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Abstract. Let H be a closed, connected subgroup of a connected, simple Lie group G with 
finite center. The homogeneous space G/H has a tessellation if there is a discrete subgroup 

of G, such that F acts properly discontinuously on G/H,  and the double-coset space 
r\G/H is compact. Note that if either H or G / H  is compact, then G / H  has a tessellation; these 
are the obvious examples. 

It is not difficult to see that if G has real rank one, then only the obvious homogeneous 
spaces have tessellations. Thus, the first interesting case is when G has real rank two. In 
particular, Kulkarni and Kobayashi constructed examples that are not obvious when 
G = S0(2,2n)O or SU(2, In). Oh and Witte constructed additional examples in both of these 
cases, and obtained a complete classification when G = S0(2 ,2ny .  We simplify the work of 
Oh-Witte, and extend it to obtain a complete classification when G = SU(2, In). This includes 
the construction of another family of examples. 

The main results are obtained from methods of Benoist and Kobayashi: we fix a Cartan 
decomposition G = KA+K, and study the intersection (KHK) n A+. Our exposition generally 
assumes only the standard theory of connected Lie groups, although basic properties of real 
algebraic groups are sometimes also employed; the specialized techniques that we use are 
developed from a fairly elementary level. 

Mathematics Subject Classifications (2000). 22E40, 53C30. 
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1. Introduction 

DEFINITION 1.1 ([KN, pp. 43-44]). A group F of homeomorphisms of a topo- 
logical space M actsproperly discontinuously on M if, for every compact subset C of M,  

{y I' I C n yC # 0} is finite. 

Classically, a discrete group F of isometries of a Riemannian manifold M is a 
crystallographic group if F acts properly discontinuously on M, and the quotient 
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r\M is compact. The F-translates of any fundamental domain for F\M form a 
tessellation of M. 

These notions generalize to any homogeneous space, even without an invariant metric. 

DEFINITION 1.2. Let 

G be a Lie group and 
0 H be a closed subgroup of G. 

A discrete subgroup F of G is a crystallographic group for G / H  if 

(1) r acts properly discontinuously on G/H; and 
(2) T\G/H is compact. 

We say that G / H  has a tessellation if there exists a crystallographic group r for G/H. 

Crystallographic groups and the corresponding tessellations have been studied for 
many groups G. (A brief recent introduction to the subject is given in [Kb8].) The 
classical Bieberbach Theorems [Cha, Chap. 11 deal with the case where G is the group 
of isometries of Euclidean space Rn = G/H. As another example, the Auslander 
Conjecture [Abe, AMS, FG, Mrl, Tom] asserts that if G is the group of all affine 
transformations of Rn, then every crystallographic group has a solvable subgroup 
of finite index. In addition, the case where G is solvable has been discussed in [Wit]. 

In this paper, we focus on the case where G is a simple Lie group, such as SL(n, R), 
SO(m, n), or SU(m, n). 

STANDING ASSUMPTIONS 1.3. Throughout this paper: 

(1) G is a linear, semisimple Lie group with only finitely many connected components; 
and 

(2) H is a closed subgroup of G with only finitely many connected components. 

Remark 1.4. Because H/HO is finite (hence compact), it is easy to see that G / H  
has a tessellation if and only if G/HO has a tessellation. Also, if G / H  has a tessel- 
lation, then GO/HO has a tessellation. Furthermore, the converse holds in many 
situations. (See Section 2D for a discussion of this issue.) Thus, there is usually no 
harm in assuming that both G and H are connected; we will feel free to do so 
whenever it is convenient. On the other hand, because SO(m, n) is usually not 
connected (it usually has two components [Hel, Lemma 10.2.4, p. 451]), it would be 
somewhat awkward to make this a blanket assumption. 

EXAMPLE 1.5. There are two classical cases in which G / H  is well known to have a 
tessellation. 

(1) If G / H  is compact, then we may let r = e (or any finite subgroup of G). 
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(2) If H is compact, then we may let F be any cocompact lattice in G. (A. Bore1 [Brl] 
proved that every connected, simple Lie group has a cocompact lattice.) 

Thus, the existence of a tessellation is an interesting question only when neither H 
nor G/H is compact. (In this case, any crystallographic group F must be infinite, 
and cannot be a lattice in G.) 

Given G (satisfying 1.3(1)), we would like to find all the subgroups H (satisfying 
1.3(2)), such that G/H has a tessellation. This seems to be a difficult problem in 
general. (See the surveys [Kb6] and [Lab] for a discussion of the many partial results 
that have been obtained, mainly under the additional assumption that H is 
reductive.) However, it can be solved in certain cases of low real rank. In particular, 
as we will now briefly explain, the problem is very easy if R-rankG = 0 or 1. Most 
of this paper is devoted to solving the problem for certain cases where R-rank G = 2. 

If R-rankG = 0 (that is, if G is compact), then G/H must be compact (and H 
must also be compact), so G/H has a tessellation, but this is not interesting. If 
R-rankG = 1, then there are some interesting homogeneous spaces, but it turns 
out that none of them have tessellations. 

EXAMPLE 1.6. G = SL(2, R) is transitive on R2 - {O}, so EC2 - {O} is a homo- 
geneous space for G. It does not have a tessellation, for reasons that we now explain. 

Let C be the unit circle, so C is a compact subset of R - {O}. 
We claim that C n gC # 0, for every g e G (cf. Figure 1.1). To see this, note that, 

because detg = 1, the ellipse bounded by gC has the same area as the disk bounded 
by C, so gC cannot be contained in the interior of the disk bounded by C,  and cannot 
contain C in its interior. Thus, gC must be partly inside C and partly outside, so gC 
must cross C, as claimed. 

Let l- be any discrete subgroup of G. The preceding paragraph implies that 
C n yC # 0, for every y F. If F acts properly discontinuously on kt2 - {O}, then, 
because C is compact, this implies that F is finite. So the quotient F\(kt2 - {O}) is 
not compact. Therefore F is not a crystallographic group. We have shown that no 
subgroup of G is a crystallographic group, so we conclude that R2 - {O} does not 
have a tessellation. 

This example illustrates the Calabi-Markus Phenomenon: if there is a compact 
subset C of GIH, such that C n gC # 0,  for every g e G, then no infinite subgroup 
of G acts properly discontinuously on G/H (see 2.8). Thus, G/H does not have a 
essellation, unless G/H is compact (see 2.9). 

We will see in Section 2 that the following proposition can be proved quite easily 
from basic properties of the Cartan projection. 

PROPOSITION 2.16' (cf. [Kb4, Lemma 3.21). Tf R-rank G = 1, and H is not com- 
pact, then there is a compact subset C of G/H, such that C n gC # 0, for every g e G. 
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Figure 1.1. The Calabi-Markus Phenomenon (Example 1.6): CdgC # 0, for every g e SL(2, R), so no 
infinite subgroup of SL(2, R) acts properly discontinuously. 

COROLLARY 1.7 (Kulkarni). VR-rank G  = 1, and neither H nor G / H  is compact, 
then G / H  does not have a tessellation. 

We now consider groups of real rank two. The obvious example is SL(3, R), but, in 
this case, once again, none of the interesting homogeneous spaces have tessellations. 
Moreover, the same is true when real numbers are replaced by complex numbers or 
quaternions. The case where dim H = 1 relies on beautiful methods of Benoist and 
Labourie [BL] or Margulis [Mr2], which we describe in Section 5.  

THEOREM 1.8 (Benoist, Kobayashi, Margulis, Oh and Witte, see Section 6). If 
G  = SL(3, R), SL(3, C), or SL(3, H), 

and neither H nor G / H  is compact, then G / H  does not have a tessellation. 

It is important to note that some interesting homogeneous spaces do have 
tessellations. To apprehend this, it may be helpful to first look at the following rather 
trivial example. 
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EXAMPLE 1.9. Suppose G = L x H, and let F be a cocompact lattice in L. Then Y 
acts properly discontinuously on L G/H, and r\G/H r \ L  is compact. So G/H 
has a tessellation. 

The following easy lemma generalizes this example to the situation where G is a 
more general product of L and H, not necessarily a direct product. 

LEMMA 1.10. Let H and L be closed subgroups of G, such that 

0 G = LH, 
L n H is compact; and 
L has a cocompact lattice Y. 

Then G/H has a tessellation. (Namely, T is a crystallographic group for G/H.) 
Proof. Because G = LH, we know that L is transitive on G/H (with stabilizer 

L n H), so G/H is L-equivariantly homeomorphic to L/(L n H). Since F is a crys- 
tallographic group for L/(L n H )  (see 1.5(2)), this implies that F is a crystallographic 
group for G/H, as desired. 

For G = SO(2, n) or SU(2, n), this lemma leads to some interesting examples 
found by Kulkarni [Kul, Theorem 6.11 and Kobayashi [Kbl, Proposition 4.91. 

EXAMPLE 1.11 (Kulkarni, Kobayashi). There are natural embeddings 

SO(1, n) <-> SO(2, n) and SU(1, n) --  ̂SU(2, n). 

Furthermore, identifying eNm with R ~ + ~ ~  yields an embedding 

SU(1, m) 9 S0(2,2m). 

Similarly, identifying H'-̂  with c ~ + ~ ~  yields an embedding 

Sp(1, m) ^ SU(2,2m). 

Thus, we may think of SO(1,2m) and SU(1, m) as subgroups of S0(2,2m); and we 
may think of SU(1,2m) and Sp(1, m) as subgroups of SU(2,2m). 

With the above understanding, we see that S0(1,2m) is the stabilizer of a vector of 
norm +l.  Since SU(1, m) is transitive on the set of such vectors, we have 

S0(2,2m) = SO(l,2m) SU(1, m). 

Similarly, 

SU(2,2m) = SU(1,2m) Sp(1, m). 

. Then Lemma 1.10 implies that each of the following four homogeneous spaces has a 
tessellation: 

0 SO(2,2m)/SO(l, 2m), 
0 S0(2,2m)/SU(l, m), 

SU(2,2m)/SU(l, 2m), and 
Â SU(2,2m)/Sp(l, m). 
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Remark 1.12. When discussing SO(2, n) or SU(2, n), we always assume n > 2. 
This causes no harm, because S0(2,2) is locally isomorphic to SL(2, R) x SL(2, R) 
[Hel, (x), p. 5201, and SU(2,2) is locally isomorphic to S0(2,4) [Hel, (vi), p. 5191. 

When n is even, H. Oh and D. Witte [OW31 provided a complete description of all 
the (closed, connected) subgroups H, such that SO(2, n)/H has a tessellation, but 
some cases remain open when n is odd. 

In this paper, we extend the work of Oh and Witte to obtain analogous results for 
homogeneous spaces of G = SU(2, n). We also give a much shorter proof of the main 
results of [OW3]. Our method is the same as in [OW3], but the proofs in [OW31 rely 
on a list [Owl] of all the homogeneous spaces of SO(2, n) that admit a proper action 
of a noncompact subgroup of SO(2, n). (The list was obtained by very tedious case- 
by-case analysis. It was extended to homogeneous spaces of SU(2, n) in [IW].) The 
following proposition (1.13) provides an a priori lower bound on dim H, and it turns 
out that the classification of the interesting subgroups of large dimension can be 
achieved fairly easily (see Section 10). This is the main reason that we are able to give 
reasonably short complete proofs of our theorems. The Cartan projection (described 
in Section 2) is our main tool. 

PROPOSITION 1.13 (see 4.12, 8.21, and 7.15). Suppose G = SO(2, n) or SU(2, n), 
and let H be a closed, connected, noncompact subgroup of G. IfG/H has a tessellation, 
then 

n if G = SO(2, n) and n is even; 
n - 1 if G = SO(2, n) and n is odd; dim H 2 if G = SU(2, n) and n is even; 
2n - 2 if G = SU(2, n) and n is odd. 

The same techniques should yield significant results for homogeneous spaces of 
the other classical simple groups of real rank two (namely, Sp(2, n), SO(5, C), 
SO(5, H), two real forms of the exceptional group E6, and two forms of the 
exceptional group GI), although the calculations seem to be difficult. On the other 
hand, the groups of higher real rank require different ideas. 

Once one knows that a tessellation of G/H exists, it would be interesting to find 
all of the crystallographic groups for G/H and, for each crystallographic group, 
describe the possible tessellations. These are much more delicate questions, which 
we do not address at all. (Goldman [Gol], Salein [Sal], Kobayashi [Kb7], and Zeghib 
[Zeg] have interesting results in some special cases.) 

In the remainder of this introduction, we state the specific results for homogeneous 
spaces of SO(2, n) and SU(2, n). 

NOTATION 1.14 ([Iwa, p. 5331). For any connected Lie group H, let 

d(H) = dim H - dim KH, 
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where KH is any maximal compact subgroup of H.  This is well defined, because 
all the maximal compact subgroups of H are conjugate [Hc2, Theorem 15.3.1(iii), 
pp. 180-1811. 

EXAMPLE 1.15. If H is semisimple, we have the Iwasawa decomposition 
H = KHAHNH [Hel, Theorem 6.5.1, pp. 270-2711, from which it is obvious that 
d(H) = dim(AHNH). 

This yields the following calculations (see 7.5 and 7.15): 

0 d(SO(1, n)) = n. 
0 d(SO(2, n)) = In. 
0 d(SU(1, n)) = 2n. 

d(SU(2, n)) = 4n. 
d(Sp(1, n)) = 4n. 

Remark 1.16. If H c AN (for some Iwasawa decomposition G = KAN of G), then 
d(H) = dimH (see 3.18 and 3.15(3)). 

NOTATION 1.17 ([Kb5, Definition 2.1.11). For subgroups HI and H2 of G, we write 
Hi - H2 if there is a compact subset C of G, such that Hi c CH2C and H2 c CHIC. 

Remark 1.18. Note that d is not invariant under the equivalence relation -. 
For example, the Cartan decomposition G = KAK implies that G - A, but we have 
d(A) = dim A # dim(AN) = d(G). 

The following two theorems state a version of the main results for even n. 

THEOREM 11.5' ([OW3]). Assume G = S0(2,2m), and let H be a closed, connected, 
subgroup of G, such that neither H nor G/H is compact. 

The homogeneous space G/H has a tessellation if and only if 
(1) d(H) = 2m; and 
(2) either H - SO(l,2m) or H - SU(1, m). 

THEOREM 11.5". Assume G = SU(2,2m), and let H be a closed, connected, 
subgroup of G, such that neither H nor G/H is compact. 

The homogeneous space G/H has a tessellation if and only if 

(1) d(H) = 4m; and 
(2) either H - SU(1,2m) or H - Sp(1, m). 

The subgroups H that arise in Theorems 11.5' and 11.5" can also be described 
more explicitly (cf. 11.2' and 1 1.2" below). 

Kobayashi [Kb7, 1.41 conjectured that if H is reductive and it is impossible to 
construct a tessellation of G/H by using a certain more sophisticated version of 
Lemma 1.10 (see 9.1), then G/H does not have a tessellation. The following lists 
three special cases of this general conjecture. 
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CONJECTURE 1.19. The homogeneous spaces 

a )  SO(2,2m + l)/SU(l, m), 
(b) SU(2,2m + l)/Sp(l, m), and 
(c) SU(2,2m + l)/SU(l, 2m + 1) 

do not have tessellations. 

If this conjecture is true, then, for odd n, there is no interesting example of a 
homogeneous space of SO(2, n) or SU(2, n) that has a tessellation. 

THEOREM 11.1' ([OW3, Theorem 1.71, [IW]). Assume 

G = S0(2,2m + 1) or SU(2,2m + l), 

and let H be any closed, connected subgroup of G, such that neither H nor G/H is 
compact. 

If Conjecture 1.19 is true, then G/H does not have a tessellation. 

The proof of Theorem 11.1' assumes the following special case proved by 
Kulkarni [Kul, Corollary 2.101. In short, Kulkarni noted that the Euler 
characteristic of I'\G/H must both vanish (because the Euler characteristic of 
G/H vanishes) and not vanish (by the Gauss-Bonnet Theorem). (Other results in 
the same spirit, obtaining a contradiction from the study of characteristic classes 
of T\G/H, appear in [KO].) 

THEOREM 1.20 (Kulkarni). If n is odd, then SO(2, n)/SO(l, n) does not have a 
tessellation. 

Let us give a more explicit description of the closed, connected subgroups H of 
S0(2,2m) or SU(2,2m), such that G/H has a tessellation. This shows that if n is 
even, then the Kulkarni-Kobayashi examples (1.1 1) and certain deformations are 
essentially the only interesting homogeneous spaces of SO(2, n) or SU(2, n) that have 
tessellations. 

NOTATION 1.21 [Hel, Theorem 6.5.1, pp. 270-27 11, [Hc2, p. 1801. Fix an Iwasawa 
decomposition G = KAN. Thus, 

K is a maximal compact subgroup, 
A is the identity component of a maximal split torus, and 
N is a maximal unipotent subgroup. 

The following two results are stated only for subgroups of AN, because the general 
case reduces to this (see 3.5). The reason is basically that H contains a connected, 
cocompact subgroup that is conjugate to a subgroup of AN. (Clearly, if H' is any 
cocompact subgroup of H, then G/H has a tessellation if and only if G/H' has a 
tessellation.) This is not quite true in general, but the following lemma provides a 
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satisfactory substitute, by showing that it becomes true after enlarging H by a 
compact amount. 

LEMMA 3.5'. After replacing H by a conjugate subgroup, there is a closed, connected 
subgroup H* of G, such that H*/H and H*/(ANH H*)' are compact, where ( A N  H H*)' 
denotes the identity component of A N  <^\ H*. 

THEOREM 11.2' (Oh-Witte [OW3, Theorem 1.71). Assume G = S0(2,2m), and let 
H be a closed, connected, nontrivial, proper subgroup of AN. 

The homogeneous space G/H has a tessellation i f  and only i f  H is conjugate to a 
subgroup HI, such that either 

(1) H' = SO(1,2m) n AN; or 
(2) H' belongs to a certain family {HB) of deformations of SU(1, m )  fl AN,  described 

explicitly in Theorem 9.7 (with F = R). 

THEOREM 11.2''. Assume G = SU(2,2m), and let H be a closed, connected, non- 
trivial, proper subgroup of AN. 

The homogeneous space G/H has a tessellation i f  and only i f  H is conjugate to a sub- 
group H', such that either 

(1) H' belongs to a certain family {HH} of deformations ofSU(l,2m) fl AN,  described 
explicitly in Theorem 9.14; or 

(2) H' belongs to a certain family {HB) of deformations of Sp(1, m )  n AN,  described 
explicitly in Theorem 9.7 (with F = C ) .  

2. Cartan Projection and Cartan Decomposition Subgroups 

The main problem in this paper is to determine whether or not a homogeneous space 
G / H  has a tessellation. This requires some method to determine whether or not a given 
discrete subgroup I7 of G acts properly discontinuously on G/H. Y. Benoist and 
T. Kobayashi (independently) demonstrated that the Cartan projection p. is an effective 
tool to study this question. It is the foundation of almost all of our work in later sections. 

In this section, we introduce the Cartan projection, and describe some of its basic 
properties. First, however, we recall the notion of a proper action (a generalization 
of properly discontinuous actions) and of a Cartan decomposition subgroup. At the 
end of the section, we use the Cartan projection to briefly discuss the question of 
when there is a loss of generality in assuming that G is connected. 

2A. PROPER ACTIONS 

DEFINITION 2.1 ([Kb6], Definition 2.1 1, [Pal], Definition 1.2.2, (6)). A topological 
group L of homeomorphisms of a topological space M acts properly on M if, for 
every compact subset C of M ,  

{ g e  L l C n g C / 0 )  is compact. 
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Remark 2.2. It is important to note that a discrete group of homeomorphisms of 
M acts properly on M if and only if it acts properly discontinuously on M. 

For the special case where M = G / H  is a homogeneous space, the following 
lemma restates the definition of a proper action in more group-theoretic terms. 

LEMMA 2.3 ([Kb5, Obs. 2.1.31). A closed subgroup L of G acts properly on G / H  i f  
and only i f ,  for every compact subset C of G, the intersection L n ( C H C )  is compact. 

Proof. If C is any compact subset of G, then c = C H / H  is a compact subset of 
G/H; furthermore, any compact subset of G / H  is contained in one of the form C. 
We have 

This has the following well-known, easy consequence. 

COROLLARY 2.4 (cf. [Kb5, Lemma 2.2(2)]). Suppose H, H I ,  L, and L l  are closed 
subgroups of G. I f  

0 L acts properly on G/H, and 
0 there is a compact subset C of G, such that HI c CHC and L l  c CLC, 

then Ll acts properly on G/Hl .  

2B. CARTAN-DECOMPOSITION SUBGROUPS 

The following definition describes the subgroups to which the Calabi-Markus 
Phenomenon applies (cf. Example 1.6). 

DEFINITION 2.5. We say that His  a Cartan decomposition subgroup of G if H - G 
(see Notation 1.17). 

Remark 2.6. From the Cartan decomposition G = KAK, we know that A is a 
Cartan-decomposition subgroup. 

Remark 2.7. Any conjugate of a Cartan decomposition subgroup is a Cartan 
decomposition subgroup. 

LEMMA 2.8 (Calabi-Markus Phenomenon, cf. [Kul, proof of Theorem A.1.21). If 
His a Carton-decomposition subgroup of G, and Y is a discrete subgroup of G that acts 
properly discontinuously on G/H, then Y is finite. 
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Proof. Because H i s  a Cartan-decomposition subgroup, there is a compact subset 
C of G, such that CHC = G. However, from Lemma 2.3, we know that F n (CHC) is 
finite. Therefore 

r = r n G = r n ( c H c )  

is finite. 

The following well-known, easy fact is a direct consequence of the Calabi-Markus 
Phenomenon. It is an important first step toward determining which homogeneous 
spaces have tessellations. 

COROLLARY 2.9. If H is a Cartan-decomposition subgroup of G, such that G/H is 
not compact, then G/H does not have a tessellation. 

2C. THE CARTAN PROJECTION 

NOTATION 2.10 ([Hel, Section 9.1, p. 4021). 

0 If G is connected, let A+ be the (closed) positive Weyl chamber of A in which 
the roots occurring in the Lie algebra of N are positive (cf. 1.21). Thus, A+ is a 
fundamental domain for the action of the (real) Weyl group of G on A. 
In the general case, let A+ be a closed, convex fundamental domain for the 
action of the (real) Weyl group of G on A, such that A+ is contained in the 
(closed) positive Weyl chamber of A in which the roots occurring in the Lie 
algebra of N are positive. 

DEFINITION 2.1 1 ([Hel, Theorem 9.1.1, p. 4021, [Ben, Kb61). For each element g 
of G, the Cartan decomposition G = KA+K implies that there is an element a of A+ 
with g KaK. In fact, the element a is unique, so there is a well-defined function 
p: G Ã A+ given by g Kp(g)K. 

We remark that the function p is continuous and proper (that is, the inverse image 
of any compact set is compact). 

The following crucial result of Y. Benoist provides a uniform estimate on the 
variation of p over disks of bounded radius. (A related result was proved, inde- 
pendently and simultaneously, by T. Kobayashi [Kb5, Theorem 3.41.) The proof is 
both elementary and elegant. However, it requires a bit of notation, so we postpone 
it to Section 8B (and, for concreteness, we will assume that G is either SO(2, n) or 
SU(2, n) in the proof). 

PROPOSITION 2.12 ([Ben, Proposition 5.11). For any compact subset C of G, there 
is a compact subset C' of A, such that p(CgC) c p(g)C1, for all g G. 

NOTATION 2.13. For subsets U and V of A+, we write U V if there is a compact 
subset C of A, such that U c VC and V c UC. 
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COROLLARY 2.14 ([Ben, Proposition 5.11, Kobayashi [Kb5, Theorem 
1.11). For any subgroups HI and H2 of G,  we have H1 - H2 i f  and only i f  

u(H1) = n(H2). 
Proof. (=Ãˆ Let C be a compact subset of G,  such that HI c CH2C and 

H2 c CHIC. Choose a corresponding compact subset C of A, as in Proposition 
2.12. Then 

pW1) c p(CH2C) c ̂H2)C1 

and, similarly, p(H2) c p(Hl)C1. 
(+) Let C be a compact subset of A, such that p(Hl) c p(H2)C and 

p(H2) c n(H1 )C. Then 

Hi c Kp(Hi)K c K(p(H2)C)K c K((KH2KlQK 

and, similarly, H2 c KHl(KCK). 

The special case where H2 = G (and H1 is closed and almost connected) can be 
restated as follows. 

COROLLARY 2.15 (Benoist, Kobayashi). H is a Carton decomposition subgroup of 
G i f  and only i f  A H )  = A+. 

COROLLARY 2.16 (cf. [Kb4, Lemma 3.21). Assume that R-rank G = 1. Thesubgroup 
H is a Carton decomposition subgroup of G i f  and only i f  H is noncompact. 

Proof. (+) We have p(e) = e, and, because p is a proper map, we have p(h) + oo 
as h -+ oo in H. Because R-rank G = 1, we know that A+ is homeomorphic to the 
half-line [O, oo) (with the point e in A^ corresponding to the endpoint 0 of the half- 
line), so, by continuity, it must be the case that p(H)  = A+. Then Corollary 2.15 
implies that H is a Cartan decomposition subgroup, but we provide the following 
direct proof that avoids any appeal to Proposition 2.12. 

From the definition of p, we have KHK = Kp(H) K. Therefore 

KHK = Kp(H) K = KA'K = G, 

so H i s  a Cartan decomposition subgroup (by taking C = Kin Definition 1.17). 

By using Lemma 2.3, the proof of Corollary 2.14 also establishes the following. 

COROLLARY 2.17 ([Ben, Proposition 1.51, [Kb5, Corollary 3.51). Suppose H and L 
are closed subgroups of G. The subgroup L acts properly on G/H i f  and only i f  
p(L) n p(H)C is compact, for every compact subset C of A. 

2D. DISCONNECTED GROUPS 

As was mentioned in Remark 1.4, we may assume, without loss of generality, that H 
is connected. However, it may not be possible to assume that G is connected, 
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because, although there are no known examples, it is possible that the following 
question has an affirmative answer. 

QUESTION 2.18. Does there exist a homogeneous space G / H  (satisfying Assump- 
tion 1.3), such that GO/HO has a tessellation, but G / H  does not have a tessellation? 

If Y is a crystallographic group for GO/HO, then it is easy to see that r\G/H is 
compact. However, the following example shows that F may not act properly 
discontinuously on G/H. 

EXAMPLE 2.19. Let 

L = H = SL(2, R), 
a be the automorphism of L x H that interchanges the two factors (that is, 

ff(x, Y )  = ( Y ,  XI), 
G = ( L  x H )  xi (0) (semidirect product), and 
F be a cocompact lattice in L (cf. 1.5(2)). 

Then H = HO,  and Y is a crystallographic group for G O / H  = (L x H ) / H  (see 
Example 1.9). 

However, F c L = a l ~ a ,  so F does not act properly on G / H  (see 2.3 with 
C = { w - I } ) .  

Even so, G / H  does have a tessellation, because the diagonal embedding 

is a crystallographic group for G/H. Thus, this example does not provide an answer 
to Question 2.18. 

In this example, a represents an element of the Weyl group of G that does not 
belong to the Weyl group of Go. The following proposition shows that this is a 
crucial ingredient in the construction. 

PROPOSITION 2.20. Let Y be a crystallographic group for GO/HO. 
If the (real) Weyl group of G is same as the (real) Weyl group of Go, then Y is a 

crystallographic group for G/H. 
Proof. By assumption, we may choose the same fundamental domain A  ̂ for the 

Weyl groups of G and Go. Let p: G Ã‘> A+ and pO: GÂ -+ A+ be the Cartan projections; 
then pO is the restriction of p to Go. For simplicity, assume, without loss of generality, 
that H c Go (for example, assume H i s  connected). Then, for any compact subset C 
of A, we have 

is finite (see 2.17). Thus, F acts properly discontinuously on G / H  (see 2.17), as 
desired. 
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A. Bore1 and J. Tits [BT, Corollary 14.6, p. 1471 proved that if G is Zariski 
connected, then every element of the Weyl group of G has a representative in Go. 
Also, any element of the Weyl group must act as an automorphism of the root 
system. Thus, we have the following corollary. 

COROLLARY 2.21. Let Y be a crystallographic group for GO/HO. 
I f  either 

G is Zariski connected, or 
every automorphism of the real root system of Go belongs to the Weylgroup of the 
root system, 

then r is a crystallographic group for G/H. 

EXAMPLE 2.22. 1) If G = S0(2,n), then G is Zariski connected (because 
SO(n + 2, C) is connected [GdW, Theorem 2.1.9, p. 60]), so G / H  has a tessellation if 
and only if GO/HO has a tessellation. 

2) More generally, if Go = SO(2, n)O or SU(2, n) (with n 2 3), then every auto- 
morphism of the real root system of Go belongs to the Weyl group of the root system 
(cf. Figure 7.1), so G / H  has a tessellation if and only if GO/HO has a tessellation. 

EXAMPLE 2.23. If G = SL(3, R) xi (a), where a is the Cartan involution of 
SL(3, R), then a represents an element of the Weyl group of G that does not belong 
to the Weyl group of Go, so the proposition does not apply to G. However, this does 
not matter: if neither H nor G / H  is compact, then Theorem 1.8 implies that GÂ¡/H 
has no tessellations, so G / H  has no tessellations either. 

3. Preliminaries on Subgroups of AN 

This section recalls a technical result that often allows us to assume that H i s  a sub- 
group of AN. It also recalls some basic topological properties of such subgroups, and 
also recalls a simple observation relating these subgroups to the root spaces of the 
Lie algebra g. 

3A. REDUCTION TO SUBGROUPS OF AN 

DEFINITION 3.1 ([Hel, Theorem 9.7.2, p. 4311). An element g of G is: 

hyperbolic if g is conjugate to an element of A; 
0 unipotent if g is conjugate to an element of N; 

elliptic if g is conjugate to an element of K. 

LEMMA 3.2 (Real Jordan Decomposition [Hel, Lemma 9.7.1, p. 4301). Each g G 
has a unique decomposition in the form g = auc, such that 

a is hyperbolic, u is unipotent, and c is elliptic; and 
a, u,  and c all commute with each other. 
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Remark 3.3. If g = auc is the Real Jordan Decomposition of some element g of G, 
then a, u, and c commute, not only with each other, but also with any element of G 
that commutes with g. This is because the Real Jordan Decomposition of high is 

h-lgh = (h-'ah)(hK1uh)(h-lch): 

if high = g,  then the uniqueness of the Real Jordan Decomposition of g implies 
h l a h  = a, h l u h  = u, and high = c. 

The following observation is a generalization of the fact that a collection of 
commuting triangularizable matrices can be simultaneously triangularized. 

LEMMA 3.4 (cf. proof of [Hml, Theorem 17.61). If H is abelian (or, more generally, 
solvable), and is generated by hyperbolic and/or unipotent elements, then H is conjugate 
to a subgroup of AN. 

Because of the following result, we usually assume H c AN (by replacing H with a 
conjugate of H'). 

LEMMA 3.5 (cf. [Owl,  Lemma 2.91). If H is connected, then there is a closed, 
connected subgroup H' of G and a compact, connected subgroup C of G, such that 

(1) H' is conjugate to a subgroup of AN; 
(2) CH = CH' is a subgroup of G; and 
(3) d(H1) = d(H) (see Notation 1.14). 

Moreover, it is easy to see from (2) that the homogeneous space G/H has a tessellation 
if and only if G/H' has a tessellation. 

Idea of Proof. First, let us note that every connected subgroup of AN is closed (see 
3.15(1) and 3.18), so we do not need to show that HI is closed. 

Second, let us note that (3) is a consequence of (1) and (2). To see this, let K* be a 
maximal compact subgroup of CH that contains C. Then a standard argument 
shows that K* n H is a maximal compact subgroup of H. (Because all maximal 
compact subgroups of CH are conjugate, there is some g CH, such that 
( g l ~ * g )  n H is a maximal compact subgroup of H that contains K* n H. Since 
C c K*, we know that C normalizes K*, so we may assume g e H: thus, g normalizes 
H. Then g - l ( ~ *  r\ H)g = ( g ^ ~ * g )  T\ H contains K* n H. Because K* f? H is 
compact, this implies that g normalizes K* n H. So K* r l  H = ( g l ~ * g )  ^\ H is a 
maximal compact subgroup of H.) Therefore 

dim(K*H/K*) = dim(H/(K* n H)) = dim H - dim(K* n H )  = d(H). 

Similarly, dim(K*H1/K) = d(H1). Since K* H = CH = CH' = K*H1, we conclude 
that d(H1) = d(H), as desired. 

Case 1. Assume H is semisimple. We have an Iwasawa decomposition H = 

KHAHNH; let H' = AHNH and C = KH. 
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Case 2. Assume H = {h'} is a one-parameter subgroup. Let 

h' = a'u'c' be the Real Jordan Decomposition of h' (see 3.2); 
H = {a'ut}; and 
C = [c'} be the closure of {ct}.  

(Lemma 3.4 implies that H' is conjugate to a subgroup of AN.) 

Case 3. Assume H is Abelian. We may write H as a product of one-parameter - I , 
subgroups: 

H = { h ~ h ~ ~ . . h , ' l t ~ ,  . . . ,  t , . â ‚ ¬ R  

Let hj = aju]cj be the Real Jordan Decomposition of hj (see 3.2). Note that a?, u', 
and c' commute, not only with each other, but also with every a:, @, and $ 
(see 3.3). Let 

H' = { ( a ~ u ~ ) ( a ? u ? ) . . . ( a i u i )  1 t l ,  . . . , tr R } ,  
i 

and let C = {c1.. .Â¥ (Lemma 3.4 implies that H' is conjugate to a subgroup of 
AN.) 

Case 4. The general case. From the Levi decomposition [Jac, p. 911, we know that 
there is a connected, semisimple subgroup L of H and a connected, solvable, normal 
subgroup R of H, such that H = L R  (and L r\ R is finite). Let U = [H, R],  so U is a 
connected, normal subgroup of H, and U is conjugate to a subgroup of N (cf. [Jac, 
Corollary 2.7.1, p. 511). By modding out U ,  we (essentially) reduce to the direct 
product of Cases 1 and 3. 

Remark 3.6. For Hand  H' as in Lemma 3.5, Proposition 3.20 (and 3.18) implies 
that if H' # AN, then AN/H1 is not compact; also, Proposition 3.15(3) (and 3.18) 
implies that if H' # e, then H' is not compact. Therefore, 

H' = AN if and only if G/H is compact; and 
H' = e if and only if H is compact. 

Thus, if neither H nor G/H is compact, then H' is a nontrivial, proper subgroup of 
AN. 

3B. TOPOLOGY OF SOLVABLE GROUPS AND THEIR HOMOGENEOUS SPACES 

Everything is this subsection is well known, though somewhat scattered in the 
literature. The main results are Propositions 3.15 and 3.20, which, together with 
Corollary 3.18, show that connected subgroups of AN and their homogeneous spaces 
are very well behaved topologically. Corollary 3.19, on the homology of very simple 
quotient spaces, is also used in later sections. 
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We begin with the easy case of Abelian groups. This lemma generalizes almost ver- 
batim to solvable groups (see 3.15), but the proof in that generality is not as trivial. 

LEMMA 3.7 ([Var, Theorem 3.6.2, p. 1961). Let R be a \-connected, Abelian Liegroup. 

(1) If H is a connected subgroup of R, then H is closed, simply connected, and 
isomorphic to Rk, for some k. 

(2) If H and L are connected subgroups of R, then H n L is connected. 
(3) I f  C is a compact subgroup of R, then C is trivial. 

Proof. Because R is Abelian and 1-connected, the exponential map is a Lie group 
isomorphism from the additive group of the Lie algebra r onto R. 

(1) Let k = dim H. Because the exponential map is a Lie group isomorphism (hence 
a diffeomorphism), and because fi is a closed k-submanifold of r, we know that 
exp(i)) is a closed k-submanifold of R. Of course, exp(fi) is contained in H, which 
is also a k-submanifold of R. Because the dimensions are the same, we know that 
exp(fi) is open in H. Also, because exp(fi) is closed in R, we know that exp(i)) is 
closed in H. Therefore 

(because H i s  connected). Finally, we know that exp I s  is a diffeomorphism from ! 
its domain fi E Rk onto its image H. 

(2) From (3.8), we have exp(fi) = H and, similarly, exp(I) = L. Also, because exp is 
bijective, we have exp 5 fl exp 1 = exp(fi n 0. Therefore 

is connected. 
(3) Because R is not compact (for k > O), we know, from 3.7(1), that CÂ is trivial; so 

C is finite. Since R (r, +) % R^ has no elements of finite order, we conclude 
that C is trivial. 

As is usual in the theory of solvable groups, the main results of this section are 
proved by induction, based on modding out some normal subgroup L. To be 
effective, this method requires an understanding of the quotient space R/L. The 
information we need (even if L is not normal) comes from the following elementary 
observation, because R is a principal L-bundle over R / L .  

LEMMA 3.9. Let P be a principal If-bundle over a manifold M 

(1) If H is diffeomorphic to Rn, then 
(a) P is H-equivariantly diffeomorphic to M x H ,  so 
(b) P is homotopy equivalent to M. 

(2) If M is diffeomorphic to Rn, then 
(a) P is H-equivariantly diffeomorphic to M x H,  so 
(b) P is homotopy equivalent to H. 
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Proof. Any principal bundle with a section is trivial [Hus, Corollary 4.8.3, p. 481. 
If either the fiber or the base is contractible, then there is no obstruction to 
constructing a section [Hus, Theorem 2.7.1(Hl), p. 211, so P is trivial: P E M x H. 
(The diffeomorphism can be taken to be H-equivariant, with respect to the natural 
H-action on M x H,  given by (m, h)hf = (m, hh').) Then the conclusions on homo- 
topy equivalence follow from the fact that Rn is contractible (that is, homotopically 
trivial). 

We recall the long exact sequence of the fibration H Ã‘ R -+ R/H: 

LEMMA 3.10 ([Whi, Corollary IV.8.6, p. 1871). Let H be a closed subgroup of a Lie 
group R. There is a (natural) long exact sequence of homotopy groups: 

CORROLLARY 3.1 1. Let H be a closed subgroup of a l-connected Lie group R. The 
homogeneous space R / H  is simply connected if and only if H is connected. 

Proof. Because R is 1-connected, we have q (R)  = q ( R )  = 0, so, from (3.10), 
we know that the sequence 

is exact. Thus, n\(R/H) E ̂ (H), so the desired conclusion is immediate. 

As a step toward Proposition 3.15, we prove two special cases that describe the 
topology of normal subgroups. 

LEMMA 3.12. IfR is a 1-connected, solvable Lie group, then R is diffeomorphic to IRd, 
for some d. 

Proof. We may assume the group R is non-Abelian (otherwise, the desired con- 
clusion is given by Lemma 3.7(1)). Then, because R is solvable, there is a nontrivial, 
connected, proper, closed, normal subgroup L of R. Since R/L is simply connected 
(see 3.1 I), and dim(R/L) < dim R, we may assume, by induction on dim R, that R/L 
is diffeomorphic to some iRdl. Therefore 

(a) R is diffeomorphic to (R/L) x L and 
(b) L is homotopy equivalent to R 

(see 3.9(2)). Because R is 1-connected, (b) implies that L is 1-connected; hence, 
L is a 1-connected, solvable Lie group, so we may assume, by induction on dim R, that 
L is diffeomorphic to some I R 2 .  Thus, (a) implies that R is diffeomorphic to 
R x Pid2 2 as desired. 

COROLLARY 3.13 (of proof). If R is a 1-connected, solvable Lie group, then every 
connected, closed, normal subgroup of R is l-connected. 
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The following proposition is a nearly complete generalization of Lemma 3.7 to the 
class of solvable groups. There are two exceptions: 

(1) Of course, subgroups of a solvable group may not be Abelian, so the conclusion 
in 3.7(1) that H is isomorphic to some Rk must be weakened to the conclusion 
that H i s  diffeomorphic to some Itk. 

(2) The intersection of connected subgroups is not always connected (see 3.14), so 
we add the restriction that L is normal to 3.7(2). (We remark that no such restric- 
tion is necessary if R c AN, because the exponential map is a diffeomorphism 
from r onto R in this case [Dix, Sail.) 

EXAMPLE 3.14. Let 

Then R, being diffeomorphic to IR3, is 1-connected; and {g'} and {h'} are connected 
subgroups. But 

1 0 0  

0 0 el2 

is not connected. 

PROPOSITION 3.15 ( [Hc~,  Theorems 12.2.2 and 12.2.3, pp. 137-1381). Let R be a 
1 -connected, solvable Lie group. 

(1) If H is a connected subgroup of R, then H is closed, simply connected, and diffeo- 
morphic to some @. 

(2) I f H  and L are connected subgroups of R, and L is normal, then H n L is connected. 
(3) I f  C is a compact subgroup of R, then C is trivial. 

Proof. (2) We may assume L is nontrivial, so dim(R/L) < dim R. Thus, by 
induction on dim R, using (I), we may assume that HL/L is a closed, simply connected 
subgroup of R/L. Then, since H/(H fl L) is homeomorphic to HL/L, we see that 

H/(H n L) is simply connected, (3.16) 

so Lemma 3.1 1 implies that H C\ L is connected. 
(1) Because R is solvable, there is a connected, closed, proper, normal subgroup L 

of R, such that R/L is Abelian. We know that L is 1-connected (see 3.13), so, by 
induction on dim R, we may assume that every connected subgroup of L is closed 



134 ALESSANDRA IOZZI AND DAVE WITTE MORRIS 

and simply connected. From (2), we know that H n L is connected, so we conclude 
that H n L is closed, and 

q ( H n L ) = O .  (3.17) 

From (3.10) (with H in the place of R, and L in the place of H), together with (3.16) 
and (3.17), we conclude that q ( H )  = 0; that is, H is simply connected. So (3.12) 
implies H is diffeomorphic to some I t d .  

Because both H L / L  and H n L are closed, it is not difficult to see that H i s  closed. 
(3) Because R is solvable, there is a connected, closed, proper, normal subgroup L 

of R, such that R/L is Abelian. We know that R / L  is 1-connected (see 3.1 I), so R / L  
has no nontrivial, compact subgroups (see 3.7(3)); thus, we must have C c L.  There- 
fore, Cis  a compact subgroup of L. Then, since L is 1-connected (see 3.13), we may 
conclude, by induction on dim R, that C is trivial. 

COROLLARY 3.18. AN is a 1-connected, solvable Lie group. 
Proof. Because G is linear, it is a subgroup of some GL(n, R). Replacing G by a 

conjugate, we may assume that AN is contained in the group B of upper triangular 
matrices with positive diagonal entries (cf. 3.4). The matrix entries provide 

- an obvious diffeomorphism from B onto (R4-)" x IRn("-')l2 - R"("+~)/~,  so B is 
1-connected. Thus, Proposition 3.15(1) implies that AN is simply connected. 

The following observation will be used in Sections 4 and 9. 

COROLLARY 3.19. Let F be a connected subgroup of AN, and suppose we have a 
proper, Cm action of F on a manifold M. Then M and M / F  have the same homology. 

Proof. Because the action is proper, we know that the stabilizer of each point of 
M is compact. However, F has no nontrivial compact subgroups (see 3.15(3)). Thus, 
the action is free. 

Because the action is free, proper, and Cm, it is easy to see that the manifold M is a 
principal fiber bundle over the quotient M / F  [Pal, Theorem 1.1.31. Furthermore, the 
fiber F of the bundle is contractible (see 3.15(1)), so Lemma 3.9(1) implies that M 
homotopy equivalent to M/F. Therefore, the spaces M and M / F  have the same 
homology. 

For the special case where M / F  is a homogeneous space of a solvable group, the 
following more detailed result describes the topology of M/F,  not just its homology. 

PROPOSITION 3.20 (Mostow [Mos, Proposition 11.21). If H is any connected 
subgroup of a 1-connected, solvable Lie group R, then R/H is diffeomorphic to the 
Euclidean space R ,  for some d. 

Proof. Because R is solvable, it has a nontrivial, connected, closed, Abelian, 
normal subgroup L.  Since L is Abelian and H n L is connected (see 3.15(2)), we know 
that L/(H n L )  is a 1-connected Abelian group (see 3.1 I), so it is isomorphic to some 

(see 3.7(1)). 
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We know H is closed (see 3.15(1)). Also, since L is nontrivial, we have 
dim (R/L) < dim R, so we may assume, by induction on dim R, that 

R/(HL) ^ (R/L)/(HL/L) 

is diffeomorphic to some Itd2. 
Now R is a principal HL-bundle over R/(HL). Because R/(HL) E IRd2, this bundle 

is trivial (see 3.9(2)): R is HL-equivariantly diffeomorphic to R/(HL) x HL. Then 

R/H E R/(HL) x HL/H E R/(HL) x L/(H n L) 2 R  ̂x Rdl = 

as desired. 

3C. T-INVARIANT SUBSPACES OF a + n 

The following well-known observation puts an important restriction on the sub- 
spaces of a + n that are normalized by a torus. It is an ingredient in our case-by-case 
analysis of all possible subgroups of AN in Sections 10 and 11. 

LEMMA 3.21. Let 

(D4' be the set of weights of A on n (in other words, the set of allpositive real roots 

of GI; 
T be a subgroup of A; 

0 m â <D+ U {O}; 
TI where the sum is over all a @ U {O}, such that the = e3ulT=m,T 5, 

restriction of a to T is the same as the restriction of m to T; 
n#@ = @o,T#,,,T ng, whe~e  the sum is over all a E <D4' U {O}, such that the 
restriction of a to T is not the same as the restriction of co to T. 

Ifu is any R-subspace of a + n normalized by T, then u = (u n r m )  @ (u n n#'"). 
Proof. Since T c A, we know that the elements of AdoT are simultaneously 

diagonalizable (over R), so their restrictions to the invariant subspace u are 
also simultaneously diagonalizable (cf. [ZS, Theorems 26 and 27 in Section 3.12, 
pp. 167-1681). Thus, u is a direct sum of weight spaces: 

For each weight \l/ of T on u, we have 

and 

The conclusion follows. 
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4. Lower Bound on the Dimension of H 

In this section, we prove Corollary 4.12, an a priori lower bound on dim H. On the 
way, we recall a result of T. Kobayashi that will also be used several times in later 
sections, and we establish that crystallographic groups have only one end. 

4A. T. KOBAYASHI'S DIMENSION THEOREM 

The following theorem is essentially due to T. Kobayashi. (Kobayashi assumed 
that H i s  reductive, but H. Oh and D. Witte [OW3, Theorem 3.41 pointed out that, 
by using Lemma 3.5, this restriction can be eliminated.) The proof here is based on 
Kobayashi's original argument and the modifications of Oh and Witte, but uses less 
sophisticated topology. Namely, instead of group cohomology and the spectral 
sequence of a covering space, we use only some basic properties of homology 
groups of manifolds (including Lemma 3.19). These comments also apply to 
Theorem 9.1. 

THEOREM 4.1 ([Kb3, Theorem 1.51, [Kbl, Theorem 4.71). Let Hand HI be closed, 
connected subgroups of G, and assume there is a crystallographic group Y for G/H, 
such that r acts properly discontinuously on G/Hl. Then: 

(1) We have d(Hl) < d(H). 
(2) If d(H1) > d(H), then r \G/Hl is compact, so G/Hl has a tessellation. 

Proof. By Lemma 3.5, we may assume H, Hl c AN. (So d(H) = dim H and 
d(H1) = dim Hi (see 1.16).) 

From Lemma 3.19, we know that r \ G  and r \G/Hl have the same homology. 
Therefore 

with equality if and only if r \G /Hl  is compact [Dol, Corollary 8.3.4, p. 2601. 
Similarly, we have 

Combining these two statements, we conclude (1) that dim G/H < dim G/H, and, 
furthermore, (2) that equality holds if and only if Y\G/Hl is compact. 

COROLLARY 4.2 (Kobayashi). Let H a n d  H1 be closed, connected subgroups of G, 
such that d(H1) > d(H). If there is a compact subset C of A,  such that p(Hl) c p(H)C, 
then G/H does not have a tessellation. 

Proof. Suppose F is a crystallographic group for G/H. (This will lead to a 
contradiction.) Because F acts properly discontinuously on G/H, the assumption 
on U(Hl) implies that l- also acts properly discontinuously on G/Hl (cf. 2.17). 
So Theorem 4.1(1) yields a contradiction. 
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4B. CRYSTALLOGRAPHIC GROUPS HAVE ONLY ONE END 

It is easy to see that crystallographic groups are finitely generated; we now show that 
they have only one end (see 4.9). 

DEFINITION 4.3 (cf. [Gro, 0.2.A'y, p. 41). Let F be a finite generating set for an 
(infinite) group r. We say that F has only one end if, for every partition 
Y = A1 U A2 U C of F into three disjoint sets Al, A2, and C, such that Al and A2 are 
infinite, but C is finite, there exists y E Al and f F U  F 1 ,  such that yf E A2. (This 
does not depend on the choice of the generating set F.) 

The following observation is a straightforward reformulation of Definition 4.3 
(obtained by letting AT. = Y\(Al U C') and C = C'\Ai). 

LEMMA 4.4. Let F be a finite generating set for an infinite group F that has only one 
end. If A1 and C are subsets of Y, such that 

A1 is infinite, 
C is finite, and 
A i f e  Al U C', for every f F U  F-I, 

then the complement Y\ Al is finite. 

Remark 4.5 (cf. [Coh, pp. 25-26, p. 32, and Proposition 2.141). Definition 4.3 is 
often stated in the language of Cayley graphs: The Cayley graph of Y, with respect to 
the generating set F, is the graph Cay(Y; F )  whose vertex set V  and edge set E are 
given by: 

V =  I-; 

= ( Y , Y ~ ) I Y  E ~ , / E F U F - ~ I .  

The group F has only one end if and only if, for every finite subset C of F, the graph 
Cay(F; F ) \C  has only one infinite component. 

The following lemma is not difficult, but, unfortunately, we do not have a proof 
that is both short and elementary. 

LEMMA 4.6 (see proof of Lemma 10.7(1)). I fHN = AN, then, for some x E N, the 
conjugate X H X  is normalized by A. 

COROLLARY 4.7. If d(G) - d(H) 6 1, and G/H is not compact, then G/H does not 
have a tessellation. 

Proof. It suffices to show that H i s  a Cartan decomposition subgroup of G (see 2.9). 
We may assume, without loss of generality, that H c AN (see 3.5) then 

dim H + 1 = d(H) + 1 2 d(G) = dim(AN) 
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(see 1.16 and 1.15). A theorem of B. Kostant [Kos, Theorem 5.11 implies that N is a 
Cartan decomposition subgroup, so we may assume N (f_ H; then dim(H r\ N) < 
dim N - 1. Therefore 

dim(HN) = dim H + dim N - dim(H r\ N) 2 dim H + 1 2 dim(AN). 

Hence HN = AN, so, from Lemma 4.6, we see that, after replacing H by a conjugate 
subgroup, we may assume that His  normalized by A. Then, letting co = 0 and T = A 
in (3.21), we see that fi = (fi n a) + (fi n n). Since HN = AN, we have fi + n = a + n, 
so this implies that a c 6; therefore H contains A. Since A is a Cartan decomposition 
subgroup (see 2.6), this implies H i s  a Cartan decomposition subgroup, as desired. 

DEFINITION 4.8 (cf. [Gro, 0.2.A., p. 41). A topological space M is connected at 
oo if every compact subset C is contained in a compact subset C', such that the 
complement M \C1 is connected. 

PROPOSITION 4.9. IfY is a crystallographic group for G/H, then F is finitely 
generated and has only one end. 

Proof. Assume, without loss of generality, that H c AN (see 3.5). Then H is 
torsion free, so F must act freely on G/H; therefore F\G/H is a compact manifold 
(rather than an orbifold). Because F is essentially the fundamental group of F\G/H 
(specifically, F s q(F\G/H)/q(G/H)),  and the fundamental group of any compact 
manifold is finitely generated [Rag, Theorem 6.16, p. 951 we know that F is finitely 
generated. 

From the Iwasawa decomposition G = KAN, we see that G/H is homeomorphic 
to K x (AN/H), and Proposition 3.20 asserts that AN/H is homeomorphic to IRd, 
for some d. Obviously, we must have d = dim(AN) - dim H, and we may assume 
G/H is not compact (otherwise, F is finite, so the desired conclusion is obvious), 
so Corollary 4.7 implies that d > 1. Thus, we conclude that G/H is connected at oo. 

To complete the proof, we use a standard argument (cf. [Gro 0.2.C1, p. 51) to show 
that, because G/H is connected at oo and Y\G/H is compact, the group F has only 
one end. To begin, note that there is a compact subset C of G/H, such that 
rC = G/H. Let 

(cf. [PR, (ii), p. 1951). Because F acts properly discontinuously on G/H, we know 
that Fo is finite; let F be a finite generating set for F, such that Fo c F. 

Suppose F = A1 U A2 U C, with \Ai\ = [A2] = oo and ICI < ool. (We wish to 
show there exist y e A\ and f E F, such that yf e A7; this establishes that F has 
only one end.) Because G/H is connected at oo, there is a compact subset C' of 
G/H, containing CC, such that (G/H)\C1 is connected. Because CC c C', we have 
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Because F acts properly discontinuously on G/H,  we know AIC and A2C are 
closed (and neither is contained in C'), so connectivity implies that AIC n A2C # 0: 
there exist y e Al and y' A2, such that yC fl y'C # 0. Let f = y l y ' ;  then y Al, 
yf = y' A2, and 

cnfc = y- l (ycnfc )  # 0, 

so f Fo c F, as desired. 

4C. WALLS OF A+ AND A LOWER BOUND ON d ( H )  

PROPOSITION 4.10. Assume R-rank G = 2. Let 

Ll and L2 be the two walls of A^, and 
be a crystallographic group for G/H. 

If H is not compact, then there exists k {I ,  2}, such that, for every compact subset C 
of A, the intersection p(F) D LkC is finite. 

Proof, (cf. Figure 4.1). Suppose there is a compact subset C of A,  such that each 
of p(T) n L1 C and p(F) n L2C is infinite. (This will lead to a contradiction.) Let F be 
a (symmetric) finite generating set for F (see 4.9). We may assume C is so large that 
p(yF) c p(y)C for every y E F (see 2.12). We may also assume that C is convex and 
symmetric. 

Because F acts properly on G/H, there is a compact subset C of A, such that 
p(H)Cnp(r)  c C (see 2.17). Furthermore, we may assume that p(Ll)Cn 

p ( W  c c. 
Let 

M = U^^Y)C\C, 
Mi be the union of all the connected components of M that contain a point of 
Ll ,  and 
Al = F n ,L-'(M~). 

Figure 4.1. Proposition 4.10: (a) y(F) cannot be on both sides of p(H),  because F has only one end. 
(b) Therefore, p(r)  stays away from Lie. 
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Then Al is infinite (because p(r)  n L\C is infinite). Also, for any y 6 Al and f e F, 
we have p(yf) e p(y)C, so yf e A1 U p y C ) .  Since F has only one end (see 4.9), this 
implies r \ A l  is finite (see 4.4). Because p ( 0  n L2C is infinite, we conclude that 
M~ n L~ # 0. 

Because p(H) separates L1 from L2, and every connected component of M I  
contains a point of Ll ,  we conclude that p(H) n Mi # 0. This contradicts the fact 
that u(H)C n p(T) c C. 

COROLLARY 4.1 1. Assume R-rank G = 2. Let 

(1) Ll  and L2 be the two walls of A+; and 
(2) Hl and H2 be closed, connected, nontrivial subgroups of G, 

such that 

u(Hk) 25 Lk 

for k = 1,2. If H is not compact, then any crystallographic group for G/H acts 
properly discontinuously on either G/Hl or G/H2. 

Proof. Suppose F acts properly discontinuously on neither G/Hl nor G/H2. (This 
will lead to a contradiction.) From Proposition 2.17, we know there is a compact 
subset C of A, such that each of p(r) n p(Hl)C and p(r) n (̂H )̂C is infinite. Then, 
since p(Hk) % Lk, we may assume (by enlarging C) that each of p(T) n L I C  and 
p(F) n L2C is infinite. This contradicts the conclusion of Proposition 4.10. 

COROLLARY 4.12. Assume R-rank G = 2. Let 

(1) Ll and L2 be the two walls of A+; and 
(2) Hi and H2 be closed, connected, nontrivial subgroups of G; 

such that 

u(Hk) Lk 

for k = 1,2. If G/H has a tessellation, and H is not compact, then 

d(H) > min{d(H~), d(H2)}. 

Proof. The desired conclusion is obtained by combining Corollary 4.11 with 
Theorem 4.1(1). 

Remark 4.13. For G = SL(3, R), there does not exist a connected subgroup HI<, 
such that p(Hlc) % Llc (in the notation of the proof of (6.3), note that T(L/~) 76 Llc). 
Thus, Corollary 4.12 does not provide a lower bound on d(H) in this case. 

5. One-Dimensional Subgroups 

Although the following conjecture does not seem to have been stated previously in 
the literature, it is perhaps implicit in [OW3]. 
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CONJECTURE 5.1. If d(H) = 1, then G/H does not haw a tessellation. 

In this section, we use known results to establish that the conjecture is valid in two 
cases: if either R-rank G < 2 (see 5.9) or G is almost simple (see 5.13). Each of these 
illustrates a general theorem: for groups of real rank two, the conjecture follows 
from a theorem of Y. Benoist and F. Labourie that is based on differential geometry; 
H. Oh and D. Witte observed that, for simple groups, the conjecture follows from a 
theorem of G. A. Margulis that is based on unitary representation theory. 

The following example is the only case of Conjecture 5.1 that is needed in later 
sections. (It is used in the proof of Theorem 1.8.) Because R-rank (SL(3, F)) = 2 
and SL(3, F) is almost simple, this example is covered both by the theorem of 
Benoist-Labourie and by the theorem of Margulis, but it would be interesting to 
have an easy proof. 

PROPOSITION 5.2 (see 5.9 or 5.13). Assume G = SL(3, F), for F = R, C, or H, 
and let 

Then G/Hl does not have a tessellation. 

Let us begin with an easy observation. 

LEMMA 5.4. If d(H) = 1 and R-rank G = 1, then G/H does not have a tessellation. 
Proof. We may assume H c AN (see 3.5). From (2.16), we know that H is a 

Cartan-decomposition subgroup, so Lemma 2.9 implies that G/H must be compact; 
thus, the trivial group e is a crystallographic group for G/H. However, since 

d(G)=dimA+dimNa 1 + 1 > 1 =d(H) 

(see 1.15), and e acts properly discontinuously on GIG, this contradicts Theorem 
4.1(1). 0 

Remark 5.5. The proof of Lemma 5.4 shows that the dimension of every 
connected, cocompact subgroup of G is at least d(G). This is a result of M. Goto and 
H.-C. Wang [GtW, (1.2), p. 2631. 

5A. THE THEOREM OF BENOIST AND LABOURIE 

THEOREM 5.6 ([BL, Corollary 31). If 

H is reductive, 
neither H nor G/H is compact, and 
H contains a nontrivial element of A in its center, 

then G/H does not have a tessellation. 
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The following special case is sufficient for our needs. 

COROLLARY 5.7. If H is a one-dimensional subgroup of A, then G/H does not have 
a tessellation. 

NOTATION 5.8 ([Ben, p. 3201). Let T be the opposition involution in A+; that is, for 
a e A+, ~ ( a )  = p ( a l )  is the unique element of A+ that is conjugate (under an element 
of the Weyl group) to a .  Thus, for all h e G, we have 

= M h ) ) .  

See (6.1) for an explicit description of the opposition involution in G = SL(3, R). 
For some groups, such as G = SO(2, n), we have ,u(hl)  = p(h) for all h e G (see 
8.14); in such a case, the opposition involution is simply the identity map on A^. 

COROLLARY 5.9. If d(H) = 1 and R-rank G < 2, then G/H does not have a 
tessellation. 

Proof. Suppose F is a crystallographic group for G/H. (This will lead to a 
contradiction.) i 

From (5.4), we know R-rank G = 2. Let Ll and L2 be the two walls of A+ and, I 

for k 6 {I, 2}, let Hk = Lk U L L ~ .  Because Lk is a ray (that is, a one-parameter 1 
semigroup), it is clear that Hk is a subgroup of A. I 

From Proposition 4.10, we know that there is some k {I, 2}, such that 

p(F) fi LkC is finite, 

for every compact subset C of A. Since r = F 1 ,  we have T(,u(T)) = u(T\ so this 
implies that 

p(r) n -i(Lk)C is finite, 

for every compact subset C of A. Also, because Lk c A+, we have p(Lk) = Lk, so 

Therefore 

p(r) n p(Hk)C = (p(T) n LkQ U (p(F) n r(Lk)C) is finite, 

for every compact subset C of A. Hence, Corollary 2.17 implies that F acts properly . 
discontinuously on G/Hk. Then, because d(H) = 1 = d(Hk) (see 1.16), Theorem 
4.1(2) implies that G/Hk has a tessellation. This contradicts Corollary 5.7. tl 

5B. THE THEOREM OF MARGULIS 

DEFINITION 5.10 ([Mr2, Definition 2.2, Remark 2.21). The subgroup H is tem- 
pered in G if there exists a (positive) function f L*(H) (with respect to a left- 
invariant Haar measure on H) ,  such that whenever 
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0 n is a unitary representation of G, and 
0 is the only vector that is fixed by every element of n(GÂ¡) 

we have 

I {n(h)(f>^) \^ f (h)ll+ I 1  I / $  I 1  
for all h e H a n d  all K-fixed vectors 4 and $. 

For many examples of tempered subgroups of simple Lie groups, see [Oh]. We 
need only the following example, which is a consequence of important work o f  
Howe [How, Corollary 7.2 and Section 71 and Cowling [Cow, Theorem 2.4.21 on 
the decay of matrix coefficients (see also [KS, Section 3, p. 1401). (The assumption 
that R-rankG > 2 can be relaxed: it suffices to assume that G is not locally 
isomorphic to SO(1, n) or SU(1, n).) 

LEMMA 5.11 ([OW3, Proposition 3.71). Assume G is simple, and R-rank G > 2. IfH 
is a one-parameter subgroup of AN, then either 

(1) H is tempered; or 
(2) H c N. 

THEOREM 5.12 ([Mr2, Theorem 3.11). IfH is noncompact and tempered, then G/H 
does not have a tessellation. 

COROLLARY 5.13 ([OW3, Proposition 3.71). If d(H) = 1 and G is simple, then 
G/H does not have a tessellation. 

Proof. We may assume H c AN (see 3.5), so dim H = d(H) = 1 (see 1.16). 
If R-rank G < 2, then Lemma 5.4 applies. 
If H c N, then Lemma 5.14 below applies. 
If R-rank G > 2 and H $ N, then Lemma 5.1 1 implies that H is tempered, so 

Theorem 5.12 applies. 

LEMMA 5.14. I f  d(H) = 1 and H c N, then G/H does not have a tessellation. 
Proof [OW3, Proposition 3.71. We have dim H = d(H) = 1 (see 1.16), so H is a 

connected, one-dimensional, unipotent subgroup. Hence, the Jacobson-Morosov 
Lemma [Hel, Theorem 9.7.4, p. 4321 implies that there exists a connected, closed 
subgroup HI of G, such that HI contains H, and HI is locally isomorphic to 
SL(2, R). Then H is a Cartan decomposition subgroup of HI  (see 2.16), so there is a 
compact subset C of A, such that u(H\) c p(H)C (see 2.12). Also, we have 
d(Hl) = 2 > 1 = d(H). Therefore, Theorem 4.2 applies. 

6. Homogeneous Spaces of SL(3, R), SL(3, C), and SL(3, H) 

Benoist [Ben, Corollary 11 and Margulis (unpublished) proved (independently) 
that SL(3, R)/SL(2, R) does not have a tessellation. Much earlier, Kobayashi 
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(cf. [Kb2, Example 71) had shown that the conclusion is true if R replaced with 
either C or H. Using Benoist's method, Oh and Witte [OW3, Proposition 1.101 
generalized the Benoist-Margulis result by replacing SL(2, R) with any closed, 
connected subgroup H, such that neither H nor SL(3, R)/H is compact. (The same 
argument applies when R is replaced with either C or H, so the Kobayashi result 
also generalizes.) However, the proof of Benoist (which applies in a more general 
context) relies on a somewhat lengthy argument to establish one particular lemma. 
Here, we adapt Benoist's method to obtain a short proof of Theorem 1.8 that avoids 
any appeal to the lemma. 

NOTATION 6.1. Assume G = SL(3, F), for F = R, C, or H. 

Let T be the opposition involution in A+ (see 5.8); 
Let B+ = {ae A+\T:(a) =a}. 

More concretely, we have 

LEMMA 6.2. If G = SL(3, F) and d(H) = 1, then G/H does not have a tessellation. 
Proof. Since R-rank G = 2, the desired conclusion follows from Corollary 5.9; 

since G is simple, it also follows from Corollary 5.13. However, we give a proof that 
requires only the special case described in Proposition 5.2, rather than the full 
strength of (5.9) or (5.13). 

Suppose F is a crystallographic group for G/H. (This will lead to a contradiction.) 
Let Ll and L2 be the two walls of A+. From Proposition 4.10, we know that there 
exists k {I, 2}, such that u(T)C n Lk is finite, for every compact subset C of A. 

Because F 1  = F, we have ~ ( p ( r ) )  = p(F). On the other hand, T interchanges Ll 
and L2. Thus, the preceding paragraph implies that p(P)C n (Ll U L2) is finite, for 
every compact subset C of A. 

For Hi as in (5.3), we have n(H\) = Ll U L2, so the conclusion of the preceding 
paragraph implies that F acts properly discontinuously on G/Hl (see 2.17). Now 
Theorem 4.1(2) implies r \G/Hl  is compact; thus, G/Hl has a tessellation. This 
contradicts Proposition 5.2. 
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For completeness, we include the proof of the following simple proposition. 

PROPOSITION 6.3 ([OW3, Proposition 7.31). Assume G = SL(3, F). If H is a 
closed, connected subgroup of AN with dim H > 2, then B  ̂ c y(H). 

Proof (cf. Figure 6.2 and proof of 8.19). Since H c AN and dim H 2 2, it is easy 
to construct a continuous, proper map <I>: [O, 11 x R+ Ã‘> H such that @(I, t) = 

O(0, t ) ,  for all t R+ (cf. Figure 6.1). For example, choose two linearly inde- 
pendent elements u and v of 6, and define 

@(s, t) = exp(t cos (ns)u + t sin(m)v). 

If we identify A with its Lie algebra a, then A  ̂ is a convex cone in a and the oppo- 
sition involution r is the reflection in A+ across the ray B+. Thus, for any a A^', 

Figure 6.1. Construction of Ws, t)  

Figure 6.2. Proposition 6.3: p (H)  is on both sides of B^, so it must contains Bt. 
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the points a and r(a) are on opposite sides of B+, so any continuous curve in A^ from 
a to t(a) must intersect B+. In particular, for each t e R', the curve 

from p(Q(0, t ) )  to p(S>(l, t)) must intersect B+. Thus, we see, from an elementary 
continuity argument, that p[S>([0, 11 x R')] contains B^. Therefore, B'^ is contained 
in p(H). 

Proof of Theorem 1.8 (cf. Figure 6.3 and proof of 4.12). Suppose T is a crystal- 
lographic group for G/H. (This will lead to a contradiction.) We may assume 
H c AN (see 3.5). 

Let F be a (symmetric) finite generating set for I", and choose a compact, convex, 
symmetric subset C of A so large that p(yF) c p(y)C for every y l- (see 2.12). 

From Lemma 6.2, we know that d imH& 2, so Proposition 6.3 implies that 
B^ c A H ) .  Then, because F acts properly on G/H,  we conclude that p(F) n B+C 
is finite (see 2.17). Since p is a proper map, this implies that F fl ,L-~(B+C) is finite. 

Let Al and A2 be the two components of A+\B+. Because T 1  = F, we know 
that r(p(T)) = p(I"). Then, because T interchanges Al and A2, we conclude that 

Figure 6.3. Proof of Theorem 1.8: p(r) stays away from Bi, because Bic p(H). Also, half of p(r) is on 
each side of B^, because T(~(T")) = p(r). This contradicts the fact that l- has only one end. 
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z(p(F) n Al) = u.(T) n A2. Therefore, p(r) n Al and p(F) n A2 have the same 
cardinality, so they must both be infinite. So 

each of F n ,L- ' (A~) and F n p - ' ( ~ ~ )  is infinite. 

, Because F has only one end (see 4.9), this implies there exist 

Y (F f-l p - l ( ~ l ) )  \p-l(B+c), 

such that 

yf c (r n & 4 2 ) )  \p-l(B+c), 

for some f 6 F. Then p(y) E A\, p(yf) 6 A2, and 

Ayf) c AYF) c P(Y)C. 

Using the fact that Cis symmetric and the fact that C contains the identity element e, 
we conclude that 

/ < Y ) ~ ( P ( Y ~ ) C ) ~ A ~  and u(Yf)~(u(Yf)C)nA2; 

therefore p(yf)C intersects both Al and AT,. Since B+ separates A1 from Az, and Cis 
connected, this implies that p(yf)C intersects B+; hence p(yf) 6 B+C. This 
contradicts the fact that yf 6 p-l(B+C) (see 6.4). 0 

7. Explicit Coordinates on SO(2, n) and SU(2, n) 

From this point on, we focus almost entirely on SO(2, n) and SU(2, n). (The only 
exception is that some of the examples constructed in Section 9 are for other groups.) 
In this section, we define the group SU(2, n; F), which allows us to provide a fairly 
unified treatment of SO(2, n) and SU(2, n) in later sections. 

7A. THE GROUP SU(2, n; F) 

NOTATION 7.1. 

We use F to denote either R or C.  
Let q = dimR F, so q c {I, 2}. 
We use IFimae to denote the purely imaginary elements of F, so 

For d) c F, there exist unique Re d) R and Im 4 e Firnag, such that d) = 

Red) + Im 4. (Warning: in our notation, the imaginary part of a + bi is bi, 
not b.) 
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For 4 F, we use 4 to denote the conjugate Red> - Im 4 of 4. (If F = R, then 

6 = 6) 
For a row vector x F n 2 ,  or, more generally, for any matrix x with entries in 
F, we use x̂  to denote the conjugate-transpose of x. 

NOTATION 7.2. For 

e SL(n + 2, F), 

we define 

and 

Gu(2, n; P) = {u E GI(n + 2, F) 1 uJ + Jut = O}. 

Then: 

SU(2, n; R) is a realization of SO(2, n), 
SU(2, n; C) is a realization of SU(2, n), and 

0 gu(2, n; F) is the Lie algebra of SU(2, n; F). 

We choose 

0 A to consist of the diagonal matrices in SU(2, n; F) that have nonnegative real 
entries, 
N to consist of the upper-triangular matrices in SU(2, n; F) with only 1's on the 
diagonal, and 
K = su(2,  n; F) n SU(K + 2). 

A straightforward matrix calculation shows that the Lie algebra of AN is 

Remark 7.4. From (7.3), we see that the first two rows of any element of a + n are 
sufficient to determine the entire matrix. In fact, it is also not necessary to specify the 
last entry of the second row of the matrix. 
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Remark 7.5. From (1.15) and (7.3), we see that d(SU(2, n;  F)) = dim(a + n) = 2qn. 

NOTATION 7.6. Because N is simply connected and nilpotent, the exponential map 
is a diffeomorphism from n to N (indeed, its inverse, the logarithm map, is a 
polynomial [Hcl, Theorem 8.1.1, p. 107]), so each element of N has a unique 
representation in the form exp u with u n. Thus, each element h of N determines 
corresponding values of 4, x, y, r f ,  x and y (with t1 = ti = 0). We write 

NOTATION 7.7. We let a and /? be the simple real roots of SU(2, n; F), defined by 

for a (diagonal) element a of A.  Thus, the positive real roots (see Figure 7.1) are 

Concretely: 

the root space na is the &subspace in n, 
the root space ng is the y-subspace in n, 
the root space na+g is the x-subspace in n, 
the root space na+2p is the q-subspace in n, 

0 the root space n2g is the y-subspace in n (this is 0 if F = R), and 
the root space n2a+2g is the x-subspace in n (this is 0 if F = R). 

A 2a+2j3 

3 

n 
(a) (b) 

Figure 7.1. The real root systems of (a) SU(2, n; R) = SO(2, n) and (b) SU(2, n; C) = SU(2, n). 
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DEFINITION 7.8. Let 

and, for a given Lie algebra l) c n, 
bfi = b n l). 

Note that if 4,, = 0 for every u e I), then [I), lj] c bfi and bs is contained in the center 
of I) (cf 7.22). 

Remark 7.9. By definition (see 2.10), we have 

A+ = {a <- A 1 a(a) 2 1, p(a) > I}. 

Therefore, from the definition of a and p (see 7.7), we see that 

A  ̂ = {a <- A 1 U I , ~  > 02,2 > I}. (7.10) 
I 

I 
Remark 7.1 1. For IF = H, the division algebra of real quaternions, the group i 

SU(2, n; H) is a realization of Sp(2, n). Most of the work in this paper carries over, 
but the upper bound on dim H given in Theorem 10.14 is not sharp in this case (and 
it does not seem to be easy to improve this result to obtain a sharp bound). Thus, we 
have not obtained any interesting conclusions about the nonexistence of tessellations 
of homogeneous spaces of Sp(2, n). 

7B. THE SUBGROUPS SU(1, n; F) AND Sp(1, m: F) 

We now describe how the four important families of homogeneous spaces of 
Example 1.11 are realized in terms of SU(2, n; IF). 

DEFINITION 7.12. Let 

SU(1, n; R) = SO(1, n); 
Sp(1, n; R) = SU(1, n); 
SU(1, n; C ) = SU(1, n); and 
Sp(1, n; C ) = Sp(1, n). 

Then, for an appropriate choice of the embeddings in Example 1.11, we have 



TESSELLATIONS OF HOMOGENEOUS SPACES 151 l 
and (if 2m < n) we have 

Gp(1,m; F)n(a+n) 

Remark 7.15. From (l.l5), (7.13) and (7.14), we see that 

d(SU(1, n; F)) = dim(Gu(1, n; F) n (a + n)) = qn and 
d(Sp(1, m; F)) = dim(Gp(1, m; F) n (a + n)) = 2qm. 

7C. FORMULAS FOR EXPONENTIALS AND BRACKETS 

The arguments in later sections often require the calculation of exp u, for some u e n, 
or of [u, v], for some u, v e n. We now provide these calculations for the reader's 
convenience. 

Remark 7.16. For 

we have 

exp(u) = 

When 4 = 0, this simplifies to 
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Similarly, when y = 0, we have 

Remark 7.20. For 

O ( b x ' 7  x x f )  and Ã £ =  0 j f -,I, (7.21) 
. . . . . .  

we have 

Remark 7.23. [Var, Eq. (2.13.Q p. 1041. For u, v 6, we have 

1 1 
exp(-v)uexp(v) = u + [u, v] +-[[u, v], v] +-[[[u, v], v], v] +... . 

2 3! 

Combining this with (7.22) allows us to calculate the effect of conjugating by an 
element of N. 

For example, suppose u n, with <^u = 0 and yu = 0, and suppose v na+p. 
We see, from (7.22), that @u,uJ = 0 and that xb,"] = y[u,vl = 0, so [[u, v], v] = 0 
(see 7.22). Therefore 

exp(-v)uexp(v) = u + [u, v]. 

8. Calculating the Cartan Projection 

Benoist [Ben. Lemma 2.41 showed that calculating values of the Cartan projection ,u 
is no more difficult than calculating the norm of a matrix (see 8.1 1). In this section, 
we describe this elegant method and some of its consequences, in the special case 
G = SU(2, n; F). 

8.1. STANDING ASSUMPTIONS 

Throughout this section, we assume G = SU(2, n; F). 
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8A. THE BASIC DEFINITIONS 

NOTATION 8.2. We employ the usual Big Oh and little oh notation: for functions 
fl ,  f2 on a subset X of G, we say 

fl  = 0(f2) for h X 

if there is a constant C, such that, for all h e X with llhll large, we have 
11 fi(h)ll < Cll f2(h)ll. (The values of each /, are assumed to belong to some finite- 
dimensional normed vector space, typically either C or a space of complex matrices. 
Which particular norm is used does not matter, because all norms are equivalent up 
to a bounded factor.) We say 

./i = o(h )  for h E X 

if II/i(h)]1/11 f2(h)ll -+ 0 as h + GO. (We use h -+ oo to mean llh]l + GO.) Also, we 
write fi x/, if/i = 0(/2) and /2 = O ( / ) .  

We use the following norm on SU(2, n; F), because it is easy to calculate. The 
reader is free to make a different choice, at the expense of changing = to x in a 
few of the calculations. 

DEFINITION 8.3. For h e SU(2, n; IF), we define \\h] to be the maximum absolute 
value among the matrix entries of h. That is, 

DEFINITION 8.4. Define p: SU(2, n; F) -+ GL(F"+~ A ) by p(h) = h A h, so p 
is the second exterior power of the standard representation of SU(2, n; F). Thus, we 
may define \p(h)\ to be the maximum absolute value among the determinants of all 
the 2 x 2 submatrices of the matrix h. That is, 

From (7.17), (7.18), and (7.19), it is clear that the 2 x 2 minor in the top right 
corner is often larger than the other 2 x 2 minors, so we give it a special name. 

DEFINITION 8.5. For h e Matn+2(F), define 
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8B. Y. BENOIST'S METHOD FOR USING MATRIX NORMS TO CALCULATE p 

LEMMA 8.6. For a A+, we have \\a\\ = a\,\ and llp(a)ll = a\,102,2 
Proof. From (7.3), we see that 

Thus, from (7.10), we see that 

for j 3 3 (and, since a is diagonal, we have a,k = 0 for j # k). Therefore, the desired 
conclusions follow from the definitions of llall and llp(a)l]. 

PROPOSITION 8.8 ([Ben, Lemma 2.41). We have 

Ah) x h, (8.9) 

~ ( d h ) )  x ~ ( h ) ,  (8.10) 

&%,I x llhl\\, and fi(h)2,2 x ~ ~ ~ ( h ) ~ ~ / ~ ~ h ~ ~ ~  (8.1 1) 

for h SU(2, n; F). 
Proof. Choose kl, k2 e K, such that p(h) = kl hki. Because \\xy\\ = 0 ( ~ ~ x ~ ~  llyll) for 

x, y e SU(2, n; F), and maxfegK~~k~~ < oo (since K is compact), we have 

I l l  = \\kihk2\\=0 (\hll) 

and 

I = 11k ;~~(h)k2~  I 1  = 0 (ll~(h)Il)> 

so (8.9) holds. Similarly, we have 

~IP(I"(~)) I 1  = \\P(kl)P(h)P(k2)Il x \\P(h)\\, 

so (8.10) holds. 
For a A+, we know, from (8.6), that a\,\ = \\a\\ and a2,2 = \ \p(a)\ \ /q1.  Thus, 

letting a = p(h), and using (8.9) and (8.10), we see that 

and 

as desired. 

Remark 8.12. Proposition 8.8 generalizes to any reductive group G [Ben, Lemma 
2.31. However, one may need to use a different representation in the place of p. 
In fact, if R-rank G = r, then r representations of G are needed; for G = SU(2, n; F), 
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we have R-rank G = 2, and the two representations we use are p and the identity 
representation I(h) = h. 

COROLLARY 8.13. Let gn -+ co and hn Ã‘ co be two sequences of elements of 
SU(2, n; F). W e  have 

i f  and only i f  there is a compact subset C of A, such that, for all n l Z+, we have 

~ ( g n )  ~ ( h n ) C .  
Proof. (=Ã  ̂Let a = , ~ ( h ~ ) l p ( ~ ~ ) .  From (8.1 I ) ,  we see that p(g& x fin),, for 

j l { I ,  2},  so, using (8.7), we have 

Therefore a = 0 ( 1 ) ,  as desired. 
(e) Because C is compact, we have 

~ ( g n )  x Khn) and P ( ~ ( g n ) )  P ( ~ ( h n ) )  

(cf. proof of (8.9) and (8.10)). Then the desired conclusions follow from (8.9) and 
(8.10). 

Proof of Proposition 2.12 for G = SU(2, n; F). Because C is compact, we have 
g' x g and p(gl) x p(g) for any g'eCgC (cf. proof of (8.9) and (8.10)). Thus, the 
desired conclusion follows from Corollary 8.13. 

Because of Proposition 8.8, we will often need to calculate llhll and llp(h)ll. The 
following observation and its corollary sometimes simplifies the work, by allowing 
us to replace h with h l .  

LEMMA 8.14. W e  have p(hK1) = p(h) for h SU(2, n; F). 
Proof. Define J as in (7.2), and choose k l ,  k2  K, such that p(h) = klhk2. For any 

a e A+, we see, using (7.3) or (8.7), that J U J  = a, so 

(Jk^)h-l(k^J) = Jp(h)-l J = Ah).  

Note that det J = 1 .  Also, we have J2 = Id and J t  = J, so it is obvious that JJJ? = J 
and J J ^  = Id. Therefore 

Thus, from the definition of p, we conclude that p ( h l )  = p(h), as desired. 

The following corollary is obtained by combining Lemma 8.14 with Corollary 8.13. 

COROLLARY 8.15. W e  have hkl x h and p(hK1) x p(h) for h e SU(2, n; F). 
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8C. THE WALLS OF A4 

NOTATION 8.16. For k e {I, 2}, set 

From (7.10), we see that Ll and L2 are the two walls of A+. From (8.6), we have 

p(a) x lla[lk for a e Lk. (8.18) 

We reproduce the proof of the following result, because it is both short and 
instructive. (Although we have no need for it here, let us point out that the converse 
of this proposition also holds, and that there is no need to assume H c AN.) Because 
of this proposition (and Corollary 2.9), Section 10 will study the existence of curves 
ht,  such that ht x l[htllk, for k e {l,  2}. 

PROPOSITION 8.19 ([Owl, Proposition 3.241). Let H be a closed, connected 
subgroup of AN in SU(2, n; F) .  If, for each k { l ,  2}, there is a continuous curve 
ht in H ,  such that p(ht) x ~ ~ h t ~ ~ k  Ã oo as t -+ oo, then H is a Cartan- 
decomposition subgroup. 

Proof (cf. Figure 8.1 and proof of Proposition 6.3). By hypothesis, there is a 
continuous, proper map <E>: {l,  2) x R+Ã‘^  such that p(@(k, t ) )  x \Wk, t)1lk. 
Because H c AN, we know that H is homeomorphic to some Euclidean space Rm 
(see 3.15(1)). 

Figure 8.1. Proposition 8.19: if p(H)  contains a curve near each well of A+, then it also contains 
the interior. 
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Suppose, for the moment, that dim H = 1. (This will lead to a contradiction.) We 
know that p(h) x h for h @(I, R+). Because A-' x h and p(h-l) x p(h) (see 8.15), 
we must also have p(h) x h for h e @(I, R')'. There is no harm in assuming 
<A(l, 0) = Id; then @(l, R') U @(I, R')"' = H (because dim H = I), so we conclude 
that p(h) x h for all h e H. This contradicts the fact that p(h) x llhl12 for 
h e @(2, R+). 

We may now assume dimH 22. Then, because H is homeomorphic to Rm, 
it is easy to extend <I> to a continuous and proper map @': [ l ,  21 x R + +  H. From 
(8.18) and (8.13), we know that the curve @(k, t ) )  stays within a bounded distance 
from the wall Lk; say dist [(@'(A:, t)), LA < C for all t. We may assume C is large 
enough that dist(al(s, I), e) < C for all s [l,  21. Then an elementary homotopy 
argument shows that p[@'([1,2] x R+)] contains 

{a e A+ 1 dist(a, Li U 7.2) > C}, 

so p [@'([I, 21 x R+)] A+.  Because p(H) 3 p [@'([l, 21 x R')] , we conclude from 
Theorem 2.15 that H is a Cartan decomposition subgroup. 

Remark 8.20. When R-rank G = 1, the Weyl chamber A+ has only one point at 
infinity. Thus, if H is any noncompact subgroup, then the closure of A H )  must 
contain this point at infinity. This is why it is easy to prove that any noncompact 
subgroup of G is a Cartan decomposition subgroup (see 2.16). 

The idea of Proposition 8.19 is that if R-rank G = 2, then the points at oo of the 
Weyl chamber A^ form a closed interval. If the closure of p(H) contains the two 
endpoints of this interval, then, by continuity, it must also contain all the points 
in between. 

Unfortunately, we have no good substitute for this proposition when 
R-rank G > 2. The points at co of A+ form a closed disk (topologically speaking). 
It is easy to define a map f from one disk to another, such that the image off contains 
the entire boundary sphere, but does not contain the interior of the disk. Thus, it 
does not suffice to show only that the closure of p(H) contains the boundary of 
the disk at oo; rather, one needs additional homotopical information to guarantee 
that no interior points are missed. 

LEMMA 8.21. Let G = SU(2, n; F), and fix some m < n/2. Then /<SU(l, n; F)) and 
p(Sp(1, m; F)) are the two walls of A^. 

We have 

(1) p(h) x h for h SU(1, n; F); and 

(2) p(h) x \\h\\ for h Sp(l, m; F). 

Proof. Let H = SU(1, n; F) or Sp(1, m; F). Then H n K  is a maximal compact 
subgroup of H. From the Cartan decomposition 

H = (K n H)(A n H)(K n H) ,  
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and the definition of p, we conclude that p(H) = p(A n H) .  In the notation of (8.17), 
we see (from Definition 7.12) that H C\ A = Lk U L^\ , where 

1 if H = SU(1, n; F); 
2 if H = Sp(1, m; F). 

Then, since p ( a l )  = p(a) (see 8.14) and a) = a for a A+, we conclude that 
p(H) = Lk is a wall of A+. Furthermore, we have p(a) x llallk for a p(H) (see 
8.18), so p(h) x ~ h f  for h e H (see 8.8). 

COROLLARY 8.22. If there is a continuous curve h' Ã‘> oo in H, such that p(ht) x ht, 
then there is a compact subset C of G, such that SU(1, n; F) c CHC. 

Proof. For any (large) g SU(1, n; F), we see from continuity (more precisely, 
from the Intermediate Value Theorem) that there exists t l R+, such that 

\\htll = Ikll. 

Then, by assumption and from 8.21(1), we have 

so there is a compact subset C of A, such that 

p(SU(1, n; F)) c {Ah') 1 t R+}C1 c p(H)Cf 

(see 8.13). Therefore 

SU(1, n; F)  c Kp(SU(1, n; F)) K c Kp(H)C1 K c K(KHK}CIK, 

as desired. 

The following corollary can be proved by a similar argument. (Recall that the 
equivalence relation - is defined in (1.17).) 

COROLLARY 8.23. Assume H is not compact. 

(1) WehaveH-SU(1,n;F) ifandonly i f p ( h ) x h  f o r h e H .  
(2) We have H - Sp(1, in; F) if and only if p(h) x 1\hll2 for h H. 

Because of Proposition 8.19, we will often want to show that a curve ht satisfies 
p(ht) x 11~11, for some k l {I, 2}. The following lemma does half of the work. 

LEMMA 8.24. Let X be a subset of SU(2, n; F). 

(1) If p(h) = 0 (h) for h X, then p(h) x h for h e X. 
(2) If llhl12 = 0 (p(h)) for h e X, then p(h) x ]]h1l2 for h e X 

Proof. From (8.6) and (7. lo), we have 



TESSELLATIONS OF HOMOGENEOUS SPACES 

and 

for a G A+. Thus, letting a = p(h), and using (8.9) and (8.10), we have 

I W)\ sÂ I I P ( ^ ~ ) ) \  \ ll~(h)ll 
and 

\\p(h)\ \ l\\p(u(h))\ \ l l ~ ( h ) l l ~  x llhl12, 

so h = 0 (p(h)) and p(h) = 0 (llhl12). The desired conclusions follow. 

For convenience, we record the following simple observation. (For the proof, 
cf. the proof of (8.9) and (8. lo).) 

LEMMA 8.25. Let 

k { I ,  21, 
a g G,  and 
0 h' --+ co be a continuous curve in H. 

I f  p(ht) x l lh t f ,  then p(g-lhrg) x l]g-lhfg]lk. 

8D. HOMOGENEOUS FUNCTIONS OF THE SAME DEGREE 

The following well-known, elementary observation is used frequently in the later 
sections. 

LEMMA 8.26. Let V be a subspace of a finite-dimensional real vector space V ,  and 
let f l :  V -+ W l  and f2: V -+ W 2  be linear transformations. 

( 1 )  I f  f1 \0)  n V = { O )  (or, more generally, i f  f c l  (0) n V' c f c l  (0)), then there is a 
linear transformation f :  W 1  -+ W 2 ,  such that fi(v) = f ( f I (v ) )  for all v e V 1 .  
Thereforeh = 0 (h) on V 1 .  

(2)  I f f ^ ( 0 )  V' = f p  (0)  n V' ,  then fi xh on V'.  

Proof. ( 1 )  By passing to a subspace, we may assume V = V .  Then, by modding 
out f c l (0 ) ,  we may assume fl is an isomorphism onto its image. Define f l : A ( V )  -+ 

W2 by f ' (w)  = f2( f r l ( w ) ) ,  and let f :  W l  + W 2  be any extension off '. 
For v e V ,  we have 

EXAMPLE 8.27. Let 6 be a real Lie subalgebra of a + n, and assume there does not 
exist a nonzero element u of 6, such that xu = 0 and yu = 0. Then there exist R-linear 
transformations R ,  S: pnP2 + F, such that qu = R(xu) + S ( y u )  for all u i). 
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(Similarly, <^Ãˆu xu, and y;, are also functions of (xu ,  yu).) Furthermore, we have 

u ^\xu1 + I Y U I .  

The following well-known result is a generalization of the fact that all norms on a 
finite-dimensional vector space are equivalent up to a bounded factor. 

LEMMA 8.28. If V is any finite-dimensional real vector space, and f l ,  f2: V - R 
are two continuous, homogeneous functions of the same degree, such that /,'(0) = . 

fa) = {O}, then f l  a. 
Proof. By continuity, the function f l / f 2  attains a nonzero minimum and a finite 

maximum on the unit sphere. Because f f i  is homogeneous of degree zero, these 
values bound f f i  on all of V\ {O}. 

9. Existence of Tessellations 

In this section, we show how to construct several families of homogeneous spaces 
that have tessellations. All of these examples are based on a method of T. Kobayashi 
(see 9.1) that generalizes Example 1.11. 

9A. THE GENERAL KULKARNI-KOBAYASHI CONSTRUCTION 

As explained in the comments before Theorem 4.1, the following theorem is essen- 
tially due to Kobayashi. 

THEOREM 9.1 ([Kbl, Theorem 4.71). If 

H and L are closed subgroups of G, with only finitely many connected 
components; 
L acts properly on G/H;  
d(L) + d ( H )  = d(G); and 
there is a cocompact lattice T in L, 

then G / H  has a tessellation. (Namely, T is a crystallographic group for G/H.)  
Proof. Because F is a closed subgroup of L ,  we know that it acts properly on G / H  

(see 2.4). Thus, it suffices to show that T\G/H is compact. 
From Lemma 3.5, we see that there is no harm in assuming H c AN, and that 

there is a closed, connected subgroup L' of G, such that 

L1 is conjugate to a subgroup of AN,  
d(L1) + d ( H )  = d(G), and 
LIC = LC, for some compact subset C of G. 

(Unfortunately, we cannot assume L c AN: we may not be able to replace L with L', 
because there may not be a cocompact lattice in L'. For example, there is not lattice 
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in AN, because any group with a lattice must be unimodular [Rag, Remark 1.9, 

P. 211.) 
It suffices to show that LJ\G/His compact. (Because L' c . X i s  compact, and V\L 

is compact, this implies that F\G/H is compact, as desired.) 
We know that L' acts properly on G/H (see 2.4), so L' x H acts properly on G, 

with quotient L1\G/H. Therefore, Lemma 3.19 implies that L1\G/H has the same 
homology as G; in particular, 

From the Iwasawa decomposition G = KAN, and because AN is homeomorphic to 
R (see 3.18 and 3.12), we know that G is homeomorphic to K x R^. Since I ~ ( ~ )  

is contractible, this implies that G is homotopy equivalent to K, so G and K have the 
same homology; in particular, 

Since 

dim(L1\G/H) = dim G - dim L' - dim H 

= dim G - (d(L1) + d(H)) 

= dim G - d(G) 

= dim(KAN) - dim(AN) 

= dim K, 

this implies that the top-dimensional homology of the manifold L1\G/H is non- 
trivial. Therefore L1\G/H is compact [Dol, Corollary 8.3.41, as desired. 0 

Our results for G = SU(2,2m; F) are based on the following special case of the 
theorem. The converse of this corollary is proved in Section 11 (see 11.5). 

Recall the equivalence relation -, introduced in Notation 1.17. 

COROLLARY 9.2 ([Kbl, Proposition 4.91). Let H be a closed, connected subgroup 
of G = SU(2,2m; F). If 

d(H) = 2qm; and 
either H - SU(1,2m; F) or H - Sp(1, m; IF), 

then G/H has a tessellation. 
Proof. Let L+ = SU(1,2m; F) and L- = Sp(1, m; F). By assumption, we have 

H - Lc, for some E e {+, -}; let L = L_&. Because ,u(L+) and y(L-) are the two walls 
of A+ (see 8.21), we know that L = L-e acts properly on G/Lc (see 2.17); since 
H - Lc, this implies that L acts properly on G/H (see 2.4). Also, we have 

(see 7.15 and 1.15), and there is a cocompact lattice in L (cf. 1.5(2)). Thus, the desired 
conclusion follows from Theorem 9.1. 0 
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9B. DEFORMATIONS OF S0(2,2m)/SU(l, m) AND SU(2,2m)/Sp(l, m) 

The homogeneous spaces described here were found by Oh and Witte [OW2, 
Theorems 4.1 and 4.61, [OW3, Theorem 1.51. 

NOTATION 9.3. For any R-linear B: + F p 2 ,  we define 

We write xB, rather than Bx, because x is a row vector. 
It is easy to see, using, for instance, the formula for the bracket in (7.22), that if 

I~((vB)(wB)?) = -lm(iwt) for every v, w e IFnp2, (9.4) 

then QB is a real Lie subalgebra of a + n; we let HE denote the corresponding 
connected Lie subgroup of AN. 

From (l.l6), we have 

d(HB) = dim Q 
= dim R + dim F"-~ + dim F + dim Firnag 

= 1 +q(n -2 )+q+(q -  1) 
= qn. 

Remark 9.6. Assume n = 2m. By comparing (7.14) with (9.3), we see that there is 
a R-linear map Bo: F ~ ~ - ~  -> F ~ ~ - ~  , such that m ( l ,  m; F) n (a + n) = HBo (and Bo 
satisfies (9.4)). Thus, in general, HE is a deformation of Gp(1, m; F) fl (a + it). 

THEOREM 9.7 ([OW2, Theorems 4.1 and 4.61). Let B: + F ~ ~ - ~  be R-linear. 

If 
Condition (9.4) holds, and 
xB 6 Fx, for every nonzero x e 

then 

(1) p(h) x llhf for h e HE; and 
(2) SU(2,2m; F)/He has a tessellation. 

Proof. (1) Given h HB, write h = au, with a A and u N. We may assume 
that a u  2 1 (by replacing h with h 1  if necessary (see 8.15). It suffices to show 
1 l 2  = 0(a1,1a2,2 + lA(h)l) (for then 1lhll2 = O(p(h)), so Lemma 8.24(2) applies). 

Case 1. Assume a is trivial. From (7.18) and (9.3), we see that 

h = O(IX^ + + I X A ~ ) ,  
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From (7.18) and (8.5), we have 

-ReA(h) = ~lxh121~h12 - lxyt12) + (1%12 + x ~ Y , ~ ) -  
From (9.9), we see that \ x \ 2 x ~ \ 2  - \ x (xB)~[~  > 0 for every nonzero x e F ~ ~ - ~ ,  
so Lemma 8.28 implies 

xh14 ^ I X ~ I ~ I Y ~ I ~  - I X ~ Y ~ I ~ .  

Also, because yh = -xh (and xh Firnag), we have 

2 
I ' U ~ I  + xhyh = lwhl2 + ixh12 0- 

Thus, 

-ReA(h) x + (I^ + lxh12), 

so 11 h 1 1 2  = 0 ( ~ e  A(/?)) = 0 ( ~ ( h ) )  , as desired. 

Case 2. The general case. From Case 1, we know llul12 = 0 (1 + lA(u)l). Then, 
because llhll < llallllull = a~,~llull ,  we have 

Then, since a l l  = 0 2 2  and A(h) = ~ ~ , ~ a ~ , ~ A ( u \  we conclude that 

1 1 2  = o(a1,1a2,2 + IA(h)l), 

as desired. 
(2) From (1) and 8.23(2), we see that HE - Sp(1, m; F). Then, because d(HB) = 

q(2m) (see 9.9,  Theorem 9.2 implies that SU(2,2m; F)/HB has a tessellation. 

LEMMA 9.8. Let B: F""~ -+ F""~ be R-linear. Condition (9.4) holds if and only ifeither 

(1) F = R; or 
(2) F = C and B e Sp(2n - 4; R), where x B  = 3 and we use the natural identijica- 

tion of c"  ̂with Pnp4. 
Proof. Case 1. Assume F = R. Because Im z = 0 for every z = 0, it is obvious that 

(9.4) holds. 

Case 2. Assume F = C. If (9.4) holds, then 

I~((vB')(wB')~) = Im ((G(m) 
= Im ((vB)(wB)+) 

= -1m ((vB)(wB)~) 

= -(-Im (vwt)) 

= 1m (vd) ,  

so B' is symplectic. The argument is reversible. 
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Remark 9.9. 

For F = R, the assumption that xB 4. Fx simply requires that B have no real 
eigenvalues. 
For F = C, we do not know a good description of the linear transformations B 
that satisfy xB 6 Fx, although it is easy to see that this is an open set (and not 
dense). A family of examples was constructed by Oh and Witte (see 9.10 below). 
If n is odd, then there does not exist B: F n 2  -> p n 2  satisfying the assumption 
that xB$ Fx. For F = R, this is simply the elementary fact that a linear trans- 
formation on an odd-dimensional real vector space must have a real eigenvalue. 
For F = C ,  see Step 1.2.1 of the proof of Proposition 10.12. 
If n is even, then, by varying B, one can obtain uncountably many pairwise non- 
conjugate subgroups HE, such that SU(2, n; F)/HB has a tessellation. For 
F = R, this is proved in [OW3, Theorem 1.51). For F = C, a similar argument 
can be applied to the examples constructed in (9.10) below. 

EXAMPLE 9.10 ([OW2, Theorem 4.6(1)]). Assume n is even, let B SO(n - 2; R), 
such that B has no real eigenvalue, and define an R-linear map B: C n 2 +  C n 2  
by xB = XB'. Let us verify that B satisfies the conditions of Theorem 9.7 (for F = C). 

Let X I ,  x i ,  y l ,  yi e R n 2 .  From the definition of B, and because B' e SO(n - 2; R), 
we have 

Suppose Bx = Ax, for some 2 e C .  Because B SO(2n - 4; R), we must have 
121 = 1. Then 

Because B has no real eigenvalues, we know that 1 is not an eigenvalue of B', so we 
conclude that x + & = 0. Similarly, because -1 is not an eigenvalue of B', we see 
that x - = 0. Therefore 

x = i ( ( x  + Ax) + ( x  - Ax)) = i(0 + 0) = 0. 

9C. DEFORMATIONS OF SU(2,2m)/SU(l, 2m) 

These examples are new for F = C, but provide nothing interesting for F = R (see 
9.13(1)). 
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NOTATION 9.1 1. For c e (0, I], we define 

It is easy to see, using, for instance, the formula for the bracket in (7.22), that is 
a real Lie subalgebra of a + n (even without the assumption that 0 < c < 1); we let 
Hfc1 be the corresponding connected Lie subgroup of AN. 

From (1.16), we have 

d(H[cl) = dim ̂  
= dim R + dim F + dim F"-~  + dim Firnag 

= l + q + q ( n - 2 ) + ( q -  1) 
= qn. 

Remark 9.13. Let &(I, n; F) be embedded into W(2, n; F)  as in 7.13. 

(1) If F = R, then cis  irrelevant in the definition of firel (because Im 4 = 0); therefore 
bl = Su(1, n; R) n (a + n). 

(2) If F = C ,  then = Gu(1, n; C )  n (a + n). 

Thus, in general, I)[cl is either Gu(1, n; IF) n (a + n) or a deformation of it. 

THEOREM 9.14. Assume F = C, and n = 2m is even. I f c  e (0, I], then 

(1) p(h) x h for h e H[cl; and 
(2) SU(2,2m; F)/H[cl has a tessellation. 

Proof. (1) Given h HM, it suffices to show that p(h) = 0(h) (see 8.24(1)). Write 
h = au, with a 6 A and u N. We may assume that a\,\ 2 1 (by replacing h with /rl 
if necessary (see 8.15)). 

Let Q: C @ C n 2  @ C -+ R be the real quadratic form 

4 x, r ] )  = x12 + 2 Re^rj), 

and let V be the R-subspace of C @ @ C defined by 

v = (4, x, r ] )  x â [ 1 ~ 1 ~ ~ 4 + c 1 m 4  1. 
Step 1. For v e V, we have Q(v) x [ < * I 2  + [x12. For (4, x, q )  E V\{O}, we have 

4 x, n)  = lx? + 2 Re(+$) 

= Ixl2 + 2 ~ e ( < ^ ( ~ e  4 + c Im 4)) 

= 1 x 1 ~  + 2 (Re @ - 2c(Im 4)* 

> 0 
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(because c > 0 and I m 4  is purely imaginary). Thus, the restriction of Q to V is 
positive definite, so the desired conclusion follows from Lemma 8.28. 

Step 2. We have ~ 1 , n + 2  x (10 + 1xul2) + xul. From (7.19) (with y = O), we have 

and 

2 Then, from Step 1, we see that Re u1,n+2 x 1 4 ~ 1  + lxul , so 

as desired. 

Step 3. Completion of the Proof. From Step 2, we have 

Also, from (7.19), we have 

i f / #  1 a n d k # n + 2  
i f j = l  a n d k # n + 2  

O(14J + 1 ~ ~ 1 )  i f j #  1 and k = n + 2 .  

Thus, it is easy to see that 

so the desired conclusion follows from Lemma 8.24(1). 
(2) From (1) and 8.23(1), we see that HM - SU(1, n). Then, because d(HLc\) = 2n 

(see 9.12), Theorem 9.2 implies that SU(2,2m; V)/HL~] has a tessellation. 

Remark 9.15. Proposition 11.6 shows that if F = C, then HLcl is not conjugate to 
Hw unless c = c' (for c, c' e (0, 11). Thus, Theorem 9.14(2) implies that, by varying c, 
one obtains uncountably many nonconjugate subgroups H14, such that SU(2,2m)/ 
HLc1 has a tessellation. 

9D. THE PRODUCT OF TWO RANK-ONE GROUPS 

PROPOSITION 9.16. Let G = GI x Gi be the direct product of two connected, 
linear, almost simple Lie groups GI and GI of real rank one, with finite center, and let H 
be a nontrivial, closed, connected, proper subgroup of AN. 
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The homogeneous space G/H has a tessellation if and only if, perhaps after inter- 
changing Gl and G2, there is a continuous homomorphism a: AN n G1 -+ AN n G2, 
such that 

H = { ( h , a ( h ) ) \ h ~  ANnGl}.  

Proof. (+) We may assume d(Gl) 2 d(G2) (by interchanging GI and G2 if 
necessary). 

Case1. AssumeHnGl # e a n d H n G 2 # e .  Fo r j=1 ,2 ,weknowtha tHf iGj i s  
not compact (see 3.15(3)), so Corollary 2.16 implies that there is a compact subset C' 
of G,, such that C;(Hn G;)C, = G;. Then, letting C = ClC2, we have CHC = G, 
so Proposition 2.9 implies that G/H does not have a tessellation. This is a 
contradiction. 

Case 2. Assume HCi GI # e and HC\ G2 = e. From Corollaries 2.16 and 2.15, 
we know that there is a compact subset C of A fl GI, such that p(GI) c p(H)C. 
Therefore, Corollary 4.2 (with GI in the place of H I )  implies d(H) 2 <GI) = 

dim(G1 n AN). Then, because H Ci G2 = e (and H c AN), we conclude that H i s  the 
graph of a homomorphism from GI Ci AN to Gz ("l AN, as desired. 

Case 3. Assume H Ci G1 = e. From Corollary 4.12, we know that dim H 2 d(G2). 
Then, since Hf l  GI = e, we conclude that H is the graph of a homomorphism 
from G2 r l  AN to G1 n AN. Interchanging Gl and G2 yields the desired conclusion. 

(e) We verify the hypotheses of Theorem 9.1, with G2 in the role of L. 
Let H be the image of H under the natural homomorphism G -+ GIG2. Because 

H c AN, we know that H i s  closed (see 3.15(1)). It is well known (and follows easily 
from (2.3)) that any closed subgroup acts properly on the ambient group, so this 
implies that acts properly on GIG2. From the definition of H, we have 
H ~ I  G2 = e, so we conclude that H acts properly on GIGz; equivalently, G2 acts 
properly on G/H (cf. 2.3). 

Because AN = (AN n GI) x ( A m  G2), we have d(G) = d(Gl) + d(G2). Also, we 
have d(H) = dim H (see 1.16) and, from the definition of H, we have dim H = 

dim(AN r} GI) = d(Gl). Therefore 

d(H) + d(G2) = <GI) + d(G2) = d(G). 

There is a cocompact lattice in G2 (cf. 1.5(2)). 
So Theorem 9.1 implies that G/H has a tessellation. 

9E. T. KOBAYASHI'S EXAMPLES OF HIGHER REAL RANK 

T. Kobayashi observed that, besides the examples with G = SO(2, In) or SU(2, In) 
(see 1.1 l), Theorem 9.1 can also be used to construct tessellations of some homo- 
geneous spaces G/H in which G and H are simple Lie groups with R-rank G > 2. 
He found one pair of infinite families, and several isolated examples. 
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THEOREM 9.17 (fKb6, Corollary 5.61). Each of the following homogeneous spaces 
has a tessellation: 

It would be very interesting to find other examples of simple Lie groups G with 
reductive subgroups H and L that satisfy the hypotheses of Theorem 9.1. 

Remark 9.18. Let G = S0(4,4n) and H1 = Sp(1, n) n AN. From 9.17(1), we know 
that G/H has a tessellation. H. Oh and D. Witte [OW2, Theorem 4.6(2)] pointed out 
that the deformations G/HB (where HB is as in Theorem 9.7, with F = C) also have 
tessellations, but it is not known whether there are other deformations of G/H1 that 
also have tessellations. 

It does not seem to be known whether the other examples in Theorem 9.17 lead to 
nontrivial deformations, after intersecting H with AN. 

10. Large Subgroups of SO(2, n) and SU(2, n) 

This section presents a short proof of the results we need from [Owl] and [IW]. 
Those papers provide an approximate calculation of AH), for every closed, 
connected subgroup H of SO(2, n) or SU(2, n), respectively, but here we consider 
only subgroups of large dimension. Also, we do not need a complete description 
of the entire set p(H); we are only interested in whether or not there is a curve h', 
such that p(hs) x ]]ht]lk, for some k e {I, 2}. The main results of this section are 
Theorem 10.14 (for k = 1) and Theorem 10.2 1 (for k = 2). They give a sharp upper 
bound on d(H), for subgroups H that fail to contain such a curve, and, if n is even, 
also provide a fairly explicit description of all the subgroups of AN that attain the 
bound. 

Because of the limited scope of this section, the proof here is shorter than the pre- 
vious work, and we are able to give a fairly unified treatment of the two groups 

- 

SO(2, n) and SU(2, n). The arguments are elementary, but they involve case-by-case 
analysis and a lot of details, so they are not pleasant to read. 

STANDING ASSUMPTIONS 10.1. Throughout this section: 

(1) We use the notation of Section 7. (In particular, F = R or 62, and q = dimR F.) 
(2) G = SU(2, n; F). 
(3) n ^ 3. 
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(4) H is a closed, connected subgroup of AN that is compatible with A (see 10.2), 
so dim H = d(H) (see 1.16). 

(5) U = H n N. (Note that I/ is connected (see 3,15(2)).) 
(6) ii+=o = {U e u [ &  = O}. 
(7) We use the notation of Section 8. (In particular, \\p{h)\\ is defined in (8.4) and 

A(h) is defined in (8.5).) 
(8) Except in Subsection 10A, H i s  compatible with A (see 10.2). 

10A. SUBGROUPS COMPATIBLE WITH A 

Recall that the Real Jordan Decomposition of an element of G is defined in (3.2); any 
element g of AN has a Real Jordan Decomposition g = au (with c trivial). If a is an 
element of A, rather than only conjugate to an element of A, we could say that g is 
'compatible with A.' We now define a similar, useful notion for subgroups of AN, 
and recall point out of its basic properties. Lemma 10.3 shows there is usually no loss 
of generality in assuming that H i s  compatible with A, and Lemma 10.5 shows that 
the compatible subgroups can be described fairly explicitly. 

DEFINITION 10.2 ([Owl, Definition 2.21). Let us say that H i s  compatible with A 
if H c TUCN(T), where T = A n (HN), U = H n N, and Cw(T) denotes the cen- 
tralizer of Tin N. 

LEMMA 10.3 [Owl, Lemma 2.31. H is conjugate, via an element of N, to a subgroup 
that is compatible with A. 

The preceding proposition shows that H is conjugate to a subgroup H' that is 
compatible with A. The subgroup H' is usually not unique, however. The following 
lemma provides one way to change H', often to an even better subgroup. 

LEMMA 10.4. Assume that H is compatible with A, and let T = A n (HN). If 
u E CN(T), then u l H u  is compatible with A. 

Proof. Let H' = u - l ~ u ,  T' = A r\ (H'N), and U' = H' n N. Because u centralizes 
T, we have 

-1 u Tu = T. 

Also, because u N, and N is normal, we have U ' H U N  = HN, so 

TU = T = A n (HN) = A n ( u ^ H u ~ )  = A n (H'N) = T' 

Since u N, we have U ' N U  = N, so 
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Thus, 

I f  = u-I HU c u-' TUCN(T)u = (up' TU) (up' UU) (u^ e m u )  = T'UfC~(T'\ 

as desired. 

LEMMA 10.5 ([Owl, Lemma 2.41). If H is compatible with A, then either 

(1) H = ( H n A )  x (HUN); or 
(2) there is a positive root a, a nontrivial group homomorphism $: ker a Ã‘> NaNZm, 

and a closed, connected subgroup U of N, such that 
(a) H = {a  $(a) 1 a ker a } U; 
(b) U is normalized by both ker a and $(ker a); and 
(c) U n $(ker a )  = e. 

COROLLARY 10.6. If H is compatible with A, then A fl (HN) normalizes H Ci N. 

LEMMA 10.7 ([Owl, Lemma 2.81). If dim(H/(Hfl N)) 2 dim A, then 

(1) H contains a conjugate of A; and 
(2) H is a Carton-decomposition subgroup. 

10B. SUBGROUPS WITH NO NEARLY LINEAR CURVE 

Our goal is to prove Theorem 10.14; we begin with some preliminary results. 
First, an observation that simplifies the calculations in some cases, by allowing us 

to assume that xu = 0. 

LEMMA 10.8. Let u e U. I f  dimp(Fxu + Fyu) < 1 and yu # 0, then there is some 
g Na, such that 

(1) xg-lug = 0, 
(2) (f)I = <^u, and 
(3) Yg-lug = Yu-  

Proof. Because dimp(Fxu + Fyy) < 1 and yu # 0, there is some A F, such that 
xu = Ayu. Let 

v be the element of na with 4, = -A, 
0 g = exp(u) 6 Na, and 
Â w =g-lug. 

From (7.23), we see that 

^ = 4 u 2  

xw = x u  + &yu = 0, and 
Y?" = Yu, 

as desired. 
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PROPOSITION 10.9. If there does not exist a continuous curve hi ~r oo in U, such 
that p(hi) x hi, then 

(1) for every nonzero element z of b;,, we have \ n z 2  + X& # 0; and 
(2) for every element u  of^^=^, such that dimp(Fxu + Fyu) = 1, we have 

Proof of the Contrapositive. (1) Suppose there is a nonzero element z of b;, with 
A(z) = 0. Let hf = exp(tz) = Id + tz (see 7.18). We have 

0(t) for all j, k, 
i f ( j ,k) if .  {1,2} x { n + l , n + 2 } .  

Then, because A(hi) = 0, it is easy to see that p(h) x t. Also, we have ht = Id + tz x t, 
so p(hf) x t x ht, as desired. 

(2) Suppose there is an element u of U+O, such that dimp(Fxu + Fyu) = 1, and 

Let h = ht = exp(tu). 

Case 1. Assume xu = 0. Because dimp(Fxu + Fyu) = 1, we must have yu # 0. 
Then, from (10.10), we know that xu = 0. So, from (7.18), we see that 

h2,n+l x lyu12t2 x t2, 
hjYk = 0(t) whenever (j, k) # (2, n + I), and 

0 hjk = O(1) whenever j# 2 and k # n +  1. 

This implies that p(h) x t2 x h. 

Case 2. Assume yu = 0. This is similar to Case 1. (In fact, this can be obtained as a 
corollary of Case 1 by replacing H with its conjugate under the Weyl reflection 
corresponding to the root a.) 

Case 3. Assume yu # 0. Because dimp(Fxu + Fyu) = 1, Lemma 10.8 implies there 
is some g Na, such that, letting w = g l u g ,  we have dw = du = 0, xw = 0, and 
yw = yu # 0. We show below that (10.10) is satisfied with w in the place of u, so, from 
Case 1, we conclude that p(exp(tw)) x exp(tw). Thus, the desired conclusion follows 
from Lemma 8.25 (with k = 1). 

To complete the proof, we now show that (10.10) is satisfied with win the place of u. 
(This can be verified by direct calculation, but we give a more conceptual proof.) 
Because g 1  e Nu, multiplication by g 1  on the left performs a row operation on 
the first two rows of h; likewise, multiplication by g on the right performs a 
column operation on the last two columns of h. These operations do not change 
the determinant A(h): thus A(exp(tw)) = A(exp(tu)). 
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From (7.18) and the definition of A, we see that 

Because d i m ~ ( F x ~  + Fyu) = 1, we have xu21yu12 - \xuy\,2 = 0, so this simplifies to 

Thus, (10.10) is equivalent to the condition that A(exp(tu)) = 0(t2). Then, since 

we conclude that (10.10) is also valid for w. 

LEMMA 10.11. If there does not exist a continuous curve h' Ã‘> oo in U ,  such that 
p(ht) x hi, then 

dim bb + dim u / u + = ~  < 2q - 1. 

Furthermore, i f  equality holds, and F = C, then u = U+=O and dim bs = 3. 
Proof. Case 1. Assume F = C .  Because jr]> + xzyz is a quadratic form of 

signature (1, 3) on b, we know, from 10.9(1), that dim bs < 3 = 2q - 1. 
Thus, we may assume ~ / 1 4 = ~  # 0, so there is some u u, such that 4u # 0. 

Subcase 1.1. Assume there exists z E bj, such that yz = 0 and qz 6 i 4 u .  
From (7.22), we see that [u, z] e b, with = -Im(<^^) # 0 and Y,u,zi = r][u,zl = 0. 
This contradicts 10.9(1). 

Subcase 1.2. Assume there exists z bs, such that yz # 0. From (7.22), we see that 
[u, z] is an element of bs, such that y[u,zl = 0, and qru,4 = is a purely imaginary 
multiple of 4,,. So Subcase 1.1 applies (with [u, z] in the place of z). 

Subcase 1.3. Assume yz = 0 and % Rou, for all z bi,. From 10.9(1), we see that 
n r12~+2i3 = {O}, so the assumption of this subcase implies dim bh < 1. Thus, 

so the desired inequality holds. 
If equality holds, then dim bs = 1 and dim ~ / L Q = ~  = 2. Thus, we may choose 

z e bs, such that z # 0, and u' u, such that K 4  + R 4 ,  = C. From the assumption 
of this subcase, we know that r ]  R4u; thus, qZ $ R4,,,. Therefore, Subcase 1.1 ' 

applies, with u' in the place of u. 

Case 2. Assume F = R. Because dim bb < dim na+2b = 1 and dim u / ~ + ~  < 
dimna = 1, the desired inequality holds unless bfi # 0 and u /u+=~  # 0. Thus, we 
may assume there is some nonzero z bfi and some u u, such that 4u # 0. 
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Subcase 2.1. Assume yu = 0. We may assume k u 2  + # 0 (by replacing u 
with u + z, if necessary). Let h' = exp(tu). From (7.19), we see that hi,& x t2, but 

0(t) if (j, k) # (1, n + 2), 
i f j #  1 and k # n + 2 .  

Therefore p(ht) = 0(t2) = O(ht), so Lemma 8.24(1) implies that p(ht) x h'. This is a 
contradiction. 

Subcase 2.2. Assume yu # 0. Let v be the element of np with yo = -(l/(f)^)Xu, 
and let w = exp(-v)uexp(v). Then xw = 0 (see 7.23 and 7.22). Thus, by replacing H 
with the conjugate exp(-v)Hexp(v) (see 8.25), we may assume xu = 0. For any large 
real number t, let h = h' be the element of exp(tu+ that satisfies 
rfi = -(f),1lyh 1l2/12. Then, from (7.17), we see that 

Clearly, we have h x (f)ayh12. 
A calculation shows that A(h) = 0, and certain other 2 x 2 minors also have 

cancellation. With this in mind, it is not difficult to verify that p(h) x <^i\yh\l x h 
(see [Owl ,  Case 3 of proof of 5.12(3 =+ 2)] for details). This is a contradiction. 

PROPOSITION 10.12. I f  there does not exist a continuous curve h' + oo in U+o, 
such that p(ht) x h', then 

I q(n - 2) if n is even, 
d i m ~ + ~ / b ~  ;$ q(n - 3) if n is odd and n # 3, 

q - 1  if n = 3 .  

Furthermore, 

(a) if equality holds, and n is even, then dimpfFxu + Fyu) = 2, for every u e urfi=o\ bfi; 
(b) if equality holds, and n = 3, then dim bfi < q. 

Proof. By passing to a subgroup, we may assume u = u+o. Let V be the 
projection of u to np + na+p; then dim V = dim u/ dim bfi. 

Case 1. Assume dim#xu + Fyu) = 2 for every u u \ bfi 

Subcase 1.1. Assume n is even. From Theorem 10.9(1), we know that V does not 
intersect np (or na+p, either, for that matter), so 

dim V + dim np < dim(np + nu+^) = dim n/s + dim na+/?. 
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Therefore 

dim u/  dim bb = dim V < dim na+p = q(n - 2), 

as desired. (If equality holds, then we have Conclusion (a).) 

Subcase 1.2. Assume n is odd. 

Step 1.2.1. We have dimu/bs < q(n - 3). Suppose not: then 

dim V ^q(n - 3) + 1. 

(This will lead to a contradiction.) Let X = {xu \ v e F}, so Xis a R-subspace of F"-~. 
For each x X, there is some v = v(x) V, such that xu = x; define f(x) = y^). By 
the assumption of this case, we know 

V n np = {O}, 

so v(x) is uniquely determined by x; thus,/: X -+ F n 2  is a well-defined R-linear map. 
Also, again from the assumption of this case, we know that 

f (x) f. Fx for every nonzero x X. (10.13) 

Because V n nb = 0, we have 

dim X = dim V 2 q(n - 3) + 1 = dim IFnp2 - (q - 1). 

If F = R (that is, if q = I), this implies X = so f is defined on all of Rnp2. 
Because n is odd, this implies that f has a real eigenvalue, which contradicts (10.13). 

We may now assume F = C. Let 

0 E = (X x CnP2)/=, where (x, v) = (-x, -v), 
PX be the projective space of the real vector space X, and 
C,{x, v) = [x] PX, for (x, v) E, 

so (E, 0 is a vector bundle over PX. 
Define g: X -+ e n 2  by g(x) = ix. Any R-linear transformation Q: X Ã‘> e n 2  is a 

continuous function, such that Q(-x) = -Q(x) for all x e X;  that is, a section of 
(E, 0. Thus, Id, /, and g each define a section of (E, i,). Furthermore, these three 
sections are pointwise linearly independent over R, because (10.13) implies that x, 
f(x), and ix are linearly independent over R, for every nonzero x e X. On the other 
hand, the theory of characteristic classes [MS, Proposition 4, p. 391 implies that (E, 0 
does not have three pointwise R-linearly independent sections (see [IW, Lemma 8.21 
for details). This is a contradiction. 

Step 1.2.2. Completion of the proof of Subcase 1.2. From Step 1.2.1, we see that . 
the desired inequality holds. 

We may now assume n = 3 and dimu/bs = q - 1. Since dimu/b^ < q(n - 3) = 0, 
we must have q = 1, so F = R. Therefore n2a = n2p = 0, so 

dim bb < dim na+~p = q, 

as desired. 
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Case 2. Assume there is some v e u \ bs, such that dimp(Fxv + Py,) = 1 

Subcase 2.1. Assume xV = 0. Since v if. bs, we must have yv # 0. Then xu+z # 0 
for every z bb (otherwise 10.9(2) yields a contradiction); this implies 

xz = 0 for every z e bs. 

Because xu # 0, we know that F # R; so 

F = C. 

Since xz = 0 for every z bb, but bb n nap = 0 (see 10.9(1)), we must have % # 0 for 
every z e bs. Therefore 

dim bh < dim na+2p = q = 2. 

Let p: V Ã‘ n a + ~  be the natural projection. Note that 

dim kerp = 1. 

(If v' u ,  with xc( = 0, then there is some t e R, such that x ~ I + ~  = xu' + ?xu = 0. 
We also have x ^ + ~  = 0, so, from 10.9(2), we see that v' + tv e bfi. Thus v' E Rv + bh. 
So kerp = (Rv + b$/bfi is 1-dimensional.) 

Because xz = 0 for every z bfi, and u is a Lie algebra, we see, from (7.22), that 
p(V) must be a totally isotropic subspace for the symplectic form i 1m(x2+), so 

Therefore 

d imu /b f i  =dimV=dimp(V)+dimkerp< (n-2)+ l = n -  I. 

This completes the proof if n # 3: 

If n is even, then, because n 2 4, we have n - 1 < 2(n - 2) = q(n - 2). 
If n > 3 is odd, then n 2 5, so n - 1 < 2(n - 3) = q(n - 3). 

Now let n = 3, and suppose dim V = 2. (This will lead to a contradiction.) Because 
equality is attained in the proof above, we must have dimp(V) = n - 2 = 1, so there 
exists w E u with xw # 0. For t E R, let w, = w + tu. Then 

Thus, this expression changes sign, so it must vanish for some t .  On the other hand, 
since n = 3, we have dimc(Cx + Cy) < 1 for every x, y E = C. Thus 10.9(2) 
yields a contradiction. 
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Subcase 2.2. Assume yv = 0. This is similar to Subcase 2.1. (In fact, this can be 
obtained as a corollary of Subcase 2.1 by replacing H  with its conjugate under the 
Weyl reflection corresponding to the root a.) 

Subcase 2.3. Assume yv # 0. Because dimp(Fxu + Fyu) = 1, Lemma 10.8 implies 
there is some g  Na, such that, letting w = g l v g ,  we have ow = &,, = 0, xw = 0, and 
yw = yo # 0. There is no harm in replacing H  with g ~ g  (see 8.25). Then Subcase 
2.1 applies (with w in the place of v). 

THEOREM 10.14. Recall that Assumptions 10.1 are in effect. 
I f  there does not exist a continuous curve h' -+ oo in H,  such that p(ht) x h', then 

if n is even, 
dim H < q ( n - 1 )  i f n i s o d d .  

Furthermore, if equality holds, and n is even, then 

(1) E) = (ker a) ix U; 

(2) q5u = 0 for every u u; 
(3) dimF(Fxu + Fyu) = 2, for every u e u \ bfi; 
(4) 1%12  + xZyz # 0 for every nonzero z e bft; 
(5) dim u/b@ = q(n - 2); and 
(6) dim bft = 2q - 1. 

Proof. Let 

q(n - 2) if n is even, 
q(n - 3) if n 2 5 is odd, 
q - 1  i f n = 3 .  

From Lemmas 10.7(1) and 10.1 1, and Proposition 10.12, we have 

This implies the desired inequality, unless n = 3, F = C ,  and we have equality in 
both Lemma 10.1 1 and Proposition 10.12. This is impossible, because equality in 
Lemma 10.1 1 requires dim bfi = 3, but Proposition 10.12(b) implies dim bh s$ 2. 

ASSUMPTION. In the remainder of the proof, we assume that equality holds in 
(10.15), and that n is even. Proposition 10.9(1) implies (4). 

Case 1. Assume F = C. Because equality holds, Lemma 10.1 1 implies (2) and (6). 
Then Proposition 10.12(a) implies (3) (because u = ueo). Since u = ~ 4 ~ 0  (see 2) and 
equality holds in (10.15), we have 
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and 

dim hi, = dim it/uho + dim bb = 2q - 1, (10.18) 

so (5) and (6) hold. 
Let T = A n (HN). Corollary 10.6 implies that T normalizes u, so, from (3) and 

Lemma 3.21, we see that T c kera. On the other hand, dim T = dimfi/u, so, from 
equality in (10.16), we conclude that dim T = 1. Therefore T = ker a. 

Suppose t,k ker a + Na is any continuous group homomorphism, such that $(ker a) 
normalizes U. From (3) and (7.22), we see that NN(U) = e, so $ must be trivial. 
This implies that 10.5(2) cannot apply here, so 10.5(1) yields (1). 

Case 2. Assume F = R. Proposition 10.12(a) implies that dimp(Fxu + Fyu) = 2 
for every u e u^=o \ hi,. 

Suppose (2) is false. Then there is some u e it, such that 4,. # 0. Also, because 
d i m ~ ~ = ~ / b i ,  = m > 0, we may fix some v u,+o\bs. Then, letting w = [u, v], we 
see, from (7.22), that yw = 0 and xw # 0, so dimp(Fxw + Fyw) = 1. This contradicts 
the conclusion of the preceding paragraph. 

Conclusion (3) follows from (2) and 10.12(a). 
Conclusion (1) can be established by arguing as in the last two paragraphs of Case 1. 
Equations (10.17) and (10.18) establish (5) and (6). 

10C. SUBGROUPS WITH NO NEARLY QUADRATIC CURVE 

Our goal is to prove Theorem 10.21; we start with two preliminary results. 

LEMMA 10.19. If there does not exist a continuous curve h' + oo in U ,  such that 
p(h') x l ]hT ,  then 

(1) for every element u of u ~ = ~ .  we have dimp(Fxu + Fyu) < 1; 
(2) for every element z of bh, we have \ r z2  + xZyz = 0; and 
(3) for every element u of U, such that c j U  # 0, yu = 0, and yu = 0, we have 

lxu12 + 2 Re^%) # 0. 

Proof of the Contrapositive. (1) Suppose there is an element u of U+O, such that 
d i m ~ ( F x ~  + Fyu) = 2. Let ht = exp(tu). Then, from (7.18), we see that ht = 0(t2). 
Furthermore, 

2 2 
A(h') = det v - {xUyLt2 xut - i ; 2 )  = S l l x u l l y u l ~  - ~xuy;121t4 + 0(t3). 

t - \ \Yu2t2  -̂ -{yuxut 

Because dimp(Fxu + Fyu) = 2, we have l ~ ~ l l y ~ l  > \~uyl,\, so lxu121~u~2 - \xuY[\~ # 0; 
therefore A(ht) x t4, so 

so Lemma 8.24(2) implies that p(ht) x \hY2, as desired. 
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(2) Suppose there is an element z of bs, such that l Ã ˆ ^ 1  + xZyz # 0; in other words, 
we have A(z) # 0. Let h' = exp(tz) = Id + tz (see 7.18). Then ht = 0(t) and 

so Lemma 8.24(2) implies that p(ht) x llh'l12, as desired. 
(3) Suppose there is an element u of u, such that 4 # 0, yu = 0, yu = 0, and 

x u 2  + 2 Re(q5u?Q = 0. Let ht = exp(tu). From (7.19), we see that ht = Id + tu (note 
that, because h 2  + 2 Re(Mu)  = 0, we have Re = 0). Then h' = 0(t) and 

So }h'[[2 = 0(t2) = O(p(ht)). Thus, Lemma 8.24(2) implies that p(ht) x H ~ ' H ~ ,  as 
desired. 

The following lemma obtains a dimension bound from Condition 10.19(1). 

LEMMA 10.20. I f  V is a R-subspace of Fnp2 @ IFnp2, such that dimp(Fx + Fy) < 1 
for every (x, y) V, then either 

(1) dim V < q(n - 2); or 
(2) n = 3 and dim V < 2q. 

Proof. Because dime F n 2  = q(n - 2), we may assume that there exist nonzero 
xo, yo p n 2 ,  such that (xo, 0) V and (0, yo) e V (otherwise, the projection to one 
of the factors of F n 2  @ F n 2  is injective when restricted to V, so (1) holds). Then 
(x0, yo) e V, so, by assumption, we have dimp(Fxo + Fyo) 6 1. Because XQ and yo are 
nonzero, this implies Fx0 = Fyo. 

Step 1. For all (x, y) V, we have y l Fxo. We may assume y # 0 (otherwise the 
desired conclusion is obvious). Then, since dimp(Fx + Fy) < 1, we conclude that 
x Fy. Similarly, because 

we must have x + XQ e Fy. Therefore 

x 0 = ( x + x o ) - x < = F y - F y = F y .  

Since XQ # 0, this implies Fxo = Fy, so y Fxo, as desired. 

Step 2. We have V c Fyo @ Fxo. Given (x, y) e V, Step 1 asserts that y e Fxy. By 
symmetry (interchanging the two factors of Fp2 @ F " ~ ) ,  we must also have 
x Fyo. So (x, y) e Fyo @ Fxo, as desired. 
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Step 3. Completion of the proof. From Step 2, we have 

dim V :$ dimR(Fyo @ Fxy) = 2q. 

If n > 4, then (1) holds; otherwise, (2) holds. 

THEOREM 10.21. Recall that Assumptions 10.1 are in effect. 

I f  there does not exist a continuous curve ht + oo in H,  such that p(ht) x \\ht1l2, then 
dim H :$ qn. 

Furthermore, if equality holds, then H is of the form H = T x U, where 

(1) T = kerb, 
(2) u = ((na + na+p + na+2p) n u) + n2a+2/i, and 
3 \ ~ u \ ~  + 2 # 0 for every u E u \n2a+2/5. 

Proof. Note that 

(see 10.7(1)) and 

dim I . I / u~=~  < dim Ha = q. 

Step 1. We have dim q Z 0 / b 6  :$ q(n - 2). Suppose not. Let V be the projection of 
u+o to q + na+p. We have 

dim V = dimurf,=o/bfi > q(n - 2), 

and, for every u u+=o with xu # 0, we have d i m ~ ( F x ~  + Fyu) < 1 (see 10.19(1)), 
so Lemma 10.20 implies that n = 3. Therefore, dim itg = dim na+p = q. Then, 
because dim V > q(n - 2) = q, we know that V f? np # 0 and V n na+p # 0; thus, 
there exist u, v e q = 0 ,  such that 

xu = 0, yu # 0; and 
0 xv # 0, yv = o .  

Therefore [u, v] is a nonzero element of na+2p (see 7.22), so A([u, v]) # 0. This contra- 
dicts Lemma 10.19(2). 

Step 2. We have dim bb :$ q - 1. Suppose not: then, because dim n2a+2j? = q - 1, 
there is some u bb\n2a+2p, and, because dimn2p = q - 1, there is some non- 
zero v e bq, such that yv = 0. We must have qv = 0 (otherwise 10.19(2) yields a 
contradiction); thus v n2a+ip. We must have yu # 0 (otherwise 10.19(2) yields a 
contradiction). Thus, we see that 

1q12 + ̂u+tvYu+tv = l ^ 1 2  + (xu + t^v)(t~u) 

is nonconstant as a function of t R, so 10.19(2) yields a contradiction. 
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Step 3. The desired inequality. We have 

dim I) < dim I)/u + dim u / % = ~  + dim q = o / &  + dim bb 

< l + q + q ( n - 2 ) + ( q -  1) 

= qn, 

as desired. 

ASSUMPTION. In the remainder of the proof, we assume that dim H = qn. We must 
have equality throughout the preceding paragraphs. 

Step 4. We have V c na+p. Suppose not: then there is some v <= +, such that 
yv # 0. Let u u\u+=o and w = [u, v]. Then, from (7.22), we see that yw = 0 and 
xw # 0, and that [v, w] ria+2/j + ~t2~+2g. From 10.19(1), we have xu e Fyu and 
Xu+2 ?YU+W = Fyu, so 

Therefore xwyL # 0, so qy^ # 0 (see 7.22), so 10.19(2) yields a contradiction. 

Step 5. We have bs = n2a+2p. From Step 4, together with the fact that 

dim V = dim u + = ~ / ^  = q(n - 2) = dim na+p, 

we conclude that V = na+g. Therefore, 

u + o + b = F + b = n a + p + b ,  

Step 6. We have bs = nza+2p. Let T = (HN) n A be the projection of H to A. 
Then there exists o- {p ,  a + 5, a + 25}, such that T = ker(a - o-), and, in the 
notation of Lemma 3.21, we have 

Because Tnormalizes u, (see 10.6), we know, from Lemma 3.21, that u = (U n nEa)+ 
(u n n#"). Since d i m u / ~ + = ~  = q, we know that u n nZa projects nontrivially (in fact, 
surjectively) to na. On the other hand, we know that u fl na = 0 (otherwise 10.19(3) 
yields a contradiction). Therefore n=" # ria, so there must be a positive root o- # a, 
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such that alT = a T .  Then T c ker(a - a); since dim T = dim H / U  = 1, we must have 
T = ker(a - a). 

Because u n n#" c q z 0 ,  we have 

u n n=" u/(u n n#") u 
 dim(^ n n"") 2 dim = dim = dim- = q. 

U+=O n n=a U,A=O/(U n d a )  ~ , A = o  

Then, since u n na = 0, we must have 

dim n"" 2 dim(u n n=') + dim nu 2 q + q = 29. 

By inspection, we see that this implies a4,{2a, 2m, so we conclude that 
a 6 {b, a + 6, a + 25}, as desired. 

Step 7. We have a {a + b, a + 25}, T = ker b, and n=' = nu + nu+p + nu+2p. 
Since ker f i  = ker 25, it suffices to show a # 6. Thus, let us suppose a = fi. (This will 
lead to a contradiction.) We have n=" = nu + np (and recall that u n na = {O}), 
so there is some u u, such that <^u # 0 and yu # 0. Because V = nu+g, we have 

so there is some v E Q=O, such that 0 # xu e Fyu and y,, = 0. Then [u, v] nU+2p+ 
nza+2p, with # 0 (see 7.22), so 10.19(2) yields a contradiction. 

Step 8. We have H = ( H  H A) x ( H  n N ) .  Suppose not: because T = ker 6, 
we conclude that there is some nonzero w e np + n2p, such that w normalizes u 
(see 10.5). 

If y," / 0, then, because V = nu+p, there is some v q = 0 ,  such that yw E Fxv and 
y,, = 0. Then [w, v] 6 nu+2p + 112~+2p, with # 0 (see 7.22), so 10.19(2) yields a 
contradiction. 

If ytV = 0, then, since w # 0, we must have yw # 0. There is some u u with 
4 # 0. Then [w, v] 6 na+2p + n2a+2p, with wul # 0 (see 7.22), so 10.19(2) yields a 
contradiction. 

Step 9. Completion of theproof. (1) From Step 8, We know that H = T x U, and, 
from Step 7, that T = kerb. 

(2) Since n-' = nu + nu+p + na+2p, it suffices to show u n n#" = nyu+2p'- given 
v e u n n^", we wish to show v n2a+ip- Because V = na+p, we know that yy = 0. 
Thus, all that remains is to show that y = 0. If not, then choosing u E u with 
4 # 0, we see that # 0 (see 7.22). So 10.19(2) yields a contradiction. 

(3) From Lemma 10.19(3), we know that xUl2 +2Re(+j?") # 0 for every 
u 6 u-\n2a+28- 

11. Homogeneous Spaces of SO(2, n) and SU(2, n) 

This section proves two main results. Both assume that G is either SO(2, n) or 
SU(2, n). 
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(1) Theorem 1 1.1 shows that if n is odd, and one or two specific homogeneous spaces 
of G do not have tessellations, then no interesting homogeneous space of G has a 
tessellation. 

(2) Theorem 11.2 shows that if n is even, then certain deformations of the examples 
found by Kulkarni and Kobayashi (see 1.11) are essentially the only interesting 
homogeneous spaces of G that have tessellations. 

The classification results of Section 10 (specifically, Theorems 10.21 and 10.14) play a 
crucial role in the proofs. 

We use the notation SU(2, n; F) of Section 7, to provide a fairly unified treatment 
of SO(2, n) and SU(2, n). 

THEOREM 1 1.1. Assume G = SU(2,2m + 1; F) with m 2 1, and let H be any 
closed, connected subgroup of G, such that neither H nor G/H is compact. 

I f  Conjecture 1.19 is true, then G/H does not have a tessellation. 
Proof. Assume Conjecture 1.19 is true, and suppose F is a crystallographic group 

for GIH. (This will lead to a contradiction.) Let 

Hi = S U ( l , 2 m + l ; F )  and- H 2 = S p ( l , m ; F )  

(see 7.12). From (7.19, we have d(Hl) = q(2m + 1) and d(H2) = q(2m), where 
q = dimR F. We may assume that H c AN (see 3 3 ,  and that H is compatible with 
A (see 10.3). 

Because H i s  not a Cartan decomposition subgroup (see 2.9), the contrapositive of 
Proposition 8.19 implies, for some k e {l ,  2}, that there does not exist a continuous 
curve hf Ã‘ oo in H, such that p(hf) x \ \ h ' \ \ .  Therefore, either Theorem 10.14 
(if k = 1) or Theorem 10.21 (if k = 2) implies that d(H) < q(2m + 1) = <Hi). 

We consider two cases. 

Case 1. Assume that T acts properly discontinuously on G/Hl. Theorem 4.1(2) 
(combined with the fact that d(H) s$ d(Hl)) implies that G/Hl has a tessellation. 
This contradicts either Theorem 1.20 (if F = R) or Conjecture 1 . 1 9 ~  (if F = C).  

Case 2. Assume that F does not act properly discontinuously on G/Hl. From 
Lemma 8.21, we know that p(Hl) and p(H2) are the two walls of A+, so Corollary 
4.11 (combined with the assumption of this case) implies that F acts properly . 
discontinuously on G/H2. Therefore, since Conjecture 1.19ab asserts that G/H2 
does not have a tessellation, the contrapositive of Theorem 4.1(2) (with Hz in the 
role of HI)  implies that d(H) > d(H2) = q(2m). Hence, the contrapositive of ' 

Theorem 10.14 implies there is a continuous curve h' Ã‘Ã oo in H, such that 
p(hf) x h'. Thus, there is a compact subset C of G, such that Hi c CHC (see 8.22). 
Since F acts properly discontinuously on G/H, this implies that F acts properly 
discontinuously on G/Hi (see 2.4). This contradicts the assumption of this case. 
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THEOREM 11.2. Assume G = SU(2,2m; F)  with m > 2, and let H be a closed, 
connected, nontrivial, proper subgroup of AN. 

The homogeneous space G/H has a tessellation if and only if either 

(1) there is an R-linear map B: F"-~ + T F n 2 ,  such that 
(a) I~((VB)(WB)~) = -1m(vw+) for every v, w e (see 9.8), and 
(b) x B P x ,  for every nonzero x iFnp2 (see 9.9), and 
(c) H is conjugate to Hy (see 9.3 and 9.6); or 

(2) F = R and H is conjugate to SU(1,2m; R) n AN (see 7.12); or 
(3) F = C and there exists c e (0, I], such that H is conjugate to HM (see 9.1 1). 

Proof. (e) See (1) Theorem 9.7(2), (2) Theorem 9.2 (and 7.15), or (3) Theorem 
9.14(2). 

(+) Let n = 2m, so G = SU(2, n; F). By combining Remark 1.16, Corollary 4.12, 
Lemma 8.21, and Remark 7.15, we see that 

dim H = d(H) m i n { d ( ~ ~ ( l ,  n; F)), d(Sp(1, m; F))} = qn. 

Also, we may assume H is compatible with A (see 10.3). Because H is not a 
Cartan decomposition subgroup (see 2.9), Proposition 8.19 implies that one of the 
following two cases applies. 

Case 1. Assume there does not exist a continuous curve ht -+ oo in H, such that 
p(ht) x ht. Since dim H > qn, Theorem 10.14 implies that dim H = qn, and that H i s  
of the form H = T x U (with U c N),  where 

(i) T = ker a; 
(ii) <&Ã = 0 for every u e u; 

(iii) dimp(Fxu + Fyu) = 2, for every u u\bb; 
(iv) [ % I 2  + xzyz # 0 for every nonzero z bs;  
(v) dim u / b b  = q(n - 2); and 
(vi) dim b f i  = 29 - 1. 

Step 1.1. We may assume that bs = {z  e b 1 xz = -yz }. Because dim ba = 29 - 1 
(see vi), it suffices to show that xz = -yz for all z e bf i .  This is trivially true if F = R, 
as xz, yz E Firnag = {O} in this case. Thus, we assume F = C. 

For any z e bs with = yz = 0, we know, from (iv), that z = 0; therefore, 
Lemma 8.26(1) implies there exist R-linear maps R: C Ã‘ iR and S: iR -+ iR, such 
that xz = R(%) + S(yz) for all z e bh .  More concretely, we may say that there exist 
A C and c R, such that xZ = Im(/b?) + cy;, for all z e bh .  

Let v be the element of na with 4" = 112, and let H* = exp(-v)Hexp(v) be the 
conjugate of H by exp(v). Then H* satisfies the conditions imposed on H (note that 
H*, like H, is compatible with A (see 10.4)), so there exist A* e C and c* e R, 
such that xZ* = Im(A*%.) + c*yz. for all z* b i .  Given z* e bt  with yz. = 0, 
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let z = exp(u)zexp(-u). Because y .  = 0, we have [[z*, -01, -u] = 0, so, from Remark 
7.23 and (7.22), we see that 

and 

Therefore 

Since r\Ã is arbitrary, this implies 2* = 0. Thus, by replacing H with H*, we may 
assume that A = 0. This means that yz = exz for all z e bs. 

From (vi) (and because F = C,  so q = 2), we know that dim bfi = 3 > 1, 
so there is some nonzero w bs, such that yw = 0. (So xW = cyw = 0.) Then 
w 2  + = \ f l w 2  > 0, so we see, from (iv), that \d2 + xzyz > 0 for every nonzero 
z E bh. Now, since 

dim bf, = 3 > 2 = dimna+2p, 

there is some nonzero z e bs, such that % = 0. We have 

0 < lqz12 + xzy, = 0 + cy;. 

Because y is pure imaginary, we know that y; < 0, so this implies that c < 0. Thus, 
replacing H by a conjugate under a diagonal matrix, we may assume c = -1, 
as desired. 

Step 1.2. Setting it' = (na + na+p) n u, we have u = tl' + b. Since T = ker a (see i), 
we have 

Thus, in the notation of Lemma 3.21, we have n=^ nu = u' and n^ nu = br,, 
so u = u' @ bb, as desired. (Note that this is a direct sum of vector spaces, not of 
Lie algebras: we have [u', u'] c bft.) 

Step 1.3. Completion of the proof of Case 1. For any u U' with xu = 0, we have 

so u u' n bfi = {O} (see iii); therefore, Lemma 8.26(1) implies there is a R-linear 
map B: IFn2 ->Â F n 2 ,  such that yu = xuB for all u u'. Then, because 
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(see v), we must have 

u' = {u np + na+p \ yu = xuB}. 

Combining this with (i) and the conclusions of Steps 1.1 and 1.2, we see that I) = f i e .  
Therefore H = HB, so Conclusion (lc) holds. 

From (iii), we see that Conclusion (lb) holds. 
Letting z = [u, v] ,  for any u, v u', we see, from (7.22), that 

xz = -2 1m(xUxL) 

and 

yz = -2 1m(^) = -2 I~((X~B)(X,,B)~).  

From Step 1.1, we know that y = -xz, so this implies that Conclusion (la) holds. 

Case 2. Assume there does not exist a continuous curve hr Ã‘ oo in H, such that 
p(ht) x \hq2.  Since dim H 2 qn, Theorem 10.21 implies that dim H = qn, and that 
H is of the form H = T x (7, where 

Let 

U' = (na + &+p + na+2p) n u 
(so u = U' @ n2a+2b). Let Q be the sesquilinear form (or bilinear form, if F = R) on 
F @ FnP2 @ F defined by 

From (iii), we see that the restriction of Re Q to Vb is a (positive-definite) inner 
product. 

Let V; be the (Reg)-orthogonal complement to Vb. As a form over F,  Q has 
signature (1, n - 1). Thus, as a form over R, Re Q has signature (q, q(n - 1)). Since 

dim V5 = dimI) - dimt - dimn2a+'ip = qn - 1 - (q - 1) = q(n - I), 

we conclude that V t  is a q-dimensional R-subspace on which Re Q is negative- 
definite. 

Choose some nonzero u V t .  Multiplying by a real scalar to normalize, we may 
assume Q(u, u) = -2. Because SU(1, n - 1) is transitive on the vectors of norm -1, 
there is some g SU(Re Q), such that g(u) = (1,0, -1). Thus, letting 

g = 0 g 0 e SU(2, n; F), (; : ;) 
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and I)' = i1f ig- ,  we have 
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(1,0, - 1) VP, so, by replacing I) with the conjugate fi? 
we may assume u = (1,0, - 1). 

Then 

Subcase 2.1. Assume F = R. By comparing (1 1.4) and (7.13) (with F = R), we 
conclude that 

I) c SU(1, n; R) n (a + n). 

By comparing dimensions, we see that equality must hold; this establishes 
Conclusion (2). 

Subcase 2.2. Assume F = C. Choose some nonzero v ? V i ,  such that v is (Re Q)- 
orthogonal to u. Multiplying by a real scalar to normalize, we may assume 
Q(v, v) = -2. By replacing v with -v if necessary, we may assume (Im Q(u, v))/i 2 0. 

Because v is (Re Q)-orthogonal to u = (1,0, - l), we have Re r f  = Re 4 (see 11.4). 
Let s = (Im 4,,)/i and t = (Im rfv)/i. Then 

so 

(Im Q(u, v))/i = 1s - tl. 

Also, 

so st < -1. Thus, s and t are of opposite signs so, because \s\ \t\ 2 1, we have 
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Therefore, we may choose c e (0, 11, such that 

Let 

Then 

( w ,  w) = \ ~ w  l2 + 2 Re($,^) = o2 + 2(i/c)(ic) = -2 = Q(v, u), 

and 

Q(u, w) = &?7- + xuxt + ̂ , = (l)(ic) + 0 + (- l)(-i/c) = i c + - = ImQ(u, v). ( 
Hence, there is some 
with the conjugate h 

Therefore 

h G SU(Q), such that h(u) = u and h(u) = w. Thus, replacing f j  
J j / 2  (cf. 11.3), we may assume v = w. 

By combining this with (1 1.4) and comparing with (9.11) (with F = C), we conclude 
that f j  c fj[c2i. By comparing dimensions, we see that equality must hold; this 
establishes Conclusion (3) (because 0 < c2 < 1). 

Theorem 11.2" can be restated in the following more elementary (but less precise) 
form. 

COROLLARY 11.5. Let H be a closed, connected subgroup of G = SU(2,2m; F)  
with m 2 2, such that neither H nor G/H is compact, and let q = dimR F. 

The homogeneous space G/H has a tessellation if and only if 
(1) d(H) = 2qm; and 
(2) either H - SU(1,2m; F) or H - Sp(1, m; F). 

Proof. (+) This is Theorem 9.2. 
(>) Theorem 11.2(=?>) provides us with three possibilities. 

(1) In each case, we have d(H) = 2qm (see 9.5, 7.15, and 9.12). 
(2) In each case, there is some k { l ,  2}, such that p(h) x Mf for h e H (see 9.7(1), 

8.21(1), and 9.14(1)). Then Corollary 8.23 implies either that H -  SU(l,2m; F)  
(if k = 1) or that H - Sp(1, m; F) (if k = 2). 
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The following proposition shows that no further restriction can be placed on c in 
the statement of Theorem 11.2(3). 

PROPOSITION 11.6. I f F  = C, then H,,-\ is not conjugate to H w ,  unless c = c' ( for  
c, c' â (0, 11). 

Proof. Suppose g-lH[clg = H w ,  for some g G = SU(2,2m). Because all maxi- 
mal split tori in HLct1 are conjugate, we may assume that g normalizes ker fi. Since all 
roots of ker fi on both ljLcl and are positive, g cannot invert ker P, so we conclude 
that g centralizes ker 0; that is, g CG(ker fi). 

In the notation of Case 2 of the proof of Theorem 11.2, define 

s = [h 1 h E SU(Q)} 

(cf. 11.3). Then CG(ker /?) = (ker S}S, so we may assume g e S (because ker f i ,  
being a subgroup of H w ,  obviously normalizes H w ) .  Write g = h. Then, because 
g - l ~ [ c l g  = HyI ,  we must have h ( V d  = Vh; hence h(v; ) = V' 

Icl Qfc'l " 

For any basis {u, v} of V$  with Q(u, u) = Q(v, v) = -2 and Re Q(u, v) = 0, 
we have 

Im Q(u, v) = Â±i( + (llc)). 

Similarly for any (Re Q)-orthonormal basis {u', v'} of v$,.  Because h e SU(Q), 
this implies c + (l/c) = c + (1/c1). Because c, c e (0, 11, we conclude that c = c', 
as desired. 0 
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