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Abstract. M .  Ratner's theorem on the rigidity of horocycle flows is extended to the 
rigidity of horospherical foliations on bundles over finite-volume locally-symmetric 
spaces of non-positive sectional curvature, and to other foliations of the same 
algebraic form. 

1. Introduction 
The geodesic flow on the unit tangent bundle T X  of a connected, finite-volume 
manifold X  of constant negative curvature is Anosov; the associated strongly stable 
foliation (or, if you prefer, the strongly unstable foliation) is called the horospherical 
foliation on T X .  If X  is a surface, which means T X  is 3-dimensional, then the 
leaves of the horospherical foliation are 1-dimensional; the leaves can be para- 
metrized by arc-length to become the orbits of a flow, called the horocycle flow, on 
T I X .  It was shown by M. Ratner [7] that if the horocycle flows on the unit tangent 
bundles of two connected, finite-volume surfaces X I  and X2 of constant negative 
curvature are measurably isomorphic, then X ,  and X2 are isometric (up to the choice 
of a normalizing constant). In short, Ratner's theorem can be described as saying 
that horocycle flows are rigid: their measure-theoretic structure completely deter- 
mines their geometric structure. 

THEOREM 1.1. (Ratner Rigidity Theorem [7, Theorem 21). Let X I  and X2 be two 
connected, finite-volume surfaces of constant negative curvature, and assume vol X I  
= vol X 2 .  I f  $ : T 1 x 1  + T 1 x 2  is a measure-preserving, invertible Bore1 map that conju- 
gates the horocycle flow H'," on T 1 x 1  to the horocycle flow H,' on T 1 X 2  (i.e.,  i f  
$ H : ~ )  = H'," $), then there is an isometry 4 : X I  + X 2 ,  and some to e R, such that 
$ is the differential of 4, composed with the translation H , '  (a .e . ) .  

If X  is a higher-dimensional manifold of constant negative curvature, then the 
leaves of the horospherical foliation are not 1-dimensional - they are higher- 
dimensional (immersed) submanifolds of T X  - so the leaves are not the orbits of 
a (smooth) flow; but each leaf inherits a Riemannian metric from the metric on 
T'X, and the natural analogue in higher dimensions of a conjugacy of horocycle 
flows is a map that takes each leaf of one horospherical foliation bijectively, via an 
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isometry, onto a leaf of another horospherical foliation. Ratner's theorem extends 
to this setting. 

THEOREM 1.2. (Flaminio [2]). LetX, andX2 be two connected, finite-volume manifolds 
of constant negative curvature; assume dim X I  > 2 and vol X I  = vol X-,.  If $ : T ' X ,  -+ 

T 1 X 2  is a measure-preserving, invertible Borel map that takes each leaf of the horo- 
spherical foliation on T 1 x I  isometrically onto a leaf of the horospherical foliation 
on T I X s ,  then $ is the differential of an isometry 4 : X I  -> X2  (a.e.1. 

The setting of theorem 1.2 can be generalized by considering not the unit tangent 
bundle, but other bundles over X. For example, the geodesic flow is a factor of the 
frame flow F, on the principal bundle 9'X of positively-oriented orthonormal frames 
over X ;  though F, is not generally Anosov, it has a strongly stable foliation, which 
we call the horospherical foliation on 3%. (Under the factor map 5% -+ T ' X ,  each 
leaf of the horospherical foliation on 3'X covers a leaf of the horospherical foliation 
on T'x. )  It was essentially shown by D. Witte (see Theorem 1.4) that the horo- 
spherical foliation on S'X is rigid; L. Flaminio (in conversation) remarked that this 
suggests the horospherical foliations on intermediate bundles - bundles between 
5% and T X  - should also be rigid. This paper proves the rigidity of the horo- 
spherical foliations on these intermediate bundles, and of other similar foliations; 
the proof is based on M. Ratner's fundamental insights. 

Definition. Of course 5% is a principal SO(n)-bundle, where n =dim X. For the 
purpose of stating Theorem 1.3, we'll say that an SO(n)-bundle '8 over X  is 
intermediate between 3'X and T X  if there is a pair of surjective SO(n)-bundle 
maps ^X -+ '8 and '?-+ T ' X  whose composition is the natural quotient map SPX+ 
T X .  (In other words, '8 is intermediate between SfrX and T ' X  if there is some 
closed subgroup E of SO(n - 1) such that '8 is the associated fiber bundle of 3'X 
with fiber SO(n)/ E.) The horospherical foliation on 9X pushes to a foliation (called 
the horospherical foliation) on any bundle intermediate between 9% and T ' X .  

THEOREM 1.3. Let X I  and X2 be two connected, finite-volume manifolds of constant 
negative curvature; assume vol XI = vol X 2 .  Let 8, be a bundle over X, intermediate 
between ^Xi and T ' X ,  (for i = 1,2) .  If there is a measure-preserving, invertible Borel 
map 4: '8' -+ g2 that takes each leaf of the horospherical foliation on '?, isometrically 
onto a leaf of the horosphericalfoliation on 'S-,, then X I  and X2 are isometric manifolds. 

The conclusion of Theorem 1.3 is weaker than that of Theorem 1.2: we do not 
assert that $ is the differential of an isometry, but only that there is some isometry 
from Xi  onto X2; the precise form of >li (and other aspects of the main theorem) 
is much easier to state in algebraic, rather than geometric, form: as motivation, we 
present some highlights of the algebraic formulation of Flaminio's Theorem (1.2) 
(details are in [2]). Let 2 be the universal cover of a connected, finite-volume 
manifold X  of constant negative curvature. The identity component G = SO(1, n)  
of the isometry group of 2 is a simple Lie group; it acts simply transitively on 3'X 
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(on the left, say) so, by choosing a basepoint in 3'X, we may identify 3'X with G. 
There is a (unipotent) subgroup U of G, a so-called horospherical subgroup, such 
that the foliation of G into the orbits of the action of U by right translations is 
precisely the horospherical foliation on 3'X. Now X is the quotient of 2 by a 
discrete group F of isometries; so 3'X = F\G, and the horospherical foliation on 
5% is the foliation of Y\G into orbits of the action of U by right translations. 

Definition. Recall that a matrix A is unipotent if it has no eigenvalue other than 1 
(i.e., if A - Id is nilpotent). An element u of a Lie group G is unipotent if Adu is 
a unipotent linear transformation on the Lie algebra of G;  a subgroup U is unipotent 
if every element of U is a unipotent element of G. Any connected, unipotent 
subgroup of G is nilpotent (cf. Engel's Theorem [S, p. 21). 

There is a compact subgroup M of G that normalizes U and intersects U trivially, 
such that T'X is the quotient of 9 X  by M :  T'X = T\G/M. If S U  and tU are two 
leaves of the horospherical foliation on F \G whose images S U M  and tUM in 
T\G/ M intersect, then, because M normalizes U, these two images coincide; each 
leaf in the horospherical foliation on T'X can be identified (but not in a canonical 
way) with U. If a leaf in one horospherical foliation is identified with a unipotent 
group U , ,  and a leaf in another horospherical foliation is identified with a unipotent 
group U i ,  then Proposition 2.15 shows the assumption that the restriction of iff to 
the leaf U l  be an isometry onto the leaf U-, implies the algebraic condition that the 
restriction of t,b to U ,  be an affine map, i.e., the composition of a group homomorph- 
ism and a translation. 

With these ideas in mind, let us proceed to the statement of the main Theorem 
(1.5); we'll need some terminology. 

Definition. A discrete subgroup T of a Lie group G is a lattice if there is a finite 
G-invariant measure on the homogeneous space F \G;  the lattice is faithful if F 
contains no nontrivial normal subgroup of G. Any element x of G acts by translation 
on F\G; namely Tx : Fq -Tsx for s G. 

Definition. Let F and A be closed subgroups of Lie groups G and H, and suppose 
o- : G -> H is a group homomorphism with Fu c, A; for any h e H, the map Tg.,,, : F\G -> 

A\ H : ̂ \ - h u h  is said to be affine. 

THEOREM 1.4. (Witte [14, theorem 2.1'1). Let I' and A be faithful lattices in connected 
Lie groups G and H. Let T,, and To be ergodic, unipotent translations on F\G and 
A\H respectively. If +!I : T\ G -+ \\ H is a measure-preserving Bore1 map that conjugates 
TU to T,,, then i f f  is an affine map (a .e . ) .  D 
Definition. A connected Lie group G is reductive if every connected, solvable, normal 
subgroup of G is central or, equivalently, if G is locally isomorphic to a direct 
product GI  x . a . x Gn x A, where each G, is simple, and A is abelian [ l l ,  Theorem 
3.16.3, p. 2321. 

Notation. When we write Vxi M for a group, we mean to imply that the group is 
the semidirect product of V and M, i.e., that V and M are closed subgroups of G, 
that V <  G, that VM = G, and that V n  M = e. 
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The following definition formalizes the notion that, when leaves of the horos- 
pherical foliation are identified with a Lie group, the restriction of (A to a leaf of 
the horospherical foliation is an affine map. 

Definition. Suppose Lie groups U and V M M  act ergodically on standard Borel 
spaces 9 and F  with finite invariant measures. Assume M  is compact, so Y / M  is 
a standard Borel space. A measure-preserving Borel map ( A :  9'+ F / M  is V-affine 
on each U-orbit if, for a.e. s E 9, there is a point t e 9 ,  and a surjective, continuous 
homomorphism (f> : U -> V,  with su(A = C U M  for all u e U.  

MAIN THEOREM 1.5. Let r and A  be faithful lattices in connected reductive Lie groups 
G  and H, and let U and V>s M  be subgroups of G  and H. Assume U and V are 
unipotent, and are ergodic on F\G and A\H, respectively; assume M  is compact and 
contains no nontrivial normal subgroup of H ;  and assume that V M  M  is essentially 
free on A\ H. I f  $ : Y \ G  + A\ H /  M  is a measure-preserving Borel map that is V-affine 
on each U-orbit, then (A lifts to an affine map +': r\G + A\H. I.e., there is a measure- 
preserving affine map $': r\G + A\H with rs$ = As(AIM (a . e . ) .  

There are two parts to the proof of the main Theorem. First, an abstract argument 
(Theorem 3.1) shows M  can be replaced by C M ( V ) ;  this is a big gain because V 
acts by translations on A \ H / C M ( V ) ,  so we now have a group action, instead of 
a mere foliation. If it happens to be the case that no compact subgroup of H  
centralizes V ,  then we have reduced to the case where M  = e ;  Theorem 1.4 applies 
and we are done. In general, however, we need to generalize Theorem 1.4; this is 
the second part of the proof (Theorem 4.1). 

Application 1. Let X  = G / K  be a finite-volume locally-symmetric space of non- 
positive sectional curvature; assume, for simplicity, that no flat subspace is locally 
a direct factor of X (so G  is semisimple). The horospherical foliation on 5% or 
on T ' X  will often not be ergodic; almost every ergodic component of the horo- 
spherical foliation is a sub-bundle of 3-X or T ' X  of the form T\G/M, for some 
subgroup M  of K .  The main theorem implies that the restriction of the horospherical 
foliation to these ergodic components is rigid. 

Theorem 4.1 settles the isomorphism question for a natural class of actions of 
semisimple Lie groups. 

Application 2.  Suppose G ,  H I ,  H2 are connected, noncompact, semisimple Lie 
groups with finite center, and let A, be a faithful lattice in Hi that projects density 
into the maximal compact factor of H,. Embed G  in HI and H i ,  and assume G  
acts ergodically on A,\H,. Let M, be a compact subgroup of H, that centralizes G ,  
and contains no nontrivial normal subgroup of Hi;  then any measure-theoretic 
isomorphism from the action of G  by translations on Al \Hl /Ml  to the action of 
G  by translations on A2\H2/M2 lifts to an affine map A,\Hl + A2\H2 (a.e.). 

Let G ,  Hi ,  A , ,  and Mi be as in Application 1. As one step in an interesting 
argument (in preparation) on cocycles of an action of a semisimple group, R. J. 
Zimmer wanted to know that if H I  and H2 are entirely different groups, then the 
G-action on A2\H2/Mi cannot be a factor of the G-action on A l \ H l / M l ,  or even 
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of a finite extension thereof. A technical version (Theorem 4.1') of Theorem 4.1 
proves this. 

Application 3 .  Suppose G, H I ,  H2 are connected, noncompact, semisimple Lie 
groups with finite center, and let A ,  be a faithful lattice in Hi that projects densely 
into the maximal compact factor of H i .  Embed G in H I  and H 2 ,  and assume G 
acts ergodically on A,\H,. Let M,  be a compact subgroup of H, that centralizes G, 
and contains no nontrivial normal subgroup of H,. If the G-action on A2\HJM2 
is a factor of some finite extension of the G-action on A A H , /  M I ,  then H2 is locally 
isomorphic to a factor group of H I .  

Remark. From the geometric point of view, it is natural to ask whether horospherical 
foliations on the unit tangent bundles of manifolds of nonconstant negative curvature 
are rigid; even for surfaces, this is not known. (J. Feldman and D. Ornstein [I] 
have proved a result of this type for surfaces, but they do not parametrize the leaves 
of the horocycle foliation by arc-length.) 

In the main theorem, the assumption on the restriction of (A to leaves of the 
foliation is necessary. For example, M. Ratner [6, Theorem 31 showed that the 
horocycle foliation on the unit tangent bundle of any connected, finite-volume 
surface of constant negative curvature is measurably equivalent, via a map that is 
a homeomorphism on leaves, to that on any other. 

Acknowledgments. This work was largely supported by an NSF Postdoctoral Fellow- 
ship at the University of California, Berkeley; the work was inspired by suggestions 
of L. Flaminio, M. Ratner, and R. J. Zimmer. I owe thanks to M. Ratner for helpful 
discussions on Flaminio's work, and to Scot Adams for pointing out a blunder in 
my original proof of Lemma 2.8. 

2 .  Preliminaries 
Our terminology follows Zimmer [15]. 

2 .1 .  Ergodic theory 

Definition. Suppose a Lie group Y acts on a Borel space ST with quasi-invariant 
measure. The action is free if, whenever ty = t with t e ST and y e  Y ,  then y = e ;  the 
action is essentially free if there is a conull Y-invariant subset ST' of ST such that 
the restricted action of Y on ST' is free. 

Definition. Suppose Lie groups U and V act on standard Borel spaces 9 and ST, 
respectively; let M be a compact group acting on ST. We say a Borel map i f i  : Y +  ST/ M 
is affine for U (via V )  if, for each u e U, there is some 6 e V n  N H ( M )  such that 
$ conjugates the action of u on if to the action of 6 on Y/ M, i.e., if su+ = sifi 6 
for a.e. s 9. 

Definition. If if" is a conull subset of a Borel measure space (9, (K.), then we say (K. 

is supported on 3" - even if 3" is not a closed set. 

Definition. Given Borel spaces 9 and ST, and a Borel map $ : Y +  ST, any probability 
measure p on if pushes to a probability measure (A*p on F given by Ja- f d ( + * ( ~ . )  = 

Lif> o f  d f ~ , .  
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Definition. Given probability measures pi  and p2 on Borel spaces Y 1  and Y2 
respectively, a probability measure p on .9'x ST is a joining of pi  and p2 if, under 
the projection .YI x Y2+ Y i ,  the measure p pushes to p, (for i = 1,2).  

Definition. Given a joining p of (Y,,  p l )  and (Y2 ,  p2) ,  there is (see [3, Theorem 
5.8, p. 1081) an essentially unique family { p i :  s e Y l }  of measures on ŷ  such 
that, for any measurable A c 9, x %, p ( A )  = J% p , ( A  n ( { s }  x Y2) )  df i i (s);  these 
measures p,  are the fibers of p over 9,. We say p has finite fibers over Y l  if the 
support of a.e. fiber is a finite set. 

Remark. If i f f  : (Yl  , p i )  -> ( Y 2 ,  p2 )  is a measure-preserving Borel map, then the graph 
of iff supports a joining of ( Y l ,  p l )  and (Y2,  p2) ,  of which each fiber over Y l  is 
supported on a single point. 

Definition. Let TI  and T2 be measure-preserving maps on Borel probability spaces 
( Y l ,  p i )  and (Y2,  p2). A measure p on Y 1  x Y2  is a joining of ( T I ,  .Y1, p i )  and 
( T 2 ,  if-i, p2)  if ( 1 )  p is a joining of pl and p2; and ( 2 )  p is TI x T2-invariant. 

More generally, suppose Lie groups Ul and V 2  act, with invariant probability 
measures pl  and p2 ,  on Borel spaces 9'. and Sf-,, respectively. Given a continuous 
homomorphism ip : Ul  + U2,  a probability measure p on Y, x & is a joining of 
( U l ,  Y l )  and ( U 2 ,  Y2)  under <p if ( 1 )  p is a joining of pl  and p2; and ( 2 )  for each 
u E V , ,  the measure p is (u,  uq-invariant (where Ul x U2 acts on Y 1  x Â¥y by 

s 1 ,  s2) . ( M I ,  u2) = (SIUI, ~ 2 ~ 2 ) ) .  

LEMMA 2.1. Suppose 9' and ST are standard probability spaces, and a compact group 
M acts on ST, preserving the measure. Given a measure-preserving Borel map i f / :  Y +  
Y/ M, let GRAPH = { (s ,  t )  9' x ST1 sij = tM} .  Then GRAPH is a Borel subset that 
supports a (unique) M-invariant joining of the measures on 9' and ST. 

Proof. Since i f f  is measure-preserving, its graph supports a joining p' of the measures 
on if and STIM. This joining has a natural M-invariant lift to a measure p on 
yxST; namely, J f d p  = J f M  f ( s k )  dk dp l ( s ) .  It is clear that this lift p is supported 
on the inverse image, under the quotient map 9' x ST+ Y X  ST/ M, of the graph of 
i f / .  This inverse image - a Bore1 set - is GRAPH. J 

LEMMA 2.2. Suppose T I  and T2 are ergodic measure-preserving maps on Borelprobabil- 
ity spaces ( Y l ,  p , )  and (Y2 ,  p2 ) ,  and p is a joining of ( T I ,  Y 1 ,  p i )  and ( T 2 ,  y^, p2). 
Then almost every ergodic component of ( T I  x T2,  Y ,  x Y2)  is a joining of ( T I ,  if\, p i )  

and (7 -2 , ^ , ^ ) .  
Proof. Because p is the integral of its ergodic components, and p pushes to the 
measure p1 on Y l ,  it follows that pl is the integral of the measures obtained by 
pushing the ergodic components of p to 9,; since pi is ergodic, this implies almost 
every ergodic component of p pushes to the measure pl on Y l .  Similarly, almost 
every ergodic component of p pushes to the measure p2 on if-̂ . 0 

2.1. Lie theory 

All Lie groups are assumed to be second countable. 
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Notation. For subgroups X and Y of a Lie group G, we use Cx( Y) and Nx ( Y) 
to denote the centralizer and normalizer of Y in X, respectively; x0 is the identity 
component of X. 

LEMMA 2.3. If G is reductive connected Lie group, then G = Z ( G )  . [G, GI, and 
Z ( G )  n [G, G I  is discrete. 

LEMMA 2.4. (cf. [14, Proposition 2.61). Let T be a faithful lattice in a connected, 
reductive Lie group G, and assume there is an ergodic unipotent translation on T\G. 
Then Z ( G )  is compact, and F projects densely into the maximal compact semisimple 
factor of G. 

LEMMA 2.5. Let Y be a lattice in a connected, reductive Lie group G, and assume 
Z ( G )  is compact. Suppose $ is a measurable function on Y\G, and let 

X = { g  e G 1 sg$ = s$ for a.e. s r \G}.  

Then there is a closed normal subgroup N of G, contained in X, such that X / N  is 
compact. 

Proof. Because G is reductive and Z ( G )  is compact, one can show the center of 
any quotient group of G is compact. The Mautner phenomenon [4, Theorem 1.11 
implies there is a closed normal subgroup N of G, contained in X, such that X 
projects to an Ad-precompact subgroup of G/  N ;  since X is closed and Z ( G /  N )  
is compact, this implies X /  N is compact. 0 

LEMMA 2.6. Let G be a connected, reductive Lie group whose center is compact; let 
U be the identity component of a maximal unipotent subgroup of G, and let K be the 
maximal compact semisimple factor of G. If M is a compact subgroup of G normalized 
by both U and K, then M U  G. 

Proof. Suppose first that Z ( G )  = e ;  so G is a real algebraic group. Since M is 
compact, it is a reductive real algebraic subgroup of G, so there is a Cartan involution 
* )  of G that normalizes M [5, 3 2.6, p. 111; hence M is normalized by 
( U ,  U*, K ) =  G. 

Now, even if Z ( G ) # e ,  the preceding paragraph shows AdMOAdG,  so 
M Z ( G )  U G. Since M .  Z ( G )  is compact, then Lemma 2.10 implies every unipotent 
element of G centralizes M -  Z ( G ) ;  in particular, every unipotent element of G 
normalizes M. These unipotent elements, together with Z ( G )  and the maximal 
compact semisimple factor K, generate G, so M U G as desired. 

LEMMA 2.7. Let C, M, and N be subgroups of an abstract group G, so that C M  is a 
subgroup of finite index in G. I f  M c= N, then ( C  n N )  M is a subgroup of finite index 
in N. In fact, \ N : ( C n N ) M \ < \ G :  C M \ .  0 

LEMMA 2.8. If M is a compact subgroup of a connected Lie group H, then C H ( M )  M 
is of finite index in N m ) .  

Proof. The Ado-Iwasawa Theorem [5, 3 P.1.4, p. 31 asserts there is a locally faithful 
finite-dimensional representation IT: H -+ G = GL,,(R).  Let C = c ~ ( M ~ ) ' ^ '  and 
N = N ~ ( M " ) " - ' .  It suffices to show IN: C u ( M ) .  MI <a. 
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Step 1. IC: CH(M)l  <a. Now M/M' is finite, so there is a finite subset {k l ,  . . . , k,,} 
of M with M = (M', k , ,  . . . , k,,). Let F be the unique maximal finite subgroup of 
ker TT, namely, the intersection of ker n with any maximal compact subgroup of H. 
Then C centralizes M F /  F, so for any k e M, we have 1 kc \  5 1 Fl <a. So a subgroup 
of finite index in C centralizes k; so a subgroup Co of finite index centralizes all 
of k l ,  . . . , k,,. But, being contained in C, the subgroup Cn must also centralize M /  F ;  
therefore, Co centralizes MO. Combining these two conclusions yields Co^ Cn(M). 

Step 2. IN: C -  M <a. Since ker TT^- C, it suffices to show INT: C" .  M T < a .  For 
this, it suffices to show 1 NG(MT) :  C G ( M T )  M "  < a (see Lemma 2.7); so we may 
assume H = G and TT is the identity map. Since M is compact, it is (the real points 
of) a real algebraic subgroup of G [IS, p. 401. So N G ( M )  is also an algebraic 
subgroup; therefore, 1 Nc(M):  N ~ ( M ) '  <a [S, 5 P.2.4, p. 101. Let N, %, and M be 
the Lie algebras of NG(M) ,  C G ( M )  and M. Now any representation of a compact 
group is completely reducible, so there is a M-invariant complement V to M in N. 
But M centralizes N / M ,  so it follows that V c <g; therefore, N = % + M ;  therefore, 
N ~ ( M ) ' ~  C ~ ( M ) ' .  M'. 0 

LEMMA 2.9. Suppose u, is a unipotent element of a Lie group G,, and M, is a compact, 
normal subgroup of C, = cc, ( u , )  ( fo r  i = 1,2), and suppose a : C,/  M I  -> C2/ M2 is an 
isomorphism. I f  v is a unipotent element of C l / M l ,  then there is a unipotent element 
v' of G2,  contained in C 2 ,  with v" = vfM2. 

Proof. Lemma 2.8 implies Cz = Cc,(M2) . M2,  so there is some v 'e  Cc/M2) with 
v" = v1M2; we claim v' is unipotent. Since v is a unipotent element of C l /  M I  and 
o- is an isomorphism, v' is unipotent on C2/ M2; since v' centralizes M 2 ,  this implies 
v' is a unipotent element of C2.  It is an elementary fact from linear algebra that if 
T and N are commuting endomorphisms of a finite-dimensional vector space, such 
that both N and the restriction of T to ker(N - Id) are unipotent, then T is unipotent; 
applying this with T = Adv' and N = Adu2, we conclude that v' is a unipotent 
element of G2.  

LEMMA 2.10. Let u be a unipotent element, and M be a compact subgroup, of a 
I 

connected, reductive Lie group G. If u normalizes M, then u centralizes M. 

Proof. Being a unipotent element of the centerless, semisimple real algebraic group 
AdG, the element u = Adu belongs to a one-parameter unipotent subgroup v r  of 
AdG (cf. [S, 5 2.4, p. 101); lift v r  to a one-parameter subgroup v' of G. For any 
k e M, the fact that u normalizes M implies that the image of the map R -> AdG : r -  
~ d k '  is contained in A d M ;  this means the map is bounded. But, because u is 
unipotent, the map is a polynomial; a bounded polynomial is constant, so ~ d k " =  
Adk, for all r e  R. Hence k'" = k (mod Z ( G ) ) ,  for all r e  R. Since Z ( G )  n [G, G I  is 
discrete, and R is connected, this implies 6 centralizes k; since k e M was arbitrary, 
this means 6 centralizes M ;  it follows that u centralizes M, as desired. D 

LEMMA 2.1 1. Let y be an ad-nilpotent element of a (real or complex) reductive Lie 
algebra % If,  for some g - e 3, the commutator [u,  g ]  - is ad-semisimple and centralizes 
y, then [ y ,  g ]  - = 0. 
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Proof. Let k = [ u7 g] .  - Then 

0 = [k k l  = [ k ,  [ Y ,  g l l  = [[k MI, g l+  [L4 [k, g l l  = 10, g l +  [Ã§ [ f c ,  g l l ,  

so [k, C 9 ( y ) .  Since k is ad-semisimple, then g e  - C&)+ Cy(!<-}, so we may 
assume g e C y ( k )  = %; hence, both g and y are in %, so k - [Ã§ g ]  e [W, % ] .  But % 
is reductive, which implies [%, %I nz(%) = 0,  so this implies k z 0 .  

THEOREM 2.12. ('the Ratner Property', cf. [13, Theorem 6.11). Let u be a unipotent 
element of a Lie group G ,  and let M be a compact subgroup of G that centralizes u. 
Given any neighborhood Q of e in C G ( u ) ,  there is a compact subset 8Q of Q, disjoint 
from M, such that, for any e > 0 and M > 0 ,  there are a, 8 > 0 such that, 

i f  s, t e r\G with d ( s ,  t )  < 8, then either: 
(a) s = t c f o r s o m e c e C c ( u )  with d ( e , c ) < 8 ,  or 
(b) there are N > 0 and q e 8Q such that d(su1' ,  tu"q)  < e whenever N 5 n 5 

N+max(M, a N ) .  

Proof. This is precisely the statement of the Ratner property as it appears in [13, 
Theorem 6.11, except that we need 8Q to be disjoint from M ,  rather than just e si9Q; 
only minor changes in the proof are needed. The key observation is that, in [13, 
Lemma 6.21, 77- need not be a projection onto the kernel of T; namely, 77- may be 
any projection onto the intersection of the kernel of T with the image of T. Therefore, 
in [13, Proposition 6.31, q may be chosen in the intersection of ker T with the image 
of T; this shows that the subset 8Q in the Ratner property may be chosen to be the 
exponential of a small set (not containing 0 )  in '3f= [%, y ]  n C&), where exp (Ã§ = 

u. But Lemma 2.1 1 implies that M does not intersect X, so dQ n M = as desired. 

COROLLARY 2.13. ('The Relativized Ratner Property'). Let u be a unipotent element 
of a Lie group G ,  and let M be a compact, normal subgroup of c G ( u ) .  Given any 
neighborhood Q of e in C c ( u ) / M ,  there is a compact subset dQ of Q - e such that, 
for any e > 0 and M > 0 ,  there are a, 8 > 0 such that, 

i f  s, t e r\G/ M with d ( s ,  t )  < 8, then either: 
(a) s = tc for some c e C G ( u )  with d ( e ,  c )  < 8, or 
(b) there are N > 0 and q e dQ such that d ( su l ' ,  tu l 'q)  < e whenever N 5 n 5 

N + max ( M ,  aN) .  

2.3. Isometries and affine maps 

In the geometric formulation of Flaminio's Theorem (1.2),  it is assumed that the 
restriction of I )  to each leaf of the horospherical foliation is an isometry; Proposition 
2.15 shows that the natural algebraic formulation would assume that the restriction 
is an affine map. 

LEMMA 2.14. Let U and V be Lie groups, and i f i :  U +  V be any map. Then + is an 
affine map i f f  it conjugates the group of ( le f t )  translations on U into the group of ( le f t )  
translations on V,  i.e., iff, for each u e U, there is some v e V ,  such that Tu o ifi = ifi 0 T, 
(where T,, or T,, is the ( le f t )  translation by u on U or by v on V ) .  
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PROPOSITION 2.15. (E.  N.  Wilson). Let U and V be connected nilpotent Lie groups; 
make U and V Riemannian manifolds by supplying each of them with a left-invariant 
metric; then every isometry u of U onto V is an afine map. 

Proof. Obviously, the nilpotent group U acts simply transitively on itself by left 
translations, and these translations are isometries; so cr conjugates this nilpotent 
group of left translations on U to a nilpotent group of isometries of V acting simply 
transitively on V. A theorem of E. N. Wilson [12, Theorem 2(4)] asserts that the 
group of left translations on V is the unique nilpotent group of isometries of V 
acting simply transitively on V, so we conclude that cr conjugates the left translations 
on U to the left translations on V. Hence Lemma 2.14 asserts that u is an affine map. 

3. From a foliation to an action 
THEOREM 3.1. Let Lie groups U and V x  M act on standard Borel probability spaces 
(if, cr )  and ( S f ,  r ) ,  respectively. Assume the actions of U and Vare measure-preserving 
and ergodic, that M is compact, and that V ><l M is essentially free on ST. If a measure- 
preserving Borel map $: if+ ST/ M is V-afine on each U-orbit, then $ lifts to a map 
9 + S f /  CM ( V )  that is afine for U via V. 

Proof. Let GRAPH = { ( s ,  t )  l if x S f 1  s$ = t M } ;  lemma 2.1 asserts GRAPH is a Borel 
set that supports a (unique) M-invariant joining p of (9, u )  and ( S f ,  T). 

Step 1. There is a conull U-invariant subset 3" of if such that, for all s e 9" and all 
t l ST with s$ = tM, there is a homomorphism (A = (A,, : U + V with su$ = t u ^ ~  for all 
u e U. Because $ is V-affine on each U-orbit, there is a conull Borel subset A of if 
such that, for any s e A, there is some t e S f  and a surjective homomorphism (A : U + V 
with su$ = t u ' ^ ~  for all u e U. Just because A is conull, there is a conull subset B 
of A such that the conull U-invariant subset BU of 9 is Borel [15, Lemma B.8(i), 
pp. 199-2001. 

We can verify as follows that 3" = BU is as described. Given s = buyâ BU = Y', 
there is some t f i  9, and a surjective homomorphism (Ao: U + V,  such that bu$ = 

t f l ^ ~ M  for all u e U. For any t e ST with s$ = tM, we have t o u $ ~ ~  = buo$ = s$ = tM, 
so there is some k e M with ti,u$k = t. The surjective homomorphism (A: U + V :  u - 
k ' u ^ k  satisfies 

su$ = buou$ = t J z ~ ~ u ) ~ o M  = ( t O u ~ k ) k ~ ' u " ' ~ M  = t u ^ ~ ,  

as desired. 

Remark. There is, of course, no loss in assuming 3" = Y .  We may also assume V x  M 
acts freely on Sf, by removing a null set from S f ,  and removing the inverse image 
of this null set from if. 

Definition. Let Horn (U, V )  be the set of all continuous homomorphisms U + V,  
and give Horn ( U, V )  the countably-generated Borel structure generated by the basic 
sets S S U A  = {(A s Horn ( U, V ) l u ^  e A } ,  where u ranges over a countable dense subset 
of U, and A ranges over a countable collection of Borel sets generating the Borel 
structure on V 
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Step 2. There is a Borel map 4 : GRAPH -Ã Horn ( U, V) : (s, t) ++ (f>,,, such that, for all 
(s, t) e GRAPH and all u e U, we have su$ = tu4-.lM. For any (s, t )  l GRAPH, Step 
1 (amplified by the subsequent remark) asserts there is a homomorphism 4,,,. Since 
V x M  acts freely on ST, this homomorphism is uniquely determined by (s, t). So 
there is a map GRAPH -> Horn (U, V), but perhaps it is not obvious that the map 
is measurable. 

To show the measurability of 4 ,  let u be any element of U, and let A be any 
Borel subset of V; consider the Borel set 

GRAPH,,,A = {(s, t, v) l if x 3 x A1 s$ = t M  and su$ = tvM}. 

Notice that, for any (s, t) e GRAPH, we have 

4,,, â %Ae~4" â I ~ < ^ ~ , ~ A ( S ,  t, V)  â GRAPHu,A; 

thus ( B , , . ~ ) + '  is the image of the natural projection TT: GRAPHu,A + GRAPH. Since 
77- is injective (each fiber is, at most, the single point (s, t, ud'u)), the image of 71- is 
Borel [15, Theorem A.4, p. 1951; thus the inverse image, under 4,  of each basic 
Borel set in Horn (U, V) is a Borel subset of GRAPH, so 4 is Borel measurable. 

Definition. Let U act on GRAPH by (s, t )  u = (SU, tu4'-1); it is easy to see this action 
is measure-preserving, because it commutes with the action of M. Let ( 0 ,  w) be 
(almost) any ergodic component of ( U, GRAPH, p ) .  

Step 3. The measure w pushes to the measure u on 9'; (f>,, = e Horn ( U, V) is 
(essentially) constant on ( 0 ,  a ) ;  and each fiber of w over if is supported on a single 
CM(V)-orbit in ST (a.e,). (1) The proof of Lemma 2.2 shows that almost every ergodic 
component, such as w, of (X, GRAPH, p )  pushes to u on S. (2) A routine calculation 
shows (s, t)- 4,,, is U-invariant, so it is essentially constant on almost any ergodic 
component: there is an w-conull subset 0' of 0 on which 4,,, is constant. (3) For 
almost every s e if, the fiber w, of w over s is supported on 0 ' n  ({s} x ST), because 
a>(nJ) = 1. For (s, t )  e GRAPH, k e M, and u e U a routine calculation shows u ' ' '~J~ = 

k"u4-lk; so, if <f),,& = h,,, then k e C d  V); so, for s e if and t, t ' e  ST, if both (s, t) 
and (s, t') belong to a ' ,  then t and t' belong to the same CM(V)-orbit on V; i.e., 
0 ' n  ({s} x ST) is a subset of a single CM (V)-orbit on ST. 

Step 4. w is a joining of (U, if, u )  and ( V ,  3, T) via 4. By definition, any ergodic 
component, such as w, of the U-action on GRAPH must be (u, u4)-invariant, and 
Step 3 showed w pushes to u on if, so we need only show w pushes to T on 3'. 
(This is not quite trivial, because V does not act on (but only foliates) TIM.)  
Because w is (u, ud)-invariant for all u e U, and U* = V, the measure T' to which 
ID pushes on ST must be V-invariant; and, since M normalizes V ,  any M-translate 
of T' is also V-invariant. The M-action on GRAPH commutes with the U-action, 
so every M-translate of w is U-invariant; because p is M-invariant, this implies 
every M-translate of w is an ergodic component of p ;  because the support of each 
fiber of u, over if is a single M-orbit, this implies p is the average of all the 
M-translates of a>. Pushing to ST, we conclude that T is the average of all the 
M-translates of T'; since T is ergodic for V,  and each of these M-translates is 
V-invariant, this implies T' = T. 
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Step 5 .  (A lifts to a map (Ao : 9' + 91 CM ( V) that is affine for U via V. Let M '  = CM ( V). 
It follows from Step 4 that, under the quotient map 9'x T+ 9' x ST/ M ' ,  the ergodic 
component w pushes to a joining w '  of (U,  9, or) and ( V ,  !Y/ M ' ,  r )  via 4. Since (by 
Step 3) each fiber of w over 9' is supported on a single MI-orbit, each fiber of w' 

over 9' is supported on a single point; so w is the joining associated to some 
measure-preserving Borel map (Ad+ ST/ M'. Because w' is a joining of ( U, 9') and 
( V, W M ) ,  the map (Ao is affine for U via V. Because w is supported on GRAPH, 
the map (Ao is a lift of (A. 

4. Rigidity of translations 
THEOREM 4.1. Let T and A be faithful lattices in connected, reductive Lie groups G 
and H, and let M be a compact subgroup of H that contains no nontrivial normal 
subgroup of H. Suppose u and ii are ergodic, unipotent translations on F\G and A\H, 
and assume e Nu (M) .  v(A : T\ G -> A\ H /  M is a measure-preserving Borel map that 
conjugates the translation by u on \\G to the translation by ii on A\H/ M, then t+h 
lifts to an affine map (A': F\G+ A\H (a.e.). 

We prove Theorem 4.1 by reducing to a known special case: Theorem 1.4 settles 
the case where M = e. Several of the arguments to be used in the reduction were 
used in proving the special case; where practical, we refer the reader to the relevant 
parts of [13] instead of repeating the arguments here. The work is based on 
fundamental ideas developed by M. Ratner [7,8,9]; a short exposition of some of 
these ideas appears in [14, Â 21; a survey of Ratner's work appears in [lo]. 

For technical reasons (discussed after Step 4 of the proof), measure-preserving 
maps are not general enough: (A should be allowed to be a joining with finite fibers 
over F\G, so we will prove Theorem 4.1' instead of Theorem 4.1. For our purposes, 
a technique developed by M. Ratner (see [8, Lemmas 4.2 and 4.41 and [9]) allows 
us to treat finite-fiber joinings in essentially the same way as maps, but at the cost 
of severe notational complications; I will usually pretend that (A is a map, and leave 
it to the reader to transfer the proof to finite-fiber joinings. 

THEOREM 4.1'. Let r and A be faithful lattices in connected, reductive Lie groups G r 

and H, and let M be a compact subgroup of H that contains no nontrivial normal 
subgroup of H. Suppose u and ii are ergodic, unipotent translations on F\G and A\H, 
and assume ii e N H ( M ) .  If (A is an ergodic joining of the translation by u on T\G and 
the translation by ii on A\H/M, and i f  (A has finite fibers over T\G, then t+h is an  
affine joining; i.e., there is a finite cover G' of G, a lattice F' in G ' ,  and a measure- 
preserving affine map 4> : r'\ G'  + A\ H such that, under the natural map r'\ G' x \\ H + 

T\ G x A\ H /  M, the joining on r'\G1 x A\ H associated to 4> pushes to (A. 

The proof of Theorem 4.1' reduces it not quite to Theorem 1.4, but to the following 
more general version that allows finite-fiber joinings. 

THEOREM 1.4'. [14, Theorem 2.11. Let T and A be faithful lattices in connected Lie 
groups G and H. Let u and ii be ergodic, unipotent translations on T\G and A\H. I f  
(A is an ergodic joining of the translation by u on T\G and the translation by ii on 
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A\H, and if (A has finite fibers over F\G, then if/ is an affine joining; i.e., there is a 
finite cover G' of G, a lattice F' in G', and a measure-preserving affine map 4 : F'\Gf + 

A\ H such that, under the natural map F'\ G' x A\ H -+ F\G x A\ H, the joining on 
r ' \G1 x A\ H associated to 4 pushes to if/. 
Proof (of Theorem 4.114.1'). By the descending chain condition on compact sub- 
groups of H, we may assume there is no closed, proper subgroup M '  of M, normalized 
by M, such that (A lifts to a measure-preserving Bore1 map F \ G + A \ H / M 1  that 
conjugates the translation by u on F \G  to the translation by ii on A\H/M1.  Let 

GRAPH = {(s, t) F \G  x A\H\s^ = tM}; 
as explained Lemma 2.1, GRAPH supports a unique M-invariant joining p of the 
invariant measures on V\G and A\H; it's not hard to see that p is (u, <)-invariant, 
i.e., p is a joining of the translation by u on r \ G  and the translation by ii on \\H. 
Let (fl, w) be (almost) any ergodic component of the translation by (u, <) on 
(GRAPH, p ) ;  Lemma 2.2 asserts w is a joining of the invariant measures on r \ G  
and A\H. 

Where convenient (and relatively harmless) we ignore null sets. For example, 
there is a conull u-invariant subset 9' of F\ G such that, for all s e 9' and all t l A\ H 
with sif/ = tM, one has su(A = tMii; we pretend if = r \ G .  

Step 1. C centralizes M. This is a direct consequence of Lemma 2.10. 

Step 2. We may assume there is no proper subgroup M '  of M such that each fiber of 
w over F\G is supported on a single M'-orbit (a.e.). If there is such a subgroup, then 
by the descending chain condition on compact subgroups of H, there is a minimal 
such subgroup, say My; under the natural quotient map F \ G x A \ H +  
r \ G  x A\H/Mo, the measure w pushes to a joining w', and (almost) every fiber of 
w'  over F \G is supported on a single point: this means w' is the joining associated 
to a map (A': F \ G +  A\H/ Mo; this map conjugates the translation by u on F \G to 
the translation by ii on A\H/Mo.  We can replace if/ with i f / ' ,  and M with Mo; the 
minimality of Mo implies it has no proper subgroup M' of the specified type. 

Step 3 (cf. [13, Lemma 3.11). if/ is afine for Cc(u)' via CH(ii)O. Let c be any small 
element of Cc(u). The polynomial divergence of 6-orbits on H I M  can be used, 
in the style of M. Ratner [7, Lemma 3.21 (see also [13, Lemma 3.11 and [2]), to 
show, for a.e. s l r \ G ,  that for any t e A \ H  with (s, t )  l GRAPH, there is some 
small Z,,, e CH(ii) with (sc, st,,,) e GRAPH. (Note that Z,,, is unique (mod M )  because 
CH(<)  is essentially free on A\H [13, Lemma 2.81.) 

We wish to find some c'e NH(M)  such that c',,, e c'M for (almost) all (s, t ) e  
GRAPH. For (s, t)  GRAPH, it follows from the fact that GRAPH is invariant 
under translation by (u, u), that both (sue, tiETwu) and (scu, t&G) are in GRAPH. 
Since scu = sue and t&ii = tZ,,, then the uniqueness of &,,u implies L, , ;  E &,,Mi 
it immediately follows that t = c,, is (essentially) constant (mod M )  on almost any 
ergodic component, such as ( 0 ,  w), of p .  A simple calculation shows, for k e  M, 
that Z,,,), e k l c \ , ,  M; if both (s, t)  and (s, tk) are in the support of the fiber of o) over 
s, this implies ? k c '  e M ;  and hence k e M n ( c 'Mt l ) .  Then Step 2 implies 
M n is not a proper subgroup of M ;  hence Z e NH (M). 
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For (almost) any (s, t )  GRAPH, there is some k e M such that (s, tk) is in the 
support of the fiber of w over s ;  hence t,,,,; e tM. Therefore t,,, e k ' t , , , k ~  = k l c M  = 

cM, as desired. 

Definition. Let Stabo ($) = {g e G ] sg<A = s$ for a.e. s e F\G} and Aff ($) = 

{g e G 1 $ is affine for g } .  Note that StabG ($)<I Affo ($), because the kernel of a 
homomorphism is always a normal subgroup. 

Step 4. We may assume Stabc (<A)  is compact, and that the fibers of 
6 :  r \G/S tabo  ($)+ A \ H / M  are finite (a.e.). The Mautner phenomenon implies 
there is a normal subgroup N of G, contained in Stabo ($), such that Stabo ( $ ) I N  
is compact (see Lemma 2.5); replacing G with G /  N, we may assume N = e, so 
Stabc ($) is compact. Now, following an idea of M. Ratner [9, Theorem 3, and 8, 
Lemma 3.11, much as in the proofs of Lemmas 7.4 and 7.5 of [13], we can use the 
shearing nature of unipotent flows (Corollary 2.13) to show that the fibers of 4 are 
finite (a.e.), i.e., that there is a conull subset 9 of r\G/Stab<-,  ($) such that, for all 
t e A\H/  M, the inverse image ( t ~ , ' )  n 9' is finite. 

Remark. If each fiber of if/ is a single point, then 6 is one-to-one, i.e., invertible; 
its inverse induces a map ( A '  : A \ H  + r \G/StabG ( (A)  that conjugates the translation 
by ii on A \ H  to the translation by u on r \G/Stabc ($); anything we've proved 
about $ must also be true for ( A '  (after allowing for the interchange of G and H, 
and so forth). This observation will be crucial in Steps 5, 6, and 7 of the proof; to 
salvage this observation for the case where the fibers of iff are not assumed to be 
single points, we need to allow ( A '  to be a joining with finite fibers over A\H;  it 
is for this reason that we need the more general hypotheses of Theorem 4.1'. But, 
for simplicity, I will pretend 6 is invertible and ignore the need for finite-fiber 
joinings. 

Step 5. For any unipotent element v of cc(u)O, there is a unipotent element 6 of 
Nu ( M ) ,  with sv$ = s$ 6 for a.e. s e r\ G. For convenience, let Mo = M n cH (ii)'. 
Step 3 provides us with a map - :  cG(u) '+ ( C H ( i i ) n  NH(M)) /M.  Step 4 (or the 
subsequent remark) asserts that 6 is invertible, and there is a corresponding map 
( A ' :  A \ H + r \ G / S t a b G  ((A); applying Step 3 to I , '  provides us with a map , 

C ~ ( U ) ~ / M ~ ) +  Co(u)/Stabo ($); this map is an inverse to -; we conclude that 
M o d  CH (6)' and that 

is an isomorphism. Now Lemma 2.9 asserts that, for any unipotent element v of G 
belonging to cC(u)O, we can choose C to be unipotent, as desired. 

Step 6 [13, Lemma 7.31. Stabo ($)<I G, so we may assume Stabo ((A) = e. Let (7 be 
the identity component of any maximal unipotent subgroup of G that contains u. 
Using the Moore Ergodicity Theorem (cf. [13, Theorem 2.14]), it is easy to find an  
element v in the center of U such that v is ergodic on F\G. Step 3 implies $ is 
affine for v, and Step 5 asserts that we can choose C to be unipotent; then the 
hypotheses of Theorem 4.1 are satisfied if we put v in the place of u and 6 in the 
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place of C; in this situation, Step 3 implies $ is affine for CG(Z(U))O;  in particular, 
$ is affine for U and for the maximal compact factor K of G. Since StabG ($)U 
Affc ($), this implies StabG ($) is normalized by U and K. Because StabG ($) is 
compact (Step 4), it follows that Stabc ($) is a normal subgroup of G (see Lemma 
2.6), and as there is no loss in modding it out, we may assume Stabo ($) = e. 

Step 7 .  M = e, so Theorem 1.4 asserts is affine (a . e . ) ,  as desired. Step 4 (or the 
subsequent remark), together with Step 6, implies that $ is invertible. Then 
$ I  : \\H/ M + T\G induces a map I + '  : A\ H + r\ G that is affine for C via u ;  now 
Stab" ( < A 1 )  = M, so, with < A 1  in the role of $, Step 6 asserts M Q H - but M contains 
no nontrivial normal subgroup of H, so this implies M = e. Hence $ : r \ G  + A\H 
satisfies the hypotheses of Theorem 1.4, which implies that I,!I is affine. 
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