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Abstract. There is a natural action of SL(2, R) on the moduli space of translation surfaces, 
and this yields an action of the unipotent subgroup U = {(A T ) } .  We classify the 
U-invariant ergodic measures on certain special submanifolds of the moduli space. 
(Each submanifold is the SL(2, R)-orbit of the set of branched covers of a fixed Veech 
surface.) For the U-action on these submanifolds, this is an analogue of Ratner's theorem 
on unipotent flows. The result yields an asymptotic estimate of the number of periodic 
trajectories for billiards in a certain family of non-Veech rational triangles, namely, the 
isosceles triangles in which exactly one angle is 2n/n ,  with n >_ 5 and n odd. 

1. Introduction 
A polygon P c IR2 is called rational if all angles of P are rational multiples of n. 
Let N ( P ,  T) denote the number of (cylinders of) periodic billiard trajectories of Euclidean 
length at most T .  It is a theorem of Masur [Mal, Ma21 that there exist constants 
cl = ci ( P )  and c2 = c2(P)  > 0 such that, for T >> 1, 

A natural question is whether equation (1 . l )  can be converted to an asymptotic formula as 
T Ã‘ 00. 

A well-known construction associates a 'translation surface' S to each rational 
polygon P.  Essentially the algorithm 'unfolds' the billiard trajectories, by reflecting the 
polygon instead of reflecting the trajectory. More precisely, let A c 0 (2) denote the group 
generated by reflections in the sides of the polygon P. Since P is rational, A is finite. 
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The 'translation surface' consists of A copies of P ,  with each copy glued to each of its 
mirror images along the reflecting side. 

For example, if P is the unit square, then S  is the torus JFt2/2z @ 2Z, and if P is the 
isosceles triangle with angles r / 2  - r j n ,  7112 - n / n ,  2 r / n ,  and n is even, then S  is the 
regular n-gon with opposite sides identified. 

A translation surface can be defined in one of the following equivalent ways. 
(a) A union of polygons PI U . U Pn where each Pi c and the Pi are glued along 

parallel sides, such that each side is glued to exactly one other, and the total angle in 
each vertex is an integer multiple of 277. 

(b) An orientable surface with a flat metric and isolated conical singularities that 
has trivial rotational holonomy. (Note that trivial rotational holonomy means in 
particular that parallel transport of a vector along a small loop going around a conical 
point brings a vector back to itself. This implies that all cone angles are integer 
multiples of 2n .) 

(c) A pair (M, a>), where M is an (orientable) Riemann surface, and a> is a holomorphic 
1-form on M .  (Note that, away from the zeroes of a>, there is a local coordinate z 
such that a> = dz, and this coordinate is unique up to translation. Then one can define 
the metric on M as \dz12. This metric is flat, with conical singularities appearing at 
the zeroes of a>.) 

The term 'translation surface' comes from the fact that away from the cone points the 
surface can be covered by charts so that the transition functions are translations (z Ã‘ z+c). 
If a = (q, . . . , ctk) is an n-tuple of positive integers such that the sum of the a, is 
even, we denote by 'H(a) the moduli space of translation surfaces (M, CD) such that the 
multiplicities of the zeroes of u) are given by a \ ,  . . . , a.n (or equivalently such that the 
orders of the conical singularities are 2 r (a \  + I) ,  . . . , 2n(an + 1)). (Actually, for technical 
reasons, the singularities of (M, a>) should be labeled; thus, an element of X(a )  is a tuple 
(M, u), pl , . . . , pn), where pl , . . . , pn are the singularities of M, and the multiplicity of pi 
is cq .) The moduli space of translation surfaces is naturally stratified by the spaces X(a) ;  
each is called a stratum. 

By construction, billiard trajectories on P correspond to 'straight lines' on S ,  which are 
geodesics not passing through singularities. It is easy to see that any such geodesic is part of 
a family of freely homotopic parallel geodesics of the same length. Such a family is called 
a cylinder. Let N ( S ,  T) denote the number of cylinders on S  of length at most T. (By the 
length of a cylinder we mean the length of any of the closed geodesics that comprise it.) 

1.1. The SL(2, R) action. There is an action of SL(2, R) on the moduli space of 
translation surfaces that preserves the stratification. For our purpose, it is easiest to see 
this using definition (I): since SL(2, R) acts on R2, for S = PI U . . . U Pn, we can define 
gS = g  PI U . . . U g  Pn , where all identifications between the sides of the polygons for g S  
are the same as for S.  This action generalizes the action of SL(2, R) on the space of flat 
tori SL(2, R)/  SL(2, Z). 

We can visualize this as a composition of 'the usual linear action' with 'cut and paste'. 
We note that 'cut and paste' is an isometry on the surface (and in fact preserves the 
horizontal and vertical directions as well). Note that if S is a union of triangles, and g  
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is a large element of SL(2, R) then gS  is a union of long and thin triangles. We may if we 
wish 'cut and paste' gS  and retriangulate to try to present gS as a union of triangles with 
bounded side lengths. 

1.2. Veech surfaces. For S ? ^(a), let r (S)  c SL(2, R) denote the stabilizer of S. 
The group F(S) is called the Veech group of S. If r ( S )  is a lattice in SL(2, R) then S is 
called a Veech surface. It is a theorem of Veech [Vel] that if S is a Veech surface, then 
there exists c = c(S) such that 

N ( S ,  T) - C T ~  (1.2) 

1.3. Counting and Ratner's theorem. One has the formula [Ve2] (reproduced in [EM]) 

where 
cos 0 sin0 

and t = log T. The left-hand side counts (cylinders of) closed geodesics in an annulus, and 
the right-hand side is an integral over part of the SL(2, R) orbit of S .  Thus, the SL(2, R) 
action can be used to count closed geodesics (and thus periodic billiard trajectories). 

A closer examination of equation (1.3) shows that the integral is over large circles inside 
the SL(2, R) orbit. These large circles can be approximated by horocycles, which are orbits 
of ut = (A ). Thus the ergodic properties of the action of U = {ut 1 t R} play a key 
role. 

Ratner's theorem [Ra6] is the classification of the invariant measures for the action of 
a unipotent subgroup on the homogeneous space H I  V, where H is a Lie group and r is 
a lattice in H .  An important question is whether a similar theorem holds for the U-action 
on a stratum ^(a). One can also ask this question when one restricts the action to any 
SL(2, R) invariant submanifold of a stratum. In this paper, we will classify the U-invariant 
measures on a certain family of SL(2, R)-invariant manifolds. Another result in this 
direction was obtained by McMullen [Me] who, in genus two, classified the measures 
invariant under all of SL(2, R). 

1.4. Branched covers of Veech surfaces. We say that a translation surface S is a 
branched cover of a translation surface M if the covering map n respects the translation 
structure (i.e. if we identify S = ( L l ,  w) and M = (Lz, cn2) where the L; are Riemann 
surfaces and the co, are holomorphic 1-forms on Li then we require that n : Ll  + L2 is 
holomorphic and n* ( ~ 2 )  = mi). 

Now let M 'H[a) be a Veech surface. Then the SL(2, R) orbit of M is a closed subset 
D of ^(a). Let R ( P )  be another stratum, and let M D ( p )  denote the set of all translations 
surfaces S e ^(/I) that are branched covers of M e D. We will always assume that 6 is 
such that M D ( p )  is non-empty. Then &(,!I) is SL(2, R) invariant. 
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There are two types of Veech surfaces: arithmetic and non-arithmetic. A surface 
S = (M, LO) is an arithmetic Veech surface if and only if M is a (holomorphic) branched 
cover of a torus, <u is the pullback by the covering map of the standard differential d z  on 
the torus, and the branch points project to points of finite order (under the additive group 
of the torus). Equivalently (see [GJ]), S is an arithmetic Veech surface if and only if F(S) 
is commensurable to SL(2, Z). All other Veech surfaces are called non-arithmetic (and 
their Veech groups, which are always non-uniform lattices, are non-arithmetic lattices in 
SL(2, R)). The case where M is arithmetic was analyzed in [EMS]. 

In this paper, we assume that M is not arithmetic, which implies that the genus of M is 
greater than one. Then considering the Euler characteristic, it is easy to see that the degree 
of TT is determined by D and 6. This implies that M D ( ~ )  is closed. (In the case where the 
genus of M is one, one also has to fix the degree of the cover; see [EMS] for the details.) 

The main result of this paper is a classification of the U-invariant ergodic measures 
on MD ( P ) .  This allows us to prove asymptotic formulas of the form (1.2) for S e M m  
(see Theorem 8.12). In particular we prove the following. 

THEOREM 1.4. Let Pn be a triangle with angles 

where n > 5, n odd. Then, as T + oo, 

The fact that the surface Sn associated to P,, is not Veech but is a branched cover of 
degree two of a Veech surface is due to Hubert and Schmidt (see Proposition 4 in [HSl] 
and its proof). We should also note that if n = 5 then the Veech group of Sn is infinitely 
generated (see [HS2]). However, the Veech group of S,, plays no direct role in our analysis. 

Here is an outline of the paper. Section 2 states our main theorem. Section 3 establishes 
notation and presents a few basic lemmas. Section 4 explains 'shearing', the foundation 
of our study of invariant measures. Section 5 proves our main Theorem 2.6 that classifies 
U-invariant measures. Section 6 proves that there are only countably many closed orbits of 
a certain type. Section 7 uses our main theorem (and the countability result of $6) to prove 
that large circles in SL(2, R)-orbits become uniformly distributed with respect to certain 
natural measures. Section 8 applies the equidistribution result of $7 to derive asymptotic 
estimates for the number of periodic trajectories in branched covers of Veech surfaces. 

2. Measure classification 
2.1. Definitions and notation. Let G = SL(2, R). Let M be a Veech surface, which 
means that F = StabG(M) is a lattice in G.  Here, we use M to also denote the isometry 
class of M ;  this is a single point in the moduli space. For k e N, we define xk to be 
the natural fiber bundle over G . M whose fiber over M is M*. Thus, a point of xk is 
represented by (M', PI, . . . , pk), where M' e G M  and p ~ ,  . . . , p k  e M'. In other words, 
a point in xk represents a surface in M' G M  together with k marked points on M'. 
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We note that the space M (/5) parameterizing branched covers is itself a finite branched 
cover of the space Xk for a suitable k .  (The covering map just maps S MD(P) to the 
surface in D it covers, and notes the locations of the branch points.) Thus, to classify 
the U-invariant measures on M D ( / ~ )  it is enough to classify U-invariant measures on Xk 
(see Lemma 8.14). 

If M is a torus, then x can be identified with the homogeneous space (G K (IR2))/ 
(SL(2, Z) K (Z21k). In this situation, a special case of Ratner's theorem [Ra6] classifies all 
the ergodic U-invariant probability measures on X .  We generalize this to allow M to be 
any Veech surface. The proof is based heavily on ideas of Ratner [Ral-Ra6] and Margulis 
and Tomanov [MaT]. An introduction to these ideas can be found in [Mo]. 

Let S be the singular set of M.  Then for g G,  g S  is the singular set of gM. 
Let MQ = M \ S, and let X: c Xk denote the set (gM, p ~ ,  . . . , pk)  where g G 
and {pi ,  . . . , pk} n g T  = 0. Then X: is isomorphic to the natural fiber bundle over GM 
whose fiber over M is ( M Q ) ~ .  

We have a natural embedding of IE2 in the space Vect(Mo) of smooth vector fields 
on My, so, for each v IR2 and p e MQ, we have a trajectory ~ ~ , ~ ( t )  in MQ that is defined 
for t in a certain open interval containing 0 (until the trajectory hits the singular set). We are 
interested only in the forward trajectory, that is, for t >_ 0. By including the singular points 
of M,  we extend yu,p to a continuous curve G,p in M that is defined for t in a closed 
interval (and for all points in M): 
0 l e t } ^ , p ( 0 ) = p f o r a l l v e ~ 2 a n d p e M ; a n d  
0 if t > 0 and t is in the closure of the domain of Y ~ , ~ ,  let 

Then each v defines a function &, : Mu + M, defined by '<pv (p) = TpU (I), where 
Mu is a dense, open subset of M. Note that 'ipv is a local isometry (hence continuous). 
On the other hand, &, is usually not invertible, because a singular point will typically 
have several preimages. In addition, &, is usually not uniformly continuous, because of 
branch cuts. 

For w (Et2)*, we have a continuous map % : X: -+ Xk (where X: is a certain 
subset of Xk), defined by 

3 PI,  , . . .  Pk) = (M, (Pi), . . . , (f)vk(pk)). 

(Thus, does not change the surface M, but moves the marked points in the directions 
specified by w.) Let Sk be the pseudosemigroup generated by {Fb \ w (IR2)*}. 

(R2)* 
(The prefix 'pseudo' simply refers to the fact that these maps are not defined on the entire 
space Xk,  but only on a subset.) Although the maps in zk may not be one-to-one, they 

(R2Ik 
are always finite-to-one. 

For w ( R ~ ) ~ ,  let 6 be the restriction of & to (%)-'(X[). Then (  ̂is a 
diffeomorphism (and local isometry) from a dense open subset of XQ to a dense open 
subset of XQ. Let ak be the pseudogroup that is generated by {4^, 1 w E (It2)^}. ^ I k  
We remark that @ I S  transitive on x:. w A 

Note that each of and CfR2,k is normalized by the action of G = SL(2, R) 
A 

on Xk,  so we have corresponding semidirect products G K 's'~ and G K @{"R21k. 
@*Ik 
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Let 
Horiz = { ( ( x i ,  o))!=, 1 xi e R }  c (R2)* 

and 
A -k Horiz = {(pw 1 w Horiz}. 

-k Note that, for w l ,  w2 E Horiz, we have (p,,,l+w2 = on the intersection of their 

domains, so Horiz is a pseudosemigroup. Also, Horiz commutes with the action of U. 

2.2. Statement of the main results. Let p be an ergodic U-invariant probability measure 
on x*. The projection of p to G/  F is U-invariant, so it must be either Lebesgue measure 
or the arc-length on a closed U-orbit [Da]. The interesting case is when the projection 
is Lebesgue. A weak statement of our results is simply to say that, in this case, some 
horizontal translate of p must be G-invariant. 

THEOREM 2.1. Suppose p is any ergodic U-invariant probability measure on x*, such 
A 

that the projection of p to G/ is Lebesgue. Then there exists h Horiz, such that h*p is 
G-invariant (and the domain of h has full measure). 

To obtain a more precise description of the U-invariant measures, one need only 
describe the G-invariant measures on x*. 
Remark 2.2. 

(1)  It is easy to see that the G-invariant probability measures on xk are in natural one- 
to-one correspondence with the r-invariant probability measures on M* (cf., e.g., 
[Wi, proof of Corollary 5.81). 

(2) It is the r-invariant measures on M* that are the most important to understand, 
because it is easy to see that every ergodic measure on M* arises from the following 
construction. Choose some pi S d  and some probability measure v on M F d  
that is invariant under a finite-index subgroup of I?. The corresponding measure on 
{ p i  } x M k d  is invariant under a finite-index subgroup r' of r . By averaging over 
r/ F', this yields a r-invariant measure supported on the subset S d  x Mk-^ of M k .  

We will show that every ergodic measure is carried by a nice subspace of M k .  
In particular, any ergodic measure carried by M ~ S  the Lebesgue measure on a flat 
submanifold of M*. 

Example 2.3. The natural Lebesgue measure on the diagonal A = { ( p ,  p ,  p ) }  of M: is a 
I?-invariant probability measure on M:. Note that W = {v, v ,  v }  is a G-invariant subspace 
of ( R ~ ) ~ ,  and that the pseudogroup ^ 3  of diffeomorphisms it generates is transitive on A. 

THEOREM 2.4. Suppose ,LL is an ergodic T-invariant probability measure on M k .  
Then there exist 

a point p e M ;  and 
a G-invariant linear subspace W of 

such that: 

(1 )  the orbit $b(p) of p under < Â £  is a closed subset of M* whose dimension is dim W ;  

(2 )  some finite-index subgroup of F fixes "S>b(p) setwise; and 

(3 )  p is the $^ (p)-invariant ~ e b e s ~ u e  measure on r<Â£* ^ ) .  
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Remark 2.5. 

(1 )  Conversely, if W is G-invariant, $b(p) is closed, and some finite-index subgroup 
A 

of r fixes <?*(.?), then the @*-invariant Lebesgue measure on I'<&*(p) is a 
F-invariant probability measure. However, it may not be ergodic. 

(2 )  We wish to emphasize that conclusion (2) in Theorem 2.4 implies the set F < D ~ ( ~ )  
is a finite union of translates of <t'*r,(p). 

The theorem can be stated in the following equivalent form (see Remark 2.2(1)) 

THEOREM 2.4'. Suppose fi  is an ergodic G-invariant probability measure on x:. 
Then there exist 
0 apoint ( M ,  p )  e x k ;  and 

a G-invariant linear subspace W of ( R ~ ) ~ ,  
such that: 

(1 )  the orbit ( G  K $2p of p under G K ^ k  is a closed subset of xk whose dimension 
is dim(G K $h); and 

(2 )  p is the (G K @*)-invariant ~ e b e s ~ u e  measure on this orbit. 
This results in the following explicit version of Theorem 2.1. 

THEOREM 2.6. Suppose ft is an ergodic U-invariant probability measure on x:. 
Then there exist 
0 a point ( M ,  p )  x k ,  

a G-invariantsubspace W of ( R ) ,  and 
some h Horiz, 

such that: 
(1 )  ^(domain(@)) = 1; 

(2 )  the orbit ( G  K $3p of p under G K is a closed subset of xk whose dimension 
is dim G + dim W ;  and 

(3) ((^*)*^ is the ( G  K %-invariant ~ e b e s ~ u e  measure on this orbit. 

We will give an application to counting the number of periodic trajectories on M 
(see Â 8). 

Theorems 2.1,2.4, and 2.4' have been stated only for expository purposes-they are not 
a part of the logical development. We prove only Theorem 2.6, and the interested reader 
can easily derive the other theorems as corollaries. 

Our results imply that the closure of every r-orbit in M* is of a nice geometric form. 
Since M \ MO = E is a r-invariant finite set, it suffices to describe the orbits of points 
in M:. 

COROLLARY 7.13'. Suppose p e M;. Then there exists a G-invariant linear subspace W 
of (R2)*, such that: 

(1 )  the orbit $*r,(p) of p under ^ k  is a closed subset of M~ (and its dimension is 
dim W ) ;  

(2 )  some finite-index subgroup of I' fixes $b(p) setwise; and 
(3 )  r $ ( p )  is the closure of the V-orbit of p. 
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3. Preliminaries 
We collect all the notation in this section. Some of this repeats the definitions given in the 
previous sections. 

Notation 3.1. 
Let G = SL(2, R). 
There is a natural action of G on the moduli space of translation surfaces. We can 
visualize this as a composition of 'the usual linear action' with 'cut and paste'. 
We note that 'cut and paste' is an isometry on the surface (and in fact preserves 
the horizontal and vertical directions as well). 
Let M be a Veech surface, which means that l- = StabG(M) is a lattice in G. 
Here, we use M to also denote the isometry class of M;  this is a single point in 
the moduli space. 
Let k N. 
We define xk to be the natural fiber bundle over GM whose fiber over M is M .  
Thus, a point of xk is represented by (MI, p l ,  . . . , pk),  where M' GM and 

P i ,  . . . , P k  'E 
The metric on xk is defined by 

Note that xk is G-equivariantly homeomorphic to (G x M*)/ F, where: 
c r acts on G by right multiplication; 
c r acts on M componentwise; and 

G acts on xk via g(h, (p,)f=,) = (gh, ̂ , ) t i ) .  
Let S be the singular set of M. 
L e t M o = M \ - E .  
~ e t  X: = (G x M^/ F c xk. 
Any w E (@)* naturally defines a vector field on XQ. By taking the time-one map 
of the corresponding flow (where it is defined), we obtain a diffeomorphism <% 
between two dense open subsets of Xo. The collection {@" w ( R ) }  generates 
a transitive pseudogroup @ of local diffeomorphisms of x:. 

(R2Ik 
We extend @ ,̂ to a (continuous) transformation & that is defined on a slightly larger 
subset of X ,  by letting 

9 w x )  = lim &x') 
x'+x 

x'e domain& 

if the limit exists. (See $2 for a more concrete definition of &, in terms of the 
flow corresponding to w.) We let Zk be the pseudosemigroup generated by these 

(R2)* 
maps. 

A 

Because the action of G on xk normalizes and @iwIk, we have semidirect 

products G K @(K2)<: and G K Z(KZ)*;. Note that G K @(mt is transitive on x:. 
It is important to note that, because of the singularities and resulting branch 
cuts, 4; is usually not uniformly continuous (even though it is a local isometry). 
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I' 
0 

T P  (w) 
FIGURE 1. In our notation, v LR2 and w IR2 can be close, but (by ( p )  and <t>w ( p )  may not be close. The wavy 

line represents a branch cut. 

Furthermore, i p h )  is not a uniformly continuous function of w. See Figure 1. 
Abusing notation, we may sometimes write w + p instead of ipw(p). 
Let U = {lit 1 t l R}, where ut = [l[] G. 

Let A = {as 1 s e R}, where as  = [[^ $1 G. 

L e t V = { u r  l r e R } , w h e r e i / = [ ~ ~ ]  e G .  
Let /z be a U-invariant probability measure on X ,  such that p projects to the 
Lebesgue measure on r \G. 
Let Horiz = {((xi, o))*=~ ] xi e R} c (R2)* and = {% 1 w e Horiz}. 

Then Horiz is a pseudosemigroup. 
Let Vert = {((O, y i ) ) L  1 yi R} c (R2)^ and 

let ~ e r t  be the pseudosemigroup generated by {Fw 1 w l Vert}. 

For s l R, we define He : (R2)* + Horiz by Hs(w) = usw - w. Thus, 

The set 
A xionz = { p  Xo I Horiz p c XO} 

is U-invariant. Thus, it is either null or conull. Let us assume it is conull. (If not, 
then by ergodicity, there exists h e sonz such that h * p  is supported on X \ XQ. 
So h * p  can be described by a construction similar to Remark 2.2(2). The conclusion 
of Theorem 2.6 is therefore obtained by induction on k.) 
Note that Horiz acts on x ; ,  by x (p) = & (?). Therefore, the group AU x Horiz 
acts on XL.. 
Let 

k 
Xve*={p XO I S t p  c 201, 

note that AV x Vert acts on xyer? but we do not yet know that xvert is conull. 
Let X = {x e Horiz 1 x*p = p}. Because Horiz acts on x&_, we know that X is a 
closed subgroup of Horiz. 
Let Y = (ul - 1d)X c Vert. Equivalently, 

Y = {y e Vert 1 &(y) 6 X, for all s l R}. 

Let W = X + Y. Note that W is a G-invariant subspace of (R2)*, so G K 5; is a 
pseudosemigroup. 
Let d = dim X. 
Let Horiz QX = Horiz n(od x ( R ~ ) * ~ ) .  By permuting coordinates, we may assume 
X r l  (Horiz e x )  = 0. 
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Let T T ~  : xk Ã xi (the first i coordinates) be the natural projection. 
For (U E xk, we use h, to denote the fiber measure of p over the point TT; ((u) 
of xi. 

The following is obtained by applying the pointwise ergodic theorem to the action of U 
on xk. 
LEMMA 3.2. (Cf. [MaT, Lemma7.31) For any p > 0, there is a 'uniformly generic set' 
QP in xk, such that: 

(1) PWp)  > 1 - P ;  
(2) for every c > 0 and every compact subset K of X ,  with p ( K )  > 1 - e, there exists 

Lo E K^, such that, for all (U l Qp and all L > LO, we have 

where A. is the Lebesgue measure on I. 

LEMMA 3.3. (Cf. [Ra4, Theorem2.2, Mo, Lemma 5.8.61) Suppose a Lie group H acts 
continuously on a Borel subset M of a locally compact metric space. If 

U is a one-parameter, normal subgroup of H,  and 
p is an ergodic U-invariantprobability measure on M, 

then: 

(1) there is a U-invariant, Borel subset C2 of M, such that 
(a) p (Q)  = 1, and 

(b) Q n cQ = 0 for all c l H \ StabH(p); 
and 

(2) for any e > 0, there is a compact subset K of M, such that: 

(a) p ( K )  > 1 - e, and 
(b) K n c K  = 0 f o r a l l c e  H\S tabH(p) .  

Proof. Ratner's argument in [Ra4, Theorem 2.21 shows, for each ho E H \ StabH(p), that 
there is a neighborhood Bho of ho in H \ stabH (p) and a conull U-invariant subset Qho 
of M, such that 

^tho n hQh0 = 0 for all h l Bho. 

For the reader's convenience, we sketch the proof of this fact. Because ho normalizes U 
but does not belong to S t a b ~ ( p ) ,  we know that (ho)*p is U-invariant and ergodic, but is 
not equal to p. Therefore (ho)*p and p are mutually singular, which implies there is a 
compact subset KO of M, such that p(K0) > 0.99 and KO ("I hoKo = 0. By continuity 
and compactness, there are open neighborhoods U and U^ of KO, and a symmetric 
neighborhood Be of e in H ,  such that U+ n ho(U+ C-l M)  = 0 and Be(U n M) c U+. 
From the pointwise ergodic theorem, we know there is a conull U-invariant subset Oho 
of M, such that the U-orbit of every point in a h o  spends 99% of its life in U n M .  
Now suppose there exists h e Beho, such that Go n h% # 0. Then there exist x e C2h0, 
u e U, and c E Be, such that ux and ch0ux both belong to U fl M .  This implies that ux 
and houx both belong to U+. This contradicts the fact that U+ n hoU+ = 0. 
(1) Cover H \ StabH (p) with countably many balls B h  , and let C2 = np1 a h j .  

(2) Let K be any compact subset of Q with p (K)  > 1 - e .  
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THEOREM 3.4. (Kerckhoff-Masur-Smillie [KMS, Theorem 21) For almost every v E JR2, 
the foliation by orbits of Ru is uniquely ergodic on MQ. 

COROLLARY 3.5. Suppose 11 is a U-invariant probability measure on X& whose 
projection to G/ V is Lebesgue. 

If f i  is Horiz-invariant, then f i  is the Lebesgue measure. 

Proof. Theorem 3.4 implies that the foliation by orbits of Horiz is uniquely ergodic 
on g ~ i ,  for almost every g G. Thus, almost every fiber of 11 over G/  V is the Lebesgue 
measure. 

4. Shearing 
In this section, we prove the crucial fact that the direction of fastest transverse divergence 
between two nearby U-orbits is always along the stabilizer of p. The analogous statement 
for unipotent flows is a cornerstone of the proof of Ratner's Theorem [Ra5, Lemma 3.3, 
MaT, Lemma 7.5, Mo, Proposition 5.2.4'1. 

Notation 4.1. 
0 For any g G, we may write 

with a, b, c, d R. For a sequence {gn} c G ,  we have gn Ã e if and only if 
a n ,  bn, cn ,  dn + 0. 
Suppose Id1 < 114, say. For s R with \s\ < l/(4lcl), let 

and 

Note that vs(g) Ã e if g Ã e. 
Suppose {pn} and {qn} are two sequences in a metric space. If d(pn,  qn) Ã 0, we 
may write pn FZ q,,. 

LEMMA 4.2. A simple calculation shows that 

For a sequence gn + e, we denote fn (sn) = f (sn , gn), and awn = as,, (gn). 
Then ~ f ~ ( ~ n ) ~ n ~ - ~ n  FZ awn ifgn -+ e (and \ < l/(4Icn I)). 
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Remark 4.3. ('Shearing') Let us discuss the action of U on (IR2)^. For any s E R and 
w E (Et2)', we have 

u s ( w )  = w + Hs(w) .  

Assume, now that 
wn,wk-+O and H ~ ( w n ) # H l ( w k ) -  

There is some s,, E R+, such that 11 Hsn (w,, - w;) 11 = 1.  Then 

us" ( w n )  - uSn (wn) = (w,, - wk) + Hsn (w,, - wk)  3 Hsn (w,, - wk) E Horiz. 

Thus, under the U-flow, wn and w; move apart along a leaf of the Horiz-foliation. In other 
words, the direction in which two nearby points move apart fastest is along Horiz. 

We use Notation 4.1 to state the main result of this section. 

PROPOSITION 4.4. For every p > 0, there is a compact subset Q p  of ~ k ~ ~ ~ ,  with 
p-(Qp) > 1 - p, such that, i f  

(M,,, p,,), ( M k  pn) are convergent sequences in f ip ,  
(Mn , P A )  = gn w,, (Mn , pn)  for some gn s G and w,, s (IR2)^, 

a gn + e and w,, + 0, 
a s,, s R with 

1 

where, letting coo = c,, \Sn\ and woo = limn+cu \Sn\Hi (w,,), we have 

It is clear that p is continuous. We will show p( t )  StabA Horiz(p) for all t .  Then 

as desired. 
Let QP be a uniformly generic set for the action of U on X ^  with p(.^ip) > 1 - p 

(see Lemma 3.2). By passing to a subset, we may assume that f i p  c xiofiz and that Q.p 
is compact. For any l > 0, we know, from Lemma 3.3 (with H = A U  Horiz), that there 
is a compact subset K of xio.., such that p ( K )  > 1 - (e/100) and K f' h K  = 0 ,  for all 
h E A Horiz \ StabA Honz ( p ) .  

When n is large, the definition of Q p  implies that 
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for all but 6% of the values of s in the interval [-Isn 114, lsnl/4] (or longer intervals) 
(see Lemma 3.2). Note that the Jacobian of fn is uniformly bounded on [-Isn\, \snl]. 
Moreprecisely, fA(s) = 1/(1 + dn - cn#, so 114 < f f ( s )  < 4. Therefore, 

for all but 4e% of the values of s in the interval [-s,i\, Isn\]. Thus, equations (4.5) and 
(4.6) hold simultaneously for all but 56% of the values of s in the interval [- \Sn 1 ,  Isn I]. 

Let (M, p )  = 1im7,-nx{Mn, pn). Because (M, p )  6 f i p  c xionz ,  we know that 
translating pn by a vector in Horiz cannot move it into Â£ Hence d(Cp, E) > 0 for any 
compact subset C of Horiz. Therefore, if n is sufficiently large, and, for convenience, 
we le ts  = t\Sn\, then 

Mn has no singularities in 

so 
0 us Mn has no singularities in 

x Horiz, y Vert, 

I I 5 211 Hs,, (w^ I 1  3 . 
Y 5 2 ~ ~ w n ~ ~  1 

This implies that 

When (4.5) and (4.6) hold simultaneously, we conclude that 

d(K,  a s H s ( ~ n ) K )  + 0. 

From the definition of K ,  we conclude that as Hs (uin) e  stab^ ~onz(1) .  That is, p(t) = 
as Hs (wn) belongs to  stab^ ~ ~ ~ ~ ( p , )  for all but 56% of the values of t in [- 1, 11. Because e 
is arbitrary, (p is continuous, and  stab^^^^^(/Â¥'- is closed subgroup, we conclude that p(t) 
must actually belong to the stabilizer for all values o f t ,  as desired. 

5. Proof of Theorem 2.6 
We assume Notation 3.1. Recall, in particular, that p, is carried by X L ,  and that the 
group A Horiz acts on xioriz. 

PROPOSITION 5.1. Almost every/ fiber of u. over xd is supported on finitely many orbits 
of Horiz OX. 
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Proof. Because p is an ergodic probability measure, it suffices to show that almost every 
fiber is supported on countably many such orbits. For Op as in Proposition 4.4, we know 

UzN is conull, so it suffices to show, for each p > 0, that each fiber of is 
contained in the union of countably many orbits of HorizQX. Suppose not. (This will 
lead to a contradiction.) Because any uncountable set contains one if its accumulation 
points, there exist (M', p)  e Op and a sequence {pn} in MI, such that: 

( M f ~ p n ) ~ a P ;  
~1:d(M',pn)=nd(M',p);  
' , p n ) + ( M 1 , p ) ; a n d  
(MI, pn) $ (Horiz QX)(M1, p). 

Because nd(Mf, pn)  = nd (M', p )  and (M', pn) -+ (Mf, p), we may write (M', pn)  = 
wn(Mf, p) for some wn E od x ( R ~ ) * - ~  with wn -+ e. By assumption, we know 
wn <t Horiz, so Hl(wn) is a non-zero element of Horiz n(od x ( R ~ ) * ~ )  = Horiz QX. 
Because 

and Proposition 4.4 implies that H M H l ( w n ) l l ( ~ n )  converges to an element of 
StabAHoriz(p)O, we conclude that StabHorizex(p)O is non-trivial. This contradicts the 
definition of X. 

PROPOSITION 5.2. After restricting to an appropriate conull subset Q.Q of x&,~, each 
fiber of 7id is finite. 

Proof. We know, from Proposition 5.1, that almost every fiber of Q is carried by only 
finitely many orbits of Horiz QX. (From Theorem 3.4, we may assume that each of these 
is an embedded copy of Horiz e x . )  Letting 

we may define a measurable function <, : x̂ , Ã‘ [O, 11 by 4, (a>) = pTd(oi) ((Horiz Q 
x ) ? ~ ) ) .  This function is essentially U-invariant, so it must be essentially constant. 
Because this is true for all i ,  we conclude that nd is carried by a single point in each 
orbit of Horiz OX. Since there are only finitely many such orbits to consider, we conclude 
that almost every fiber consists of a finite number of atoms, as desired. 

PROPOSITION 5.3. We may assume p is A-invariant. 

Proof. Choose ap as in Proposition 4.4, with p = 0.99. From Corollary 3.5, we know 
that p projects to the Lebesgue measure on xd. Furthermore, by passing to a conull 
subset, we may assume QP has finite fibers over xd (see Proposition 5.2). Thus, it is 
easy to see that there exist (M, p )  On, {vn} c V \ {el, and {wn} c od x (R2)*-^, 
such that unwn(M, p)  Op, un Ã‘ e, and wn Ã‘ e. Then, following notation of 4.1, 
with gn = Vn, and choosing sn appropriately, we have a,,,sn Hsn (wn) E A(Horiz QX) 
(cf. proof of Proposition 5.1 to see that HsJwn) E (HorizQX)). We conclude, from 
Proposition 4.4, that the identity component of StabA Horiz(p)riA(Horiz QX) is non-trivial. 
Because the identity component of StabAHoriz(p) n (Horiz QX) is trivial (by definition 
of X), we conclude that StabAHoriz(p) contains a one-parameter subgroup that is not 
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contained in Horiz. Any such subgroup is conjugate to A (via an element of Horiz). 
Thus, by replacing p with a translate under Horiz, we may assume p is A-invariant. 0 

LEMMA 5.4. A'(̂ is conull. 

Proof. By passing to a quotient, we may assume k = 1. For each non-zero vector w R2, 
let 

z { p  e g M  I ( p + ~ w ) n g z  # 0 } .  
- 1 

Note that X$ = u w .  

Suppose there is a subset E  of positive measure in G, such that p g ~ ( ~ )  # 0 for 
g E F .  Then the pointwise ergodic theorem implies, for almost every go G, that 
we have ugo EF for all u in a non-null subset Uo of U. Furthermore, because p is 
U-invariant, we may assume p i o o ~  = u * p u g n ~  for all u UQ. Therefore, 

S"-llo^) = 
k n ~ (  go , , ~ ( U Z ~ ~ ( ~ ~ ~ ) )  = p u g o ~  (%go (OA) + 0 

for all u e UQ. This contradicts the fact that, because Z$ f l  Z z  is countable whenever 
w # Rw2, we have p g ~  ( Z a  = 0 for all but countably many choices of the line Rw. 

PROPOSITION 5.5. (Cf. [MaT, Corollary 8.4, Mo, Corollary 5.5.21) There is a conull 
subset of xL, such that 

for all CD a. 

Proof. Let be a generic set for the action of A on x&; thus, S2 is conull and, for each 
a> C a, 

ata> ap for most t R+. 

Given (M, p ) ,  (M', p') S2, such that (M', p') = vy(M, p)  with v l V and y l Vert, 
we wish to show y Y .  

Choose a sequence tn Ã oo, such that a tn(M, p )  and at"(M', p') each belong to a,,. 
Because tn Ã oo and VVert is the foliation that is contracted by a ^ ,  we know that 
a t n ( v y ) a t n  Ã e. Furthermore, because A acts on the Lie algebra of V with twice the 
weight that it acts on the Lie algebra of Vert, we see that l la tnvatn l ~ / ~ l a t n y a t n  \ -+ 0. 
Thus, letting s be within a constant multiple of \ / \ \atnyatn 11, we see, by Notation 4.1, 
with gn = a^vatn and wn = a^yatn, that aSn(gn) --+ e, but Hh(wn) + e. 
Thus, Proposition 4.4 asserts that Hsn(wn) converges to a non-trivial element of 
StabHoriz(p)' = X. AS HSn(wn) = Hsn (a-tnyatn) is a scalar multiple of Hl(y), 
we conclude that Hl(y) X. Therefore (ul - 1d)y = H\(y) e X, so y Y. 

We require the following entropy estimate. 

LEMMA 5.6. (Cf. [MaT, Theorem 9.7, Mo, Proposition 2.5.1 11) Suppose W is a closed 
connected subgroup of V Vert that is normalized by a l A+, and let 

be the Jacobian of a 1  on the Lie algebra tu of W. 
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(1) I f p  is W-invariant, then hP(a) > log ~ ( a - l ,  W). 

(2) If there is a conull, Borel subset ^2 ofXk, such that ^2 n V Vert ci) c WCD, for every 
CD e a, then hP(a) 5 log ./(ap1, W). 

(3) If the hypotheses of (5.6) are satisfied, and equality holds in its conclusion, then u, is 
W -invariant. 

PROPOSITION 5.7.  (Cf. [MaT, Step 1 of 10.5, Mo, Proposition 5.6.11) p  is VY-invariant. 

Proof. From Lemma 5.6(1), with a 1  in the role of a ,  we have 

log J ( a ,  UX) 5 hP(aK1). 

From Proposition 5.5 and Lemma 5.6(2), we have 

hP(a) < log 7(aK1, VY). 

Combining these two inequalities with the facts that 
hn(a)  = h n { a l )  and 

0 J ( a ,  UX) = ./(ap1, VY), 
we have 

Thus, we must have equality throughout, so the desired conclusion follows from 
Lemma 5.6(3). 

PROPOSITION 5.8. u, is the Lebesgue measure on a single orbit xbf the pseudogroup 
G K (-Pi, Q;). 

Proof. We know: 
0 U preserves u, (by assumption); 
0 X preserves u, (by definition); 
0 A preserves u, (see Proposition 5.3); and 
0 VY preserves p (see Proposition 5.7). 
Therefore, f i  is preserved by the pseudogroup G K ($, Q y )  generated by these maps. 
Because . this pseudogroup is transitive on the quotient x:; and 

p  has finite fibers over X: (see 5.2), 
this implies that some orbit of the pseudogroup has positive measure. By ergodicity of U, 
then this orbit is conull. 

Remark 5.9. To obtain the conclusions of Theorem 2.6, we let W = X + Y. Then u, is 
supported on the (G K ^^-orbit of some point (p l ,  . . . , pk) in Xk .  Note that, by choosing 
dim W to be minimal, we can guarantee that whenever pi is a singular point of M ,  the 
subspace W projects to 0 in the ith coordinate of Therefore, the dimension of the 
orbit is equal to the dimension of the pseudosemigroup. 
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6. Countability 
For our application, we need the following analogue of [Ra7, Corollary A(2)]. 

PROPOSITION 6.1. The set of subspaces W occurring in Theorem 2.6 is countable. 
For each such W ,  the set of closed orbits of SL(2, R) K 5; is countable. 

LEMMA 6.2. The set of G-invariant subspaces W of (IR2)* such that there exists p E M~ 
A 

with 0 = ̂ wp closed is countable. 

Proof. Let 2d be the dimension of W .  After possibly renumbering the factors, we may 
assume that 

w n ((0, old x (R~)^)  = 0.  

Then, if we denote elements of (EX2)*' by (vl, . . . , vk) where each vj R2, then W is given 
by the following equations: for d + 1 5 j 5: k ,  

Recall that the linear holonomy map hol : Hl(M, Z) Ã‘ C 2 IR2 is given by 
hol(y) = / CD, where CD = d x  + i dy  is the holomorphic 1-form that determines the 

flat structure on M. Let A c R2 denote the image of hol, and let F denote the set of real 
numbers r such that there exist non-zero vl e A, v2 A with vl = rv2. Then F is clearly 
a countable set. We will show that each aji belongs to F U {O}. 

Let J C ~  : Mk -+ M~ denote projection onto the first d factors. Note that the intersection 
of 0 with each fiber of 7id is finite. 

Now pick i ,  1 <. i < d ,  and j ,  d + 1 < j < k. We may assume that a,; # 0. 
Choose p = (p i ,  . . . , pk) 0 such that pi and p j  are non-singular. Let y be any element 
of Hi (M, Z) with hol(y) # 0. We represent y by a piecewise linear closed curve on M 
beginning and ending at pi and not passing through any singularities; we will also denote 
this representative by y .  We obtain a closed curve yi e Md by keeping pm fixed for 
1 5 m 5 d ,  m # i .  Because 0 is a branched cover of M ,  yi lifts to a closed curve yi 
in 0. Let y' denote the projection of f i  to the jth factor. 

We wish to calculate hol(y'), so let us describe y' more precisely. The curve y 
is a collection of segments connecting points pi = qo, q l ,  . . . , qn-1, qn = pi, with 
qm+l = (pwm (qm), wm E IR2. Then yf  is a collection of segments connecting the points 

f 1 
A 

pj = qo, q l ,  . . . , qLWv q h  with qk+l = q5ajiw (qm). By perturbing the wm, we can make 
sure that y f  is well defined and is not passing through any singularities. 

By construction, the endpoint q' of y' belongs to the finite set ~ l ( ~ ( ~ ) )  n 0. 
After replacing y by an integer multiple, we may assume that y' is closed. But, in view of 
the explicit description of y ', hol(yf) = aji hol(y), so aji F. 

In the rest of this section we will abuse notation by writing p + v for & ( p ) .  

LEMMA 6.4. Let M be a Veech surface, and let F be the Veech group of M. A point p 
is called a periodic point if the F orbit of p is finite. Then the set of periodic points is 
countable. 
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Remark 6.5. When M is non-arithmetic, which is the only case that we need to discuss, 
it is proven in [GHS] that the number of periodic points is countable (in fact, finite). 
The following generalization of this statement also follows from the results of [GHS], 
but we include a short proof of as a warm up to the proof of Proposition 6.1. 

Proof of Lemma 6.4. It is clearly enough to show that for each n E N, the set Pn of points 
of period n is countable. To do this it is enough to show that for each point p Pn, there 
exists a neighborhood U of p that does not contain any other points of Pn. Suppose the 
last statement is false. Then there exists a sequence of points p j  Pn such that p j  Ã‘ p .  
We may assume after passing to a subsequence that the p j  approach p from some given 
direction w (i.e. that lim(pj - p ) / \ p j  - p \ = w). Let F1 denote the intersection of all the 
index n subgroups of F. Then, as F is finitely generated, F1 is of finite index in r and for 
each y' F1, and all j ,  yl(pj)  = p j  . Then each element of r' must fix w. This contradicts 
the fact that F', being a finite index subgroup of F,  is Zariski dense in G. 0 

Proof of Proposition 6.1. It remains to prove the following assertion. Let W c be 
an G-invariant subspace. Then the set 'H of closed orbits of r K $w is countable. 

We triangulate M ,  with the vertices at the singular points. This yields a cell 
decomposition of M in which the cells A l ,  . . . , An, of maximal dimension are products 
of triangles. Let A: denote the interior of A,, and let M$ denote the union of the A:. 
For p M k ,  let S(p) denote the distance between p and the complement of M$ (i.e. the 
distance to the boundary of the cell containing p). 

Let Id = dim W ,  and let W' be any G-invariant complement to W. We may assume 
that W is given by the equations (6.3). In view of Lemma 6.4 we may also assume that 
W has dense projection onto any of the IR2 factors (i.e. for a fixed j ,  not all a,; are zero). 
Then, for any 0 e 'H, 0 ft M$ is dense in 0. 

Let nl ,  . . . , nm be an m-tuple of non-negative integers, and let 'H(n1, . . . , nm) denote 
the set of 0 e 'H such that 0 n  as exactly n; connected components. 

Now suppose T-i is uncountable. Then there exist n l ,  . . . , nm such that 'H(nl, . . . , rim) 
is uncountable. Then by compactness, there exist 0 in 'H(nl, . . . , nn,) such that for every 
e  > 0 there exists 0' E W n l ,  . . . , nm) such that the Hausdorff distance between 0 and 
0' is less then e .  Let p be the minimum over i of the minimal distance between connected 
components of 0 n A" 

Let n = nl  + Â Â + nn,, and number all the connected components of the intersection 
of 0 with the interiors of the cells as Oi, 1 < i < n. Let yi, . . . , ys denote the generators 
of r. We may choose a point pi in each 0 ;  such that for all j ,  1 5 j 5 s ,  yjp; is in the 
interior of some component 0\, where I depends on i and j .  

Let C = max15j9 11 y j  1 1 .  Now choose e  > 0 so that: 
c e  < ,013; 
for any i ,  1 < i < m,  we have S(pi) > 2Ce;  
for each i ,  1 < i < m and each j ,  1 $ j 5 s ,  we haveS(yjpi) > 2Ce.  

Now choose 0' 'H(n1, . . . , nn,) so that the Hausdorff distance between 0' and 0 is 
less then e .  Note that if q 0; with S(q) > 2Ce there exists a unique u; e W' such that 
u i  1 1  5 C e  and q + ui ? 0'. Also u; does not depend on the choice of q ,  and Ilu; 11 5 e .  
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Furthermore ui # 0 since 0 and 0' cannot share a point in M*. Let V denote the finite set 

{ ~ l ,  . . . ,  u n } .  

We now claim that each generator yj preserves the set V. Indeed consider the points 
pi E 0 and pi + ui 0'. Since both 0 and 0' are Y-invariant, we must have 
Yjpi 6 0 and yj(pi + ui) 6 0'. By construction, yjpi E 0;, and S(yjpi) > 2Ce. 
Recall that vi is the only vector in wl' of norm at most Ce such that y j ~ i  + vl E 0'. 
But ~ j ( p i  + ui) = yjpi + yjui E Of, and l1yiui 1 1  5 llyj 1 1  l1ui 1 1  5 CC. Also yjui E w', 
since W' is G-invariant. Thus y,u; = u;. 

We have proved that for each generator yi, we have yiV & V. This immediately 
implies that FV = V. Then a finite index subgroup of F will fix a single vector in V, 
which contradicts the fact that r is Zariski dense in G. 

7. Averages over large circles 

Let nif denote the Haar measure on SO(2) c G. For x X^ and t > 0, let 

where Jx is the atomic probability measure supported at x ,  and a t  = (: 0 , ) .  Then each 

vt is a probability measure on xk. We can think of vt as the measure supported on a circle 
of radius t inside the G-orbit through x .  In this section we prove the following theorem. 

THEOREM 7.1. Suppose x E x:. Then there exists a G-invariant subspace W of (LQ2)* 
such that: 

(1) the G x <&"orbit through x is closed; and 

( 2 )  limt+co vt = p, where p is Lebesgue measure on this orbit. 

Remark 7.2. If W = (IR2)^, then p is the Lebesgue measure on xk 

LEMMA 7.3. (Invariance under a unipotent) Suppose ti Ã‘ oo. Then there is a sub- 
sequence t i  such that the measures vtl converge to a probability measure voo that is 

invariant under the unipotent element u = (1 : ) of G. 

Proof. It follows from [EM, Corollary 5.31 that there is a subsequence tij such that the 
measures vti. converge to a probability measure voo. We can find 0, Ã‘ 0 such that 
a t i j r g j a t ~  converges to u. (Recall that rg is the (2 x 2) matrix representing rotation 
by 0.) Now the measures vti. = (at. vKa;')ati JX are at. rgjal,l-invariant, hence voo 

'i l j  I 'I 
is u-invariant. 

Assumption 7.4. Assume vyo is not the Lebesgue measure on xk. 

7.1. Application of the measure classification theorem. Note that we do not know at this 
point whether vy, is ergodic. However, standard results (using u-invariance) imply that vyo 
projects to Lebesgue measure in G/ Y .  
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Notation 7.5. For convenience, if B c (IE2)^ and X c x k ,  let 

By Theorem 2.6, and by Proposition 6.1, there exists a G-invariant proper subspace W 
of (R2)^ and an orbit 0 of G x $*y such that 

We will show that this implies that x e 0 .  In that case, the entire G-orbit of x lies in 0 ,  
so vW ( 0 )  = 1. Furthermore, we show that as long as W was chosen as small as possible, 
urn must be Lebesgue measure on 0. 

7.2. Projection and fiber measures. We choose W to be of minimal dimension. 
From the structure of the G-invariant subspaces on (IR2)^, we see that dim W = 2d, 
0 5 d < k ,  and after renumbering the factors, we can make sure that 

W projects surjectively to ( R )  x ok-^. 

Thus, (0, o)^ x (R2)^ is complementary to W ,  and 0^ x Rk-^ is complementary to 
W n Horiz in Horiz. 

LEMMA 7.6. There exists e > 0 and a box 

B = {o}^ x [%+I, 6d+i] x . . . x [w, &I C Horiz 

such that vW (B-'0) > 2e. 

Proof. Let OQ be the (unique) orbit of G x <E>; that is open and dense in 0 .  (In other words, 
00 consists of the elements in 0 of which as few coordinates as possible are singular 
points.) Note that 

w - l ~ o ^  00.  (7.7) 

By the minimality of dim W, we see that v o o ( ~ o r i z l ( O  \ 00)) = 0. Hence 
v c o ( ~ o r i z l  0 0 )  > 0. By combining this with (7.7) and the fact that Horiz = W + 
(od x Ktkpd), we conclude that there is a box B c 0^ x Rk-^, such that VAB-' 0 0 )  > 0. 
As OQ c 0 ,  then v#0) > 0, as desired. 

As in the previous sections, let JI^ : xk Ã‘ xd be the natural projection onto the first 
d coordinates. For z, x d ,  we let Fz = fl 0 .  Note that Fz is a finite set. 

We claim that 
vo0 projects to the Lebesgue measure on x d .  (7.8) 

To see this, note that, because W is a proper subspace of (R2)*, we have d < k.  Hence, by 
induction on k, we may assume there is a G-invariant subspace Wd of (JR2)^, such that the 
projection of urn to X^ is the Lebesgue measure on the G x $$d orbit 0 d  through rd(x).  

Then q l ( ~ o r i z l  0d)  is conull for urn, so 

voo (n,\KorizP1 0 d )  n 0 )  = voo ( 0 )  # 0. 

From the minimality of dim W ,  we conclude that Wd = (JR2)" Therefore, Od = x d ,  
which establishes the claim. 
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FIGURE 2. The time the ellipse (drawn here as a dashed line) spends inside the small box B(J i ,  Li)  is at most c 
times the time the ellipse spends in the larger box B(S, L). In Lemma 7.10, this is proved as a result in (IR2)*. 
Because of Lemma 7.12, it can be transferred to xk, even if the ellipse crosses the branch cut starting at the 

possibly singular point p. 

Assumption 7.9. We may assume x if. 0. (Otherwise, from the fact that 0 is a branched 
cover of xd (and Lemma 8.14 below), we would immediately conclude that urn is the 
Lebesgue measure on 0, as desired.) This will lead to a contradiction. 

7.3. The key estimate. For Ll > 0, & > 0, let 

LEMMA 7.10. (The key estimate) Suppose B c B(&, L l )  c B(S, L),  where B is as 
defined in Lemma 7.6. Suppose also that p > 0, e < 1, Si < â‚¬81 and Ll < eL/5. 
Then there exists to depending only on p, 6, L such that for any t > to and any v E 

B(&, Ll) with 
k 

d ( v ,  Horiz) > - e t p ,  
5 

(7.11) 

we have 
â 

l { Q  I a t w ^ v  B(J1, L1)Il 5 -1{0 I f l t r~a , ' "~u  B(S, L)l\> 

where 
cos6 sin 0 

ro = ( -sin0 cos0 

Proof. If we write v = ( u l ,  . . . , v k ) ,  with uj e R ~ ,  and also write uJ = (xj ) then the 

condition (7.1 1) implies that there exists at least one j ,  m + 1 < j 5: k with \y j  \ > $ e t p .  
The rest of the argument will take place in the jth factor (see Figure 2). 

We note that the components of the map 0 Ã CI^Qa;lv are trigonometric polynomials 
of degree one. In other words, the path 0 Ã a t r Q a l v j  parametrizes an ellipse. 
Let to = max(log(5 L/p),  0). Then if t > to and 6 = n/1 then 

Thus, the ellipse 6 Ã a t r o a l  uj  leaves B(S, L). Then in view of the dimensions of the 
boxes, the portion of the ellipse in B(Sl, L l )  is at most â‚¬ times the portion of the ellipse 
in B(8, L). 
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LEMMA 7.12.  For any L > 0, there exist S > 0 and a compact subset E of xd with 
v+' ( E ) )  > 1 - â‚¬1 such that: 
(1 )  B(S,  L ) '  (0 C\ q1 ( E ) )  does not contain any singular points, other than perhaps 

points in 0 ;  and 

(2 )  for each p e B(S,  L)-'(o f' TT;'(E)), there is a unique b B(S,  L ) ,  such that 
&P) e 0- 

Proof. For z E xd, let S, be the surface corresponding to z (so we may write r y l ( z )  
as s j d ) .  Let E, denote the singular set of S,. For any L > 0 on the fixed surface S-,, 
there exist only finitely many horizontal trajectories of length at most L connecting points 
of F-, U S-, to points of F, U S,. Therefore, we can find a large compact subset E of xd 
such that for any z E E ,  S, has no horizontal trajectories of length at most 2 L  connecting 
points of Fz U 5 to other points of F, U S,. As vco projects to Lebesgue measure on xd 
(see equation 7.8),  we may choose E so that %(ql(~))  > 1 - â‚¬1 Now we can choose 
8 > 0 by compactness. 

Note that, because B(S, L )  c (0 ,0 )^  x (IR2)^, we have B(S, L)-' F, c r l ( z ) .  
Therefore, B(S, L ) - I  F~ n 0 = F,. 

Completion of the proof of Theorem 7.1. Because x $ 0 (see Assumption 7.9), we may 
choose p > 0 so that d ( x ,  0) > kp.  We may also assume that on the surface corresponding 
to x ,  the distance between any two singular points is at least kp.  Let B ,  [ai, B i ]  and e be 
as in Lemma 7.6. Choose L1 so that for all d + 1 5 i 5 k ,  we have [ai, pi] c [- L1, L l ] .  
Let L = 10Ll / e .  Now choose E c xd and 8 > 0 so that Lemma 7.12 holds. 
Finally, choose S t  = ~ S / 1 0 .  Assume t > log(5L/p) .  We will abuse notation by writing 
p + u f o r z ~ p ) .  

We claim that if a f rQx  + v E 0, with v E B(S1, L l ) ,  then (7.11) holds. Indeed, we 
then have 

r e g  + af-lv = a 1 ( a t r O f l  + v )  a ; l0  = 0, 

so 
a," > d(re,+, 0)= d ( x ,  0) > kp .  

Also, 
1 Ll  a v \  5 e d ( v ,  Horiz) + -. e 

Therefore, 

Now let 
R = {@ 1 atre= B(S l ,  L ~ ) - ' ( O  n r d l ( ~ ) ) } .  

Suppose 0 e R. Let v be the unique element of B(Sl ,  L l )  with a t r u  + v E 0, and let 

Note that 0 I;, so we may let Ie be the component of Iff that contains 0.  By (the proof of) 
Lemma 7.10, \Ie n R 1 5 (â‚¬1 1 Ie 1 .  
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We claim that if Ie, # Ig,, then Ig, f' 10, is disjoint from R. To see this, note that if 
0' I& f' Ie,, then there exist ul , u2 B(51, Ll),  such that, letting 

we have vi B(5, L) and 

Now if Ie, # ley  then rn1a^\v1 # r r 1 a t 1  v2, so 4 # uk. Lemma 7.12 therefore implies 
that arro/x -$ B(5, L)-'(o n ry l (Â£) )  so 0' -$ R. 

Since each point of R fl Ie is contained in a unique interval, the circle is covered at most 
twice by the intervals Ie. It follows that \R\ < e. Equivalently, this means that 

As this holds for all sufficiently large t, we get 

As voo projects to Lebesgue measure, we know that voo(ryl(Â£) > 1 - â‚¬1 
Hence v ~ ~ ( B ( ~ ~ ,  L ~ ) " ~ o )  < 5.~14. This contradicts Lemma 7.6. 

COROLLARY 7.13. Suppose x e x:. Then there exists a G-invariant subspace W 
of (It2)^ such that the closure of Gx is (G K ^ y ) ( x ) .  
Proof. Let W be as in the conclusion of Theorem 7.1. Because (G x <I>*)(^) is closed and 
G-invariant, it contains the closure of Gx. On the other hand, the support of vt is a subset 
of Gx, so Gx is dense in the support of limt+oo vt ; that is, Gx is dense in (G K <I>" (x). 

Corollary 7.13' (stated at the end of $2) follows from Corollary (7.13) by a standard 
argument (inducing the action of l- to an action of G). 

8. Application to counting 
We now give the general set-up for the counting problems we are considering. 
For additional background and more detailed definitions, see the introduction to [EMZ]. 

Notation 8.1 
Let S be a translation surface. A saddle connection on S is a straight line segment 
connecting two singularities. Since a saddle connection has a well-defined length 
and direction, each saddle connection is associated with a non-zero vector in TR2. 
Let Vsc(S) c IE2 denote the set of vectors in that are associated to saddle 
connections in S. 
By a regular closed geodesic on S, we mean a closed geodesic that does not pass 
through singularities. 
As mentioned in the introduction, any regular closed geodesic is part of a family 
of freely homotopic parallel closed geodesics of the same length. Such a family 
is called a cylinder. All the geodesics comprising a cylinder have the same 
length and direction; thus we can associate to a cylinder a non-zero vector in IFt2. 
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Note that each boundary component of a cylinder is a union of saddle connections. 
Let Vcyi(S) c R2 denote the set (with multiplicity) of vectors in R2 that are 
associated to cylinders in S. In particular, if S is a standard torus, then Vcyl(S) is 
the set of primitive vectors in z 2 .  
For any T > 0, let B(T) denote the ball in R2 of radius T centered at 0. 
Let V(S) be a subset of R? - (0,O) with multiplicity, i.e. a set of vectors with positive 
weights. The weights are usually positive integers (e.g., we may consider saddle 
connections with multiplicity), but need not be (e.g., we may weight each cylinder 
by the reciprocal of its area). 
Let Nv(S, T) denote the cardinality (with weights) of V(S) n B(T). We are 
interested in the asymptotics of Ny (S, T) as T -+ oo. If V(S) = Vsc(S), we will 
denote Nv(S, T) by Nsc(S, T), and if V(S) = Vcyl(S) then, as in the introduction, 
we will denote Nv(S, T) simply by N(S, T). 
Recall from the introduction that 'H{B) denotes a stratum of translation surfaces. 
Let XI (6) denote the subset of 'H(B) consisting of the surfaces of area 1 (where area 
is taken using the associated translation metric). 
As in $7, let mK denote the Haar measure on SO(2) c SL(2, R ) .  
For S e XI (6) and t > 0, let 

where 6s is the atomic probability measure supported at S, and at = ($ $1. 
Then vr,s is a probability measure on XI (6). 
Finally, for a bounded compactly supported function f : R2 -+ R, let 

The function fy is called the Siegel-Veech transform of f 

The general counting problem. We now summarize the relevant results from [Ve2, EM, 
EMS] that will be used in $9. 

THEOREM 8.2. Let S e X i @ )  be a translation surface, and suppose the following hold 
(using Notation 8.1). 

(A) V(-) varies linearly under the SL(2, R )  action, i.e. for all g e SL(2, K) and all 
S e X1 (P), we have V(gS) = gV(S). 

(B) There exists a constant C such that, for all S 'Hi(,!?), we have Nv(S, 2) 5 

CNsc(S, 2). 
(C) As t -+ oo, the measures v t s  converge to an SL(2, R)-invariant (probability) 

measure a. 
(D) Let h : IR2 -+ R denote the characteristic function of the trapezoid whose vertices are 

at (1, I), (0, l), (0,1/2), and (112, 112). Let 6 denote the closure of the SL(2, R) 
orbit of S. Then for any e > 0 and any compact subset K of H\{B), there exist 
continuous functions 4>+ : 6 Ã‘Â R and 4>- : 6 -+ R mch that, for all S 6 C\ K ,  
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we have 

4-(5') < h v ( ~ )  5 4 + W  and (4+ - 4-1 d/ t  < c. 
1 (Bl 

Then, the following hold. 

(i) There exists a constant c = c(S, V )  such that, as T Ã‘ oo, 

Nv(S, T )  T C C T ~ .  

(ii) We have the Siegel-Veech formula: there exists a constant c such that for any 
continuous compactly supported f : IR2 + R, 

(iii) The constant c in ( i )  is the same as the constant c in (ii). 

Remark 8.4. Conclusion (ii) depends only on Assumptions (A) and (some version of) (B). 
It was proved by Veech in [Ve2], where this approach to counting on translation surfaces 
was originated. The proof is reproduced in [EM, Theorem 2.21. 

Remark 8.5. Assumption (B) may be replaced by the following. 
(Bf) There exist constants C > 0 and 0 < s < 2 such that for all S e T-L1(B\ 

Nv(S, 2) 5 C/l(S)s, where i(S) is the length of the shortest saddle connection 
on S. 

In fact, (B') is used in the proof of Theorem 8.2 instead of (B). The assertion that (B) 
implies (Bf) follows from [EM, Theorem 5.11. 

Remark 8.6. It follows from (B') and [EM, Theorem 5.21 that any limit measure of 
the probability measures vi,s must be a probability measure (see [EM, Corollary 5.31). 
Thus, the measure p of (C) is automatically a probability measure. 

Remark 8.7. The assertion (D) is a technical assumption needed since the Siegel-Veech 
transform f may not be continuous even i f f  is. 

Outline of proof of Theorem 8.2. Let h be the characteristic function of the trapezoid as 
in (D). We have the following lemma from calculus (cf. [EM, Lemma 3.41): for any 
v e IR2, 

if e t / 2  < IIvIl < et ,  
h(atrev) d6 % 

otherwise. 

If we multiply both sides of (8.8) by T~ = e21 and sum over all v e V(S), we get, under 
Assumption (A), 

or, equivalently, 
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(The fact that we only have approximate equality and not equality in equation (8.9) does 
not affect the asymptotics. See [EM, $31 for the details.) 

The Assumption (C) means that for any bounded continuous function d) on El (,!I), 

We would like to apply equation (8.10) to hy, which is neither bounded nor continuous. 
The fact that hy is not continuous is handled by Assumption (D). To handle the fact that 
h y is not bounded, we decompose hy = h 1 + h i ,  where h 1 is bounded and h2 is supported 
outside of a large compact set. Then the contribution of h i  can be shown to be negligible 
using [EM, Theorem 5.21, in view of Assumption (B'). The details of this argument are 
given in [EMS, $21. 

Now applying equation (8.10) with d) = hy and substituting into equation (8.9), we get 

lim 
N(S, T)  - N(S, 

T R2 = 2 r k  i v d p .  T-00 103) 

By iterating (replacing T with T/2, T/4, T/8, . . .), and summing the resulting geometric 

This implies (i). Now by equation (8.3), 

This, together with equation (8.1 I), implies (iii). 

As a corollary of Theorem 8.2 and Theorem 7.1 we have the following. 

THEOREM 8.12. Suppose S is a branched cover of a Veech surface M .  Let N(S, T)  
denote the number of cylinders ofperiodic trajectories in S of length at most T. Then there 
exists a constant c = c(S) such that, as T + oo, 

Proof. We use Theorem 8.2, with V(- )  = Vcyl(-). Assumption (A) clearly holds, and (B) 
also holds since the boundary of every cylinder contains a saddle connection. 

Now let M be the connected component of M D ( P )  that contains S (where M D ( p )  
is as in the introduction). Since S E M and M is closed and SL(2, R)-invariant, the 
support of any of the measures vts is contained in M .  Also, as M is a branched 
cover of the space xk, a measure classification theorem on xk automatically yields a 
measure classification theorem on M (see Lemma 8.14 below). Thus Assumption (C) of 
Theorem 8.2 follows from Theorem 7.1. 

Finally, in our setting (D) is automatically satisfied, since the orbit closure 0 is a proper 
submanifold of 7Yl (,!I), the measure p is Lebesgue measure on 0, and (after intersecting 
with any compact set) the set of discontinuities of hy is contained in a finite union of 
submanifolds of positive codimension in 6. Thus Theorem 8.12 follows from (i) of 
Theorem 8.2. 
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LEMMA 8.14. Suppose W is a G-invariant subspace of (IR2)^, 0 is a closed orbit of 
G K < & *  in x^, and 6 is a (connected) branched cover of 0, such that the action of G 
on 0 lifts to 0. - 

If v is any u-invariantprobability measure on 0 that projects to the Lebesgue measure - 
on 0, then v is the Lebesgue measure on 0. 

Proof. Let p and j2 be the Lebesgue measures on 0 and 6, respectively. Then, because 
it projects to a, the measure v must be absolutely continuous with respect to u ;  thus, we - 
may write v = f i t ,  for some Bore1 function f on 0. 

It is not difficult to see that j2 is ergodic for G ,  so (by decay of matrix coefficients 
[Zi, Theorem 2.4.2, p. 291, or by the Mautner phenomenon [Zi, Theorem 2.2.15, p. 211) 
it is ergodic for u. This implies that f is constant. So v = j2 (up to a normalizing scalar 
multiple). 

9. Triangular billiards 
Let n > 5 be an odd integer. As in the introduction, let 

(n - 2)n (n - 2)n 2n 
Pn denote the triangle with angles - 

I n  ' 2n ' n  

and let Sn denote the corresponding translation surface. In the rest of this section, we 
complete the proof of Theorem 1.4 by computing the constant c in Theorem 8.12 for 
the case of the surface Sn. Our general strategy is to use (ii) and (iii) of Theorem 8.2. 
To pass from Sn to Pn,  note that N(Pn,  T) = N(Sn, T), and as Sn consists of 4n triangles, 
area(Sn) = 4n area(Pn). 

The surface Sn can be drawn as in Figure 3. As shown in [HSl] and as one can see from 
the figure, Sn is a double cover of a surface Xn consisting of a double n-gon with opposite 
sides identified. The surface Xn is a Veech surface (see [Vel]), but Sn is not (see [HSl]). 

9.1. The Veech surface. Most of the information in this section comes from [Vel]. Let 

n n (n - 2)n 
Qn denote the triangle with angles - , - , 

n n n 

(realized with the two equal sides having length 1, and one of the equal sides horizontal). 
Then the surface corresponding to Qn can easily be seen to be (isomorphic to) Xn. 
The cylinder decomposition in the vertical direction consists of (n - 1)/2 cylinders Vj, 
and for 1 5 j 5 (n - 1)/2, we have 

n ( 2 j  - 1) n 
h = height Vj = 4 sin cos -, 

n n 
~ ( 2 j  - 1) . n 

wj  = width Vj = 2 sin sin - 
n n 

(the closed trajectories in the cylinder Vj have length h j). Since for all 1 5 j 5: (n - 1)/2, 
h j / ~ j  = 2 cot(n/n), the unipotent 
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FIGURE 3. We draw the surface Sn (for n = 5), tessellated by (reflections of) the triangle Pn. In each of 
the double n-gon shapes, the opposite parallel sides are identified. The bottom double n-gon can be identified 
with the surface Xn,  The covering map from Sn to X,, is specified by the two slits (drawn as thick lines), with 
identifications as shown. For n = 5, the shaded region in the bottom double pentagon is one of the cylinders in the 
vertical cylinder decomposition for Xn ; the unshaded region in the bottom double pentagon is the other cylinder. 

belongs to the Veech group Fn of Xn. Note that 

The unipotent un, together with the rotation by 2 z / n  generate L. It is shown in [Vel] that 

where Vol denotes the Poincare volume on the hyperbolic plane H. 
The following lemma is from [GJ]. 

LEMMA 9.4. Suppose r c SL(2, R) is a lattice, and suppose that Y intersects non- 
trivially the stabilizer N in SL(2, R) of v. (The above condition is equivalent to the 
discreteness of the orbit Fv.)  Let y E F be either of the two generators of r r\ N.  Let B(T) 
denote the ball in R of radius T centered at the origin. Then, as T Ã‘ oo, 

where v' is any vector perpendicular to v. 

We also record the following trivial consequence (of the existence of the asymptotics). 
Suppose v is as in Lemma 9.4, and suppose v' is a scalar multiple of v .  Then, as 

T -  ̂co. 

1ruf n B ( T ) I  - - ' i r ~ n  B ( T ) ~ .  
llvfl12 

(9.5) 

We now apply Lemma 9.4 with r = r n ,  v = ( t  ) , V' = ( ), y = un, and using 
equation (9.3) we get that the number of cylinders in the ball of radius T that are in the 
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orbit of the cylinder Vl is asymptotic to 

We now use equation (9.5) to see that for 1 5 j 5 (n  - 1) /2 ,  the number of cylinders in 
the ball of radius T that are in the rn orbit of V j  is asymptotic to 

(in the above, we used the identity ( l / h l w l ) ( h ? / h ; )  = l / h j w j ) .  As every cylinder is in 
the orbit of some V j ,  we get (after summing over j) ,  

Using the identity [Vel, Lemma 6.31 

and using the expressions (9.  I ) ,  we get 

we have 

This is the formula in [Vel]. 

9.2. The Siegel-Veech formula applied to Xn. It is useful for the following to compare 
the result of (9.7) with the result of the corresponding Siegel-Veech formula. Let 
Dn = SL(2, K ) X n  denote the orbit of Xn.  This is a closed submanifold of the stratum, 
which is also called a Teichmiiller curve. For 1 < j 5 ( n  - 1) /2 ,  define U j  : D,; Ã 

subsets of Kt2 by the formula U j  ( g X n )  = g r n  (A0 ) (where g E SL(2, R ) ) .  Let fe denote 

the characteristic function of the e-ball in Kt2 centered at the origin and, for M e Dn,  define 
the Siegel-Veech transform (M) = EWu, fe (u ) .  

LEMMA 9.10. If is sufficiently small, then /ig : Dn + R takes on only the values 0 
and 1; we have /,,< ( M )  = 1 if and only i f  M has a cylinder decomposition such that the 
jth cylinder from the left has height at most e. Given M ,  such a cylinder decomposition is 
unique i f  it exists. 

Proof. This is straightforward. (The uniqueness of the decomposition follows from the 
fact, proved by Veech [Vel], that H ~ /  V n  has only one cusp.) 
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Let v denote the normalized SL(2, R)-invariant measure on Dn. Then, we have the 
Siegel-Veech formula: Ln f j ,cdv = C j  k2 f c .  (9.11) 

We now apply Theorem 8.2 with V(-)  = U j  (-), and S = Xn. The validity of 
Assumption (C) can be deduced from the mixing property of the geodesic flow, see [Mar] 
for a general proof in variable negative curvature, or [EMc] for a simplified exposition in 
the constant curvature case. We obtain that 

where cj is as in (9.1 1). Comparing with (9.7), we see that 

n 1 
cj = 

(n - 2)n2 h j w j '  

Substituting into (9.11) we get 

Remark 9J3. It is possible to prove (9.12) directly, and thus to compute the asymptotics 
in (9.6) without using Lemma 9.4. We chose this indirect derivation of (9.12) to minimize 
the amount of computation. 

9.3. The branched cover We now return to our surface Sn, which is a branched cover 
of Xn (see Figure 3). Xn is a union of two n-gons, and the two branch points p and 
p' are at the centers of the n-gons. We now wish to apply Theorem 7.1 to the point 

(Xn, P, P') x2. 
It is important to note that Xn is hyperelliptic, and that our two branch points are 

interchanged by the hyperelliptic involution. As the hyperelliptic involution commutes 
with the SL(2, R) action, this it true for any point in the orbit of (Xn, p ,  p'). Thus, the 
SL(2, R) orbit of (Xn, p ,  p') is not dense in the space x 2 ,  and indeed we have in 
Theorem 7.1 a proper W c ( R )  of real dimension two. Let L denote the subspace 
{(v, -v) 1 v e R-}. The above argument shows that W c L. But since we know 
that Sn is not Veech, dim W > 0. Hence dim W = 2 and W = L. Let 0 = 

(SL(2, R) x @ 3 ( x n ,  p ,  p'). Then 0 c x2 consists of points of the form (M, q ,  q') 
where M e Dn, q M, q' e M and q and q' are interchanged by the hyperelliptic 
involution of M. By Theorem 7.1, 

where p is Lebesgue measure on 0. 
Now let 0 denote the orbit closure SL(2, W)Sn. As Sn is a double cover of Xn, branched 

over p and p', for any g e SL(2, R), gSn is a double cover of gXn branched over gp and 
gp', and (gXn, gp, gp') e 0. Thus, in particular, every surface in 0 is a double cover of 
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a surface in Dn.  Thus we have a natural map fi : 6 Ã 0 that maps each surface S  E 0 
to the surface in Dn of which it is a double cover, and notes the locations of the branch 
points. Now in view of (9.14) and Lemma 8.14, 

where is the normalized Lebesgue measure on 6. Hence, by Theorem 8.2, we have a 
quadratic asymptotic formula 

with the constant c given by . " 

where, as above, fe : Kt2 Ã‘ R is the characteristic function of the ball of radius e centered 

at the origin, and f̂  ( 5 )  = EiieVci(S) fe (v). 
Let v be some periodic direction for Sn,  hence for X n .  We may use an element y  of the 

Veech group Fn of Xn to map v to the vertical direction. Note that y  Sn is a double cover of 
y X n  = X n .  In the vertical direction, Xn has the cylinder decomposition Vl ,  . . . , V(n-1)/2 

described above. 

LEMMA 9.16. For any y  E Fn, the branch points of y  Sn will project to two points in the 
same cylinder, say Vk. The cylinder decomposition of y S n  in the vertical direction is the 
following: 
(a) for each j # k,  there are two cylinders on ySn  of the same length as V j  (one on 

each 'sheet'); 

(b) on y S n  there are two cylinders of the same length as Vk and two cylinders of twice 
the length of Vk. 

Proof. The fact that both branch points project to the same cylinder of X n  follows from 
the fact that each cylinder of Xn is preserved by the hyperelliptic involution a of Xn 
(since different cylinders have different lengths) and the fact that the branch points are 
interchanged by a .  From Figure 3, the cover Sn is determined by two slits (drawn as the 
thick lines in the figure), which are interchanged by a .  As a commutes with the SL(2, R) 
action, the cover ySn  of Xn is also determined by two slits, which are interchanged by a.  
For each cylinder Vj of X n ,  let / I ,  denote the closed trajectory in the center of Vj .  Note that 
for any j ,  / I j  is mapped to itself under a. Also, as a exchanges the slits, we see that 1, 
intersects each slit the same number of times. Thus, / I j  breaks up into two closed paths of 
the same length when lifted from Xn to y  Sn. This proves (a) and the first assertion of (b). 
It is easy to see that the closed vertical trajectories on Vk between the boundary of Vk and 
one of the branch points double in length when lifted from X n  to y S n .  This proves the 
second assertion of (b). 

COROLLARY 9.17. The function fe : 0 Ã K is constant on the fibers of 5 almost 
everywhere, and thus descends to a function fe'. 0 Ã R. The latter function, for e 

sufficiently small, is given almost everywhere by the formula 
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where for 1 5 j 5 (n - 1)/2, /,â : Dn -+ R is as in Lemma 9.10, and k is such that q 
(and q') belong to the kth cylinder from the left in the unique cylinder decomposition that 
contains a cylinder of height at most 6. 

Proof (sketch). Choose a fundamental domain for r,, in the upper half-plane. Since Xn 
has a vertical cylinder decomposition, we may assume that the cusp of the fundamental 
domain approaches co, rather than approaching a point on the real axis. This means that 
as h goes to infinity in the fundamental domain, the unique short cylinder decomposition 
of hXn is the image under h of the vertical cylinder decomposition of Xn. 

We first prove that (9.18) is correct for all M in the SL(2, R) orbit of Sn. To do this, let 
g e SL(2, R), and write g = h y ,  where y Fn,  and h is in the fundamental domain. 
Note that fe(M) is zero unless M has a short cylinder. Thus, if g = h y ,  and h is 
in a compact part of the fundamental domain, then (in view of Lemma 9.16), we have 
f,; ( h  y sn)  = 0. Therefore, we may assume that h is in the cusp, and hence the unique 
short cylinder decomposition of gSn = h ySn is the image, under the linear action of h ,  of 
the vertical cylinder decomposition of y Sn. Then it is clear from Lemma 9.16 that (9.18) 
holds for M = gSn. 

To complete the proof, note that both sides of (9.18) are continuous off a closed set of 
measure zero, namely, the set where a branch point projects to an edge of a cylinder (in a 
cylinder decomposition containing a cylinder of height at most e). Then use the fact that 
the SL(2, R) orbit of S,, is dense. 

Remark 9.19. The analogue of the first assertion of Corollary 9.17 fails in the context of 
[EMS], in part since there we are dealing with covers of high degree. This is responsible 
for most of the combinatorial complexity of the argument in [EMS]. 

In view of Corollary 9.17, (9.15) becomes 

where k M  is the Lebesgue measure on the translation surface M,  and a denotes the 
hyperelliptic involution. Performing the integral over M, we get 

where pk = hkwk/A  and A = area(Xn) (so that pk denotes the relative area of the kth 
cylinder from the left in any cylinder decomposition). 

Now, using (9.12), we get 
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As the second term in the parenthesis is independent of k, and pk = 1, this can be 
rewritten as 

The first term in the parenthesis is in view of (9.8) twice the limit of N(Xn, T)/T2. 
The second term in the parenthesis is, since pk = hkwk/(areaXn), equal to 

In view of (9.9), we get 

Simplifying, we get 

Alternatively, 

TO pass from Sn to Pn, note that N(Pn, T)  = N(Sn, T), and as Sn consists of 4n triangles, 
area(&) = 4n area(Pn). 
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