF(F); 
M be an irreducible ergodic G-space with finite invariant measure p; and 
a: G x M Ã‘> Homeo(T) be a strict Borel cocycle. 

Assume 

(a) Ls F-rank(GF) 2 2; and 
(b) the identity component G'Â has no continuous homomorphism onto PSL(2, R). 

Then there is a G-invariantprobability measure v on M x u  T, such that the projection 
of v to M is p. 

Furthermore, if G has Kazhdan's property (T), and a(G x M) c ~ i f f ' ( T ) ,  then v 
can be taken to be equivalent to p x L 

Remarks on the proof. Most of the arguments of Sections 4 and 5 apply with only 
minor changes. 

As a replacement for the Moore Ergodicity Theorem 2.11, we note that the proof 
of [Ma, Thm. 7.2, p. 1051 yields a version of this result that applies to the general 
groups G under consideration, in the special case where H contains a nontrivial split 
torus of G. This suffices for our purposes. 

When F is nonarchimedean, we use Lemma 6.8 below in place of Theorem 4.5. 
(The proof of this lemma relies on an argument of E. Ghys [Gh, pp. 219-2201 that 
was not needed in Section 4 or Section 5.) The existence of a subgroup L satisfying 
the hypotheses of this lemma follows from Lemma 6.6 below. (Because SL(2, F) 
has no infinite, proper, normal subgroups [Ma, Cor. 2.3.2, p. 531, we know that 
C(SL(2, F)) c G.) 
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LEMMA 6.6 ([Ti, Prop. 3.1(13)]). Let 

G be a semisimple algebraic group over a field F;  
A be a maximal F-split torus of G ;  and 

0 a be an F-root of G (with respect to A),  such that 2a is not an F-root. 

Then there is a nontrivial F-homomorphism !,: SL(2, .) -+ G ,  such that 

for all x e F and a e F \ {O}. 

We will use the following elementary observation in the proof of Lemma 6.8. 

LEMMA 6.7. Let 

F be a local field; 
Â L = SL(2, F);  
0 P be a proper parabolic subgroup of L; and 

a, b,  c be three distinct elements of LIP.  

If F # R, then there exist yo,. . . , yn T ,  such that yo = b, yn = a, and 
(y; - 1 ,  yi ,  c) 6 L(a, b,  c)  for i = 1, . . . , n. 

Proof. It is well known that there is an identification of L I P  with F U {oo}, so that 
we have the standard action of L on F U {oo} by linear-fractional transformations. 
Then, because GL(2,  F )  is triply transitive on F U {oo} and normalizes L ,  we 
may assume a = 0, b = 1, and c = oo. Because F # R, we may choose 
to, . . . , tn F such that to = 1 and ti + . . . + t i  = 0. Let yi = t i  + . . . + t }  Then 

as desired. 

LEMMA 6.8. Let G, M ,  and a be as in Theorem 0.3, and let P = G n Y\v 6 w), 
where PF is a minimal parabolic subgroup of GF, for each F E S. 

Suppose Y: (GIP) x M Ã‘> T k  is an a-equivariant Bore! map. For each m E M,  
define Yk: G + Tk by Y k ( g )  = Y ( g P ,  m). 

Suppose F # R, and L is a closed subgroup of G, such that 

Cp(L)  contains a nontrivial split torus of G; 
0 L is the image of an F-morphism !,: SL(2, .) Ã‘> GF with finite kernel; and 

! , ( L  C\ P )  is a parabolic subgroup of SL(2, F). 

Then Y i  is essentially right L-invariant, for a.e. m e M. 
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Proof. Define X as in the proof of Theorem 4.5, and fix some (a, b ,  c) X .  It 
follows from Lemma 6.7 that there exist yo, . . . , yn E G/P,  such that yo = b, 
yn = a, and (yi - 1, yi, c) e G(a, b, c) for i = 1, . . . , n. 

Case 1. Assume that k = 1, and that Y ( x l ) ,  Y ( x 2 ) ,  and Y ( x 3 )  are distinct, for 
almost all m M and ( x l ,  x i ,  x3) e G(a, b, c). From the Moore Ergodicity Theorem, 
we know that G is ergodic on G(a, b, c) x M .  Thus, for almost every m M and 
g e G, we conclude that 

have the same orientation, for i = 1, . . . , n. Thus, by induction, we see that 

(yLz  YO), < ( g ~ i ) ,  yk k c ) )  and (yk (gal, vf'^gb), 

have the same orientation. This is a contradiction. 

Case 2. Thegeneral case. If Y is not essentially right L-invariant, then the argument 
of [Gh, pp. 219-2201 shows that, after replacing Y with a different a-equivariant 
Borel function, we may assume, for almost every m M and ( x i ,  x2, x3)  
G(a, b, c), that YLZ(x l )  is disjoint from Y'Jx2) ,  and the sets YL2(xl)  and Y k ( x 2 )  alter- 
nate around the circle. 

Now, if three pairwise disjoint k-element subsets Bl , -62, B3 of T are pairwise alter- 
nating around the circle, we say that ( B l ,  B2, B3) is positively oriented if there is a 
positively oriented arc of the circle from a point of B1 to a point of By that does 
not contain any point of B3 [Gh, bot. of p. 2201. This relation has the properties 
of a circular order, so we obtain a contradiction by applying the same argument 
as in Case 1. 

The proof of Corollary 6.3 yields the following as a corollary of Theorem 6.5. 

COROLLARY 6.9. Let 

G be as in Theorem 6.5 (including assumptions (a) and (b)); 
Y be an irreducible lattice in G; 
M be an irreducible ergodic Y-space with finite invariant measure p; and 
a: Y x M ~r Homeo(T) be a strict Borel cocycle. 

Then there is a T-invariant probability measure v on M x a  T, such that the projection 
of v to M is p. 

Furthermore, ;/T has Kazhdan's property (T ) ,  and a ( r  x M )  c  iff(^), then v 
can be taken to be equivalent to p x L 
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The following generalization of Theorems 1.3 and 1.9 is the special case of 
Corollary 6.9 in which M is a single point. This result is essentially due to 
M. Burger and N. Monod [BMl, BM2, BM31, but a few isolated cases are not 
covered by their theorems. (On the other hand, some of their results apply in a more 
general setting where G need not be a product of algebraic groups, or Lie groups.) In 
the final conclusion of this corollary, we do not assume F has Kazhdan's 
property ( T ) ,  because Thurston's Theorem 5.1 can be applied if F is finitely 
generated. Furthermore, this restriction to finitely generated lattices may be 
superfluous: we do not know an example of an irreducible lattice in such a group 
that is not finitely generated. 

COROLLARY 6.10. Let 

G be as in Theorem 6.5 (including assumptions (a) and (b)); and 
F be an irreducible lattice in G. 

Then every continuous action of F on T has a finite orbit. 
Furthermore, i f  F is finitely generated, then every homomorphism from F to 

  iff (T) has finite image. 

Ghys' Theorems 1.3 and 1.9 are essentially the special case of the following 
corollary in which E is a number field and S consists only of the infinite places. 
(More generally, if E is a number field and Eses Es-rank(G) > 2, then Conclusion 
(b) of this corollary is a consequence of Ghys' Theorem. Namely, Theorem 1.3 
applies to the subgroup G(0) of F, and then the Margulis Finiteness Theorem [Ma, 
Thm. IV.4.10, p. 1671 implies that the image of F is finite.) Note that Assumption 
(a) implies F is finitely generated [Ma, Thm. III.5.7(c), p. 1311, [Be, Thm. la]. 

COROLLARY 6.1 1. Let 

a E be a global field; 
a S be a nonernpty, finite set of places of E, including all of the infinite places; 

G be a connected, almost simple algebraic group over E; 
0(S) be the ring of S-integers in E ;  and 

a F be a finite-index subgroup of G(0(S)). 

Assume 

(a) xses E,-rank(G) > 2; and 
(b) for each Archimedean s E S,  there is no continuous homomorphism from G(Es)Â 

onto PSL(2, R). 

Then 

(a) every continuous action of F on T has a finite orbit; and 
(b) every homomorphism from F to ~ i f f ( T )  has finite image. 
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The following theorem is the main result of [Gh, Section 71, although it was not 
stated explicitly. 

THEOREM 6.12. (Ghys [Gh, Section 71). Let 

G be a connected Lie group that is locally isomorphic to SL(2, R)", for some 
n > 0; 
F be a countable group; 
: F -Ã  ̂ Homeo+(T) and z: Y Y G be homomorphisms; 
P be a parabolic subgroup of G; and 
Y :  G / P  -+ Tk be a Y-equivariant Borel map, for some k 3 1. 

If z(Y) is ergodic on G/H, for every closed, noncompact subgroup H of G, then either 
d)(Y) has a finite orbit, or there is a semiconjugacy as described in Corollary 6.13(2) 
below. 

Although Theorem 6.12 assumes that G is connected, an examination of the proof 
shows that if G is a real algebraic group, then it holds under the weaker assumption 
that G is Zariski connected. This yields the following generalization of Corollary 
6.10 that allows PSL(2, R) as a factor of G. This generalization was proved by 
E. Ghys [Gh, Thm. 1.21 for S c {R, C}. To justify the stronger conclusion when 
$(r) c ~if f ' (T) ,  see [Gh, Prop. 10.21. 

COROLLARY 6.13. Let 

G be as in Theorem 6.5, except that we do not assume (b) (although we do assume 

(a)); 
F be an irreducible lattice in G; and 
d): Y -+ Homeo+(T) be a homomorphism. 

Then either 

(1) 4 ( r )  has a finite orbit; or 
(2) the restriction of d) to F is semiconjugate to a finite cover of the composition of the 

following: 

(a) the inclusion of Y into G; 
(b) a continuous surjection G Y PSL(2, R); and 
(c) the standard action of PSL(2, R) on T by linear-fractional transformations. 

Furthermore, i f  &(r) c  iff(^), then any semiconjugacy as in (2) above is actually 
a topological conjugacy. 

For completeness, we state the following generalization of Theorem 6.5. Its proof 
is completed by translating [Gh, Section 71 in a straightforward way from the setting 
of homomorphisms of lattices to the setting of Borel cocycles for ergodic G-actions. 
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COROLLARY 6.14. Let G, M, p, and a. be as in Theorem 6.5, except that we do not 
assume (b) (although we do assume (a)). Assume a(g, m) is orientation preserving, 
for all g e G and m e M (cf. 4.2). 

Then there is aprobability measure v on M x a  T, such that the projection of v to M 
is p, and either 

(1) v is G-invariant; or 
(2) there exist 

(a) a continuous surjection T :  G Ã‘ PSL(2, R); and 
(b) a G-equivariant, measure-preserving function 

f :  (M x a  T, v) -+ (M xT  T, p x  Leb); 

such that f is of the form f (m, t) = (m, fm(t)), where, for a.e. m e M, 

a fm: T Ã‘ T is continuous, and 
a any continuous lift fm: R Ã‘ R is increasing 
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