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Abstract 

We prove tha t  each real semisimple Lie algebra g has a Q-form go, 
such that  every real representation of go can be realized over Q. This 
was previously proved by M.  S. Raghunathan (and rediscovered by 
P. Eberlein) in the special case where g is compact. 

1 Introduction 

All Lie algebras and all representations are assumed to be finite-dimensional. 
It is easy to see, from the theory of highest weights, that if g is an R-split, 
semisimple Lie algebra over R, then every C-representation of g has an R- 
form (see 3.1). (That is, if Vc is a representation of g over C, then there 
is a real representation V of g, such that Vc E V (SK C.) Because every 
semisimple Lie algebra over C has an R-split real form, this leads to the 
following immediate conclusion: 

Remark 1.1 Any complex semisimple Lie algebra gc has a real form g, 
such that every C-representation of g has a real form. 

In this paper, we prove the analogous statement with the field extension 
C replaced with R/Q. 

Theorem 1.2 (see 2.6(2)) Any real semisimple Lie algebra g has a Q- 
form go, such that every real representation of go has a 0-form. 

'Former name: Dave Witte. 
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In the special case where g is compact, the theorem was proved by 
M. S. Raghunathan [R,2, 531. This special case was independently rediscov- 
ered by P. Eberlein [El, and a very nice proof was found by R. Pink and 
G. Prasad (personal communication, see $4). When g is compact, these 
authors showed that the "obvious" Qform of g has the desired property. 

At, the other extreme, where g is K-split, we may take go to be any 
Q-split Qform of g (see 3.1). 

The general case is a combination of the two extremes, and the desired 
f o r m  can be obtained from a Chevallcy basis of g @R C by slightly mod- 
ifying a construction of A .  Bore1 [B] (see $6). We give two different proofs 
that this Q-form has the desired property: one proof is by the method of 
Pink and Prasad, using a little bit of number theory (see 54), and the other 
proof is by reducing to the compact, case, so R,aghunathanls theorem applies 
(see $5). 

I t  would be int,eresting to  characterize the semisimple Lie algebras g~ 
over Q, such that every real representation has a Q-form. For example, 
work of J. Tits [TI implies that every Q-form of sp(n) has this property 
(see 7.2). On the other hand, it, is important to  note that there exist 
examples of Q(z)-split Lie algebras that do not have this property (see 7.4). 
(Real representations of such a Lie algebra can be realized over both Q(i) 
and R, but not over Q(i) fl Kt = Q.) 
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a,nd Nilabh Sanat, for explaining part, of Lemma 7.6 to me. The research 
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(DMS-9801136 and DMS-0100438) and the German-Israeli Foundation for 
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2 More Precise Statement of the Main Result 

Proposition 2.1 (Pink, Prasad, see $4) Suppose G i s  a connected, re- 
ductive algebraic Q-grou,p. If 

a. G i s  split over  s o m e  imaginary quadratic extension F of Q, and 
b. G i s  quasi-split over  the  p-adic field Qp ,  for every  odd pr ime  p, 

t h e n  each irreducible Q-representat ion of G remains  irreducible over R. 

This can be restated in the following equivalent form. 

Definition 2.2 Suppose (n, V) is a real representation of an algebraic Q- 
group G. A Qsubspace VQ of VR is a Q - f o r m  of (n,  V) if 

VQ is Go-invariant, and 
V is the (Q-span of an R-basis of VR (so VR E VQ @Q R). 

Corollary 2.3 (see 3.3) If G i s  as  i n  Proposition 2.1, t h e n  every real 
representation of G has a Q - f o r m .  

Proposition 2.4 (see 56) Every  connected, s imply  connected, semisimple  
real algebraic group has a Q - f o r m  satisfying t h e  hypotheses o f  Proposi- 
t ion  2.1. 

Combining Proposition 2.4 with Proposition 2.1 and Corollary 2.3 im- 
mediately yields the following conclusion. 

Definition 2.5 Suppose 

g is a Lie algebra over Q, and 
(n, V) is a real representation of g ~ .  

A Qsubspace VQ of V is a Q - f o r m  of ( T T ,  V) if 

VQ is go-invariant, and 
Va is the Qspan  of an R-basis of V (so V VQ @Q R). 

Corollary 2.6 A n y  real semisimple  Lie  algebra g has a Q-form go, such 
that  

1. ifVo i s  a n y  irreducible Q r e p r e s e n t a t i o n  of go, t h e n  the  R-representa- 
t i o n  VR = VQ @Q R i s  irreducible; and 

2.  every  real representation of go has a Q-form.  

I See Theorem 5.2 for a version of Proposition 2.1 that replaces 2.1(b) 
with a quite different hypothesis, due to M. S. Raghunathan. The Q-form 
constructed in $6 also satisfies this alternate hypothesis, so this yields a 
different proof of Corollary 2.6. 
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3 Preliminaries 

The following is well known (see, for example, [T, Theorem 2.51). 

Lemma 3.1 Let F be a su,bfield of C, g be a semisimple Lie algebra over F ,  
and Vc be a ^.-representation of g. If g is F-split, then V has an F-form. 

Proof Let t be a maximal F-split torus of g. Because every representation 
of g is a direct sum of irreducibles, we may assume Vc is irreducible; let 
A be the highest weight of Vc (with respect to some ordering of the roots 
of t) .  Since A is a character of the F-split torus t, we know that A(tp) C F .  
So there is an F-representation Vp of g with highest weight A. Hence, 
Vp (SF C Vc, so Vp is (isomorphic t,o) an F-form of Vc. 

For future reference, let us record the following consequence of this fact. 

Corollary 3.2 Suppose, for some quadratic extension F of Q, that g is an 
F-split, semisirnple Lie algebra over Q. 

1. If Vp is any irreducible F-representation of gp, then Vr is irreducible. 

2. If VQ is any irreducible Q-representation of g, then Vc is either irre- 
ducible or the direct sum of two irreducibles. 

Proof (1) The proof of Lemma 3.3(<=) below shows that this is a conse- 
quence of Lemma 3.1. 

(2) Write F = Q[y/r], for some r E Q. Because Vp = VQ + i/rVQ 
(and VQ is an irreducible go-module), we know that the gp-module Vp is 
either irreducible or the direct sum of two irreducibles. Then the desired 
conclusion follows from (1). 

The following observation must be well known. The direction (+) can 
be found in [R2, $31. 

Lemma 3.3 Suppose G is a connected, semisimple algebraic group over Q. 
Every irredu.cible Q-representation of G remains irreducible over R if and 
only if every real representation of G has a Q f o r m .  

Proof (+) Let V be a (^-representation of G, such that Vs is reducible. 
(We wish to show that V is reducible.) We may write VK = Ul @ U 2 ,  for 
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some nontrivial R-representations Ul and U2. By assumption, there exist 
Qrepresentations Vl and V2, such that (V,)R 2 Uj. Then 

Thus, V is isomorphic to VI @ Vv over R. Since both V and Vl @ V2 are 
defined over Q, this implies that V is isomorphic to  Vl @ V2 over Q. (The 
g-equivariant maps from VR to (VI @ V2)R form a real vector space that is 
defined over Q, so the Qpoints span.) Thus, V is reducible. 

=>)  Let V be a real representation of G. Because representations of G 
are completely reducible, we may assume that V is irreducible. To simplify 
notation (and because this is the only case we need), let us also assume 
that G is split over some imaginary quadratic extension F of Q. Then Vc 
has an F-form U. Let UIQ be the Qrepresentation obtained by viewing U 
as a vector space over Q. 

Now write U\o = Ul@.  . Â ¥  UT as a direct sum of irreducible Qmodules. 
Then 

VC\R = Uc\R ^ ( ~ I Q ) R  ^ ( U i h  @ ' '  ' @ (Ur)R- 

Since V is a submodule of VC\R (indeed, VclR is the direct sum V W  of 
two copies of V), and, by assumption, each (Uj)^ is irreducible, we conclude 
that V is isomorphic to (U^)R, for some j .  So (up to  isomorphism) Uj is a 
Qform of V. 

We also use t,he following (special case of a) result of J .  Tits [T, Theo- 
rems 7.2(i) and 3.31 that applies to the quasi-split case. In our applications, 
F will be a p-adic field Qp (see 2.1 (b)). 

Proposition 3.4 (Tits) Let F be a field of chacterzstzc zero, G be a con- 
nected, reductive algebraic F-group, and (ir, V) be an, irreducible F-represen- 
tation of G.  If G is quasi-split over F ,  then Endo(V) is commutative. 

Proof By assumption, G has a Bore1 subgroup B that is defined over F .  
Let v G V be a nonzero vector that is fixed by every element of the unipotent 
radical of B,  let F be the algebraic closure of F ,  and let Vp = V (S>p F.  

Schur's Lemma asserts that Endc; ( V )  is a division algebra. By enlarg- 
ing F ,  we may assume that F is the center of Endo(V), so 
EndG(VF) = EndG^) @^ F is a simple algebra, which implies that Vp 
is isotypic: we have Vp = W @ . . . @ W, for some irreducible gF-module W. 
This implies that v is a weight vector (that is, an eigenvector for ir(B)), so 
V is a highest-weight module. Therefore End#) = F ,  which is abelian, 
as desired. 

0 
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The method of R. Pink and G .  Prasad utilizes the following classical 
result of number theory. It  is obtained by combining the Hasse Principal (or 
local-to-global pinciple) with the fact that the sum of the local invariants 
of a quaternion algebra (or, what is the same thing, of a quadratic form) 
is 0 (so, if all but one of them vanish, then they all must vanish). 

Lemma 3.5 (cf. [Se, Corollary 3.2.3, p.  431) Let  C be a quaternion di- 
v is ion algebra over  Q. If C splits over Qp, for every  odd pr ime  p, t h e n  C 
does not split over  R. 

Remark 3.6 The exceptional prime 2 can be replaced with any other 
prime in Lemma 3.5: if there is a prime po, such that G is quasi-split 
over the p-adic field Qp, for every prime p # po, then C does not split 
over R. But we have no need for this more general (and somewhat less 
concise) version. 

4 The Method of Pink and Prasad 

Proof of Propos i t ion  2.1 Suppose (TT, VQ) is an irreducible representa- 
tion of G over Q. Let 

C = EI~( I~ (VQ)  

be the centralizer of r (GQ)  in EndQ(VQ). Then Schur's Lemma tells us that 
C is a division algebra over Q. 

Because G splits over the quadratic extension F, we know that Vr is 
either irreducible or the sum of two irreducibles (see 3.2(2)).  

Case  1. Assu,me I+ i s  'irreducible. In this case VR is obviously irreducible. 

Case  2. Assu,me Vr i s  th,e direct s u m  of two  irreducibles that  are n o t  iso- 
morphic .  From the assumption of this case, and the fact that G splits 
over F, we know that Vp is the direct sum of two irreducibles that are not 
isomorphic. Therefore, Endc;̂ ) 2 F F ,  so C ̂ SQ, F % F (B F .  

Write F = Q[d̂ T], for some r 6 Q+ . 

Because F 8 F is comrnut,ative, we know that C is commutative, so 
C is a field. 

Because dim;?(F (B F) = 2, we know that dimQC = 2. 
Because C @Q F = C [ m  is not a field, we know t,hat C contains a 
root of x q  r .  

We conclude that C % F. Therefore 

is a field. So Vs. is irreducible. 
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Case 3. A s s u m e  Vc i s  the direct s u m  of two irreducibles that  are zsomorphic. 
In this case, we know that Endc-(Vc) S Mat2x2(C) is 4-dimensional over C. 
Since EndG(&-) S C @Q C, we conclude that C is 4-dimensional over Q. 
Thus, C is a quaternion algebra over Q. 

For every odd prime p, Proposition 3.4 (and the fact that C @Q Qp is 
not commutative) implies that VQ is reducible, so C @Q Qp = Endc;(vQ) 
is not a division algebra. In other words, C splits over Qp. 

Now, Lemma 3.5 asserts that C does not split over R. This means 
that EndG(VR) Z C @Q IR is a division algebra. We conclude that VR is 
irreducible, as desired. 

Remark 4.1 From the proof (and Rem. 3.6), it is clear that the excep- 
tional prime 2 can be replaced with any other prime in Condition 2.1(b): it 
suffices to assume that there is a prime po, such that G is quasi-split over 
the p-adic field Qp, for every prime p # po. The case po = 2 is all we need 
for our proof of Corollary 2.6. 

5 Reducing to the Compact Case 

Definition 5.1 Suppose G is a connected, reductive algebraic Qgroup. 
Let 

S be a maximal Qsplit torus of G; 
C = CG(S) be the centralizer of S ;  
MI be the (unique) maximal connected, semisimple subgroup of the 
reductive group C ;  
T be a maximal Qtorus of MI; 
a+ be the positive roots of (mk, b-) (with respect t o  some ordering); 
and 

be the set of negative roots. 

We call M'  the semisimple anisotropic kernel of G. 
We say that, the lon,gest element of the W e y l  group of the anisotropic 

kernel of  G is  realized over Q if there is some w 6 NM!  (T)Q, such that 

Here, as usual, the normalizer N M ~  (T)  act,s on t* by 

w(X) ( t )  = ~(w' l tw).  

It is important t,o notice (from the subscripts in NMl (T)Q) that w is required 
to  be in the semisimple group MI, and that w is required to  be a Qelement. 
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Theorem 5.2 Suppose G i s  a connected) reductive algebraic Q-group.  If 

a .  G is  split over  s o m e  imaginmry qv,adratic extension F of Q, 

b. Q r a n k  G = R-rank G )  and 

c, the  longest e l ement  of the  W e y l  group of t h e  anisotropic kernel of G 
i s  realized over  Q, 

t h e n  each irreducible Q-representation of G remains  irreducible over  R. 

M.S. Raghunathan [R.2, $31 proved Theorem 5.2 in the special case where 
G is semisimple, and R-rank G = 0 (in other words, G is compact). The 
following result shows that the general case follows from this. 

Proposition 5.3 Suppose G i s  a connected, reductive algebraic group over  
Q, and let M' be t h e  semisimple  anisotropic kernel  of G .  Suppose tha t  
G i s  split over  s o m e  imaginary  quadratic extension F of Q, Q-rank G = 
R-rank G ,  and every irreducible Q-representation of M' remains  irreducible 
over  R. T h e n  every irreducible Q-representation of G remains  irreducible 
over  R. 

Remark 5.4 There is no need to assume that the quadratic extension F 
is imaginary in (5.2) or (5.3): if F is real, then the hypotheses imply that 
G is Q-split, so Lemma 3.1 applies. 

Before proving the proposition, let us state a simple lemma, which re- 
duces the const,ruction of Qforms of representations of G to the same prob- 
lem for certain representations of a minimal parabolic P. It  is similar to  
the usual construction of highest weight modules. 

Lemma 5.5 Let  g be a semisimple  Lie  algebra over  Q, t be a max imal  
Q-spl i t  torus  of g ,  @Q be the  sys tem o f  Q-roots of (g, t ) ,  p be a m i n i m a l  
parabolic Q-subalgebra of g that  contains t, V be a n  irreducible, real g- 
module ,  and \ : t Ã‘) Q be the highest w~ei.ght o f  V ,  with  respect t o  the  
ordering of @Q &terminfed by the  parabolic p. If there exists a p-invariant 
Q - f o r m  of the  weight space VA,  then  th,e r e p r e ~ e n ~ t a t i o n  V has a Q- form.  

Proof Let W be a p-invariant (Q-form of V A ,  let AQ be the base of QQ 

determined by p, and let be t,he Qspan  of 

Step  1. i s  g- invariant .  From the definition of El it is obvious that 
[ y p a ,  E] C @ for all a. 6 AQ. Also, because both the centralizer cn ( t )  and 
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the root space grÃ are contained in p, it is not difficult to see (by induction 
on k )  that [cg (t), @] c E and [go, E] c 2, for all a E AQ. Since 

we conclude that @ is g-invariant 

Step  2. @ spans V over  R. The R-span of is a submodule of V. so the 
desired conclusion follows from the fact that V is irreducible. 

Step  3. If a h  . . . , a,r are real numbers  t h a t a r e  linearly independent  over  0, 
and wl, . . . , wT are nonzero elements  of W ,  t h e n  ELl a j w j  # 0. Suppose 

a m  = 0. (This will lead to a contradiction.) 

Since yl ys . . y o  6 V A a l ' ' ' - a  for w, k and y, as in (5.1), we see 
that - 

\ v n v A  = w (5.2) 

and 

E = ( B ( t V n v ~ ) .  (5.3) 
pe r  

Because of (5.3), we may assume there is some weight p,  such that w j  E V^' 
for all j .  (Project to some V11, and delete the wils whose projection is 0.) 

Because V is irreducible, and A is the highest weight, there exist 771 6 N 
and X I , .  . . , xm 6 U a e ~ Q g a ,  such that x1 Â ¥  xmw1 is a nonzero element 

of v'. From (5.3), we see that XI  Â ¥  . xmwj E VA for every j .  Hence, (5.2) 
implies that xi  . x m ~ j  E W for all j .  Since 

and W is a Q-form of VA,  this implies that xl Â ¥  - x m ~ j  = 0 for every j .  
This contradicts the choice of X I , .  . . , x,,. 

Step  4. Complet ion of proof. From Steps 2 and 3, we see that the natural 
scalar-multiplication map R @Q W -+ V is a bijection. So W is a Q-form 
of the vector space V. By combining t,his with Step 1, we conclude that 
is a Q-form of the representation. 
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Proof of Proposition 5.3 We consider two cases. 

Case 1.  A s s u m e  tha t  the  semisimple part of GR i s  compact.  We may write 
G = M'AT, where M'  is connected and semisimple (so, by assumption, 
MA is compact), A is a Qsplit torus and T is a torus that is anisotropic 
over Q. Let V be an irreducible Qrepresentation of G. Since A, being 
a Qsplit, central torus, acts by scalars, we know that V is an irreducible 
Qrepresentation of M'T. 

Subcase 1.1. A s s u m e  T acts  trivially o n  V. Then V is an irreducible Q 
representation of M', so, by assumption, it remains irreducible over R. 

Subcase 1.2. A s s u m e  T acts  nontrivially o n  V. Because TF is an F-split, 
central torus, its Lie algebra defines an action of F on V that centralizes M'. 
Thus, we may think of V as an irreducible F-representation of M'. Let us 
say VQ = Wp'; then VR = We. Because M' is F-split, we know that We is 
irreducible (see 3.2(1)). 

Because Qrank  T = 0 and Qrank G = R-rank G,  we see that R-rank T = 
0, which means TR is compact, so the Lie algebra of T acts by purely imag- 
inary scalars on We. Thus, any M'T-invariant R-submodule of VR is an 
MI-invariant C-submodule of We. Hence, the conclusion of the preceding 
paragraph implies that VR is irreducible. 

Case  2 .  T h e  general case. Given a representation V of G over R, we wish 
to  show that V has a Qform (see Lemma 3.3). Because representations 
of G are completely reducible, we may assume that V is irreducible. 

Let P b e a  minimal parabolic Qsubgroup of G,  let T be a maximal 
Qsplit torus of PI and A be t,he highest weight of V (with respect to  T 
and P ) .  

Now VA is Co(T)-invariant, so, from Case 1, we know that the vector 
space VA has a Qform U that is CG(T)Q-invariant. Then, since the unipo- 
tent radical of P acts trivially on v\, we know that U is Po-invariant. So 
Lemma 5.5 implies that V has a Qform. 

6 Construction of a Good Q-form 

In this section, we provide an explicit construction of a Qform of G that 
satisfies the hypotheses of both Proposition 2.1 and Theorem 5.2. Our main 
theorem (1.2) could be obtained from a Qform that satisfies the hypotheses 
of either one of these results, but it is interesting to  note that we are able 
to  satisfy both of them simultaneously. 
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Proposition 6.1 If G i s  a connected, s imply  connected, semisimple  alge- 
braic R-group, t h e n  G h,as a Q - f o r m ,  such that  

1. G i s  split over  Q(i) , 
2. G i s  quasi-split over  the  p-adic field Q p ,  for every  odd pr ime  p, 
3. Qrank G = R-rank G, and 
4. every e lement  of the  W e y l  grou,p of the  anisotropic kernel  o f  G is  

realized over  Q. 

The argument is a straightforward adaptation of A. Borel's [B] classical 
proof of the existence of an anisotropic Qform. 

Actually, like Borel, we do not directly construct Go itself, but only the 
Lie algebra go, so, to avoid problems in passing from the Lie algebra to  the 
group, we need to make some assumption 011 the fundamental group of G. 
(It needs to be a Qsubgroup of the universal cover G.) Therefore, the 
statement of Proposition 6.1 requires G to be simply connected. Alterna- 
tively, one could require G to be adjoint, instead of simply connected, but 
the situation is not obvious for some intermediate groups that are neither 
adjoint nor simply connected. 

Remark 6.2 As a complement to our explicit construction, it might be 
possible to  use theorems of Galois cohomology to give a more elegant proof 
of Proposition 2.4. In this vein, G. Prasad (see [O, Proposition 6.41) gave 
a very short proof of the existence of a Qform satisfying 6.1(1) and 6.1(3); 
perhaps a clever argument can yield 6.1(2) and/or 6.1(4), as well, but they 
do not seem to be obvious. 

Let us set up the usual not,ation. 

Notation 6.3 

g is a real semisimple Lie algebra; 
0 K(Â¥ Â ¥  is the Killing form on g; 

1} is a maximal torus (i.e., a Cartan subalgebra) of g; 
@ is the set of roots of (gc, 1 1 ~ ) ;  

0 ha is the unique element of f)c, such that a ( t )  = ~ ( t ,  ha) for all t ? 
(for each a E @);  
h", = 2ha /~ . (& ,  hn)(for each a â a); 

0 (gc)= is the root space corresponding to a G @; 
0 6 is a Cartari involution of g, such that 6(If) = f) (we also use 6 to 

denote the extension to  a C-linear automorphism of gc); 
g = E + p is t,he Cartan decomposition of g corresponding to 9 (i.e., E 
and p are the +1 and -1 eigenspaces of 6, respectively). 
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Because O(4) = t), we see that 6 induces a permutation of $: we have 
O((gc)a) = (gc)qo) .  

The following lemma is a slight modification of a result of Borel 
[B, s3.2 and Lemma 3.51 that extends work of Chevalley and Weyl. (See 
[B, p. 116 and footnote on p. 1171 for some historical remarks.) We follow 
Borel's proof almost verbatim. However, Borel assumed that the Cartan 
subalgebra [5 contains a maximal R-anisotropic torus of g, and, using this 
assumption, he obtained a stronger version of (3): 6(xa) = Â±xgia\ 

Lemma 6.4 (Borel, Chevalley, Gantmacher, Weyl) Assume the no- 
tation of (6.3). 

There is a function Ã‘> g: a i-> xa, such that, for a, @ 6 a, we have 

and pa,p > 0 is the greatest integer such that a - pag/3 6 $; 

Proof [B, s3.2-s3.51 or [Rl,  Chap. 141 Fix a Chevalley basis 

of g. Chevalley [C] showed that this satisfies (1) and (2). 

Step 1. W e  may assume (4) holds. R,ecall that all of the maximal compact 
subgroups of any connected Lie group are conjugate to each other, and 
that all of t,he maximal toruses of any connected, compact Lie group are 
conjugate to  each other. Thus, since the LHS and RHS of (4) are maximal 
compact subalgebras of gc that contain the maximal torus zap$ ?'Rho, 
they are conjugate, via an autornorphisrn of gc that normalizes Eoc+ iIR&. 
Hence, by replacing {xa jccN with a conjugate, we may assume (4) holds. 

Step 2. For each a E a, define co E C hy O(xa) = caxgia); then 
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and 
C ~ C Q  = Â ± c a +  for all a,  jj ? a ,  such that a + jj ? a. (6.3) 

Note that 

Because 6(h^,) = (since 6 is an automorphism that fixes ()), this 
implies that C ~ C - ~  = 1, which establishes part of (6.2). For the other part, 
we use the fact that f f 2  = Id to calculate 

To establish (6.3), note that p0(~).0(i3} =  pa,^ (because 6 is an automor- 
phism), so Nu(a),9{i3) = = ~ Z N ~ , ~ .  Now use the fact that 

Step 3. We may assume (3) holds. Let A be a basis of (with respect 
to some order). Then A is a basis of the dual space ()*, so there is some 
h 6 be, such that e"^ = ca, for every a ? A. Then, from (6.3), we see, by 
induction on the length of a, that ea^ = Â±ca for every a 6 a+. Because 
c = l /ca ,  then we have em^ = *ca, for every a Â a .  

For each a Â a, let x' = ea(1L) /2xQ,  Then it is easy to see that (1) 
and (2) hold with x', in the place of xW 

Because 6(t + i p )  = E + zp, we see from (4) that c - ~  = z. Then 
- 

1/co = c _ ~  = ca, solcal = 1. Therefore, a (h )  is pure imaginary for every 
a G A. By linearity, then a (h )  is pure imaginary for every a G a, SO 

e-a(h)/2 = ea(h)/2, for every a ? a .  Thus, (4) holds with x', in the place 
of xQ. For any a E @, we have 

Thus, (3) holds with x; in the place of xa. 
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Proposition 6.1 is obtained quite easily from this lemma. Most of the 
argument we give is based on [B] or [Rl ,  Chap. 141. However, Steps 6 and 7 
are from [R2, 521, and Steps 8 and 9 are based on suggestions of G. Prasad 
(personal communication). 

Proof of Proposition 6.1 We begin by establishing notation 

0 Let g be the Lie algebra of G. 

Choose a maximal torus IJ of g, such that R-rank IJ = R-rank g. 

Assume the not,ation of (6.3). 

Let t = 4 n p (so t is a maximal R-split torus of g). 

0 Let {xa}ae-si be as in Lemma 6.4. 

Let g ~ ( % )  be the Q(i)-span of {K, xa}a- in gc = Q @R C. 

0 Let t ) ~ ( , )  = f)c D g ~ ( , )  be the Q(z)-span of {/$}ae+ in gc. 

Let 0Q = 0Q(,) fl g. 

We will show that g~ is a Qform of g, and that the corresponding Q-form 
GQ of G satisfies all the hypotheses of Proposition 6.1. 

Step 1. ~ Q H )  is a split <Q(i) -form of ~ c ,  with l ) ~ ( i )  being a Q(t) -split maximal 
torus. It is clear that g ~ ( % )  is a Q(i)-form of gc (because it is the Q(i)-span 
of a basis, and is closed under brackets). It is split because it contains a 
Chevalley basis of gc, and IJQ(,) is the maximal split torus corresponding 
to this basis. 

Step 2. Each of 6 and p is the R-span of its intersection with go. Because 
each of these subspaces is contained in g, it suffices to  prove the conclusion 
with g~ replaced by go(,). 

Let UQ = (6 + ip) D gQ(2). Then UQ is a Qsubspace of 6 + ip. Indeed, we 
see, from 6.4(4), that llQ is a Qform of the real vector space 6 + ip. 

Now 6 + iip and ~ Q ( O  are @-invariant (for the latter, see 6.4(3)). So 
UQ is 0-invariant. This means that, with respect to  the Q-form UQ, the 
linear transformation is defined over Q. Since the eigenvalues (Â±I 
are rational, we conclude that the eigenspaces are spanned (over R) by the 
rational vectors, that is by elements of UQ. Concretely, this means that the 
R-span of 6 n UQ is 6, and the US-span of ip n UQ is ip. The first is exactly 
what we want to know about 6. Multiplying by i transforms the second 
into exactly what we want to  know about p .  

Step 3. g~ is a Q-form of g. Because g and gwq are closed under brackets, 
it is clear that g~ is a subalgebra of g. We just need to show that its R-span 
is all of g. 
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From Step 2, we know that the R-span of go contains both t and p .  
Therefore, it contains t + p = g. 

Step 4. g~ splits over Q(i).  We already pointed out in Step 1 that g ~ ( i )  is 
split. 

Step 5. Qrank go = US-rank g. Because t = f) ("l p is a maximal R-split torus 
of g, it suffices to  show that t is (defined over Q and) Qsplit. 

Substep 5.1. t is defined over Q. From Step 3, we see that g ~ ( i )  = g ~ + i g ~ ,  
so, for any (real) subspace X of g, we have Xc n g ~ u )  = (X ("I gQ)c. Thus, 
if Xc is the R-span of its intersection with g ~ ( ; ) ,  then X is the R-span of 
its intersection with g ~ ,  i.e., X is defined over Q. 

It is clear, from the definition of that bc is the R-span of its 
intersection with Hence, from the preceding paragraph, we conclude 
that  f) is defined over Q. From Step 2, we know that p is also defined over Q. 
Hence, the intersection t = f) ("I p is defined over Q. 

Substep 5.2 .  t is is Q-split. Let T be the Qtorus of G corresponding 
to t. We know that T splits over R, so x(TR) C R, for every character x 
of T .  Because t c f), and h splits over Q(z) (see Step l), we know that 
~ ( T Q )  c Q(z), for every character x of T .  So ^(To) C R ("I Q(i) = Q, for 
every charact,er x of T ;  hence, T is Qsplit. 

Step 6. For each a ? $, let 

If a{t) = 0, then (gka)o z su(2)o (for the usual Q-form on SU(2)). 
Because t is a maximal R-split torus, the assumption on a implies that 
(gc)= C EC (and the same for -a). So, using 6.4(4), we see that 

Therefore 

Step 7. Every element of the Weyl group of the anisotropic kernel of G 
is realized over Q. The Weyl element of SU(2) is realized by the rational 
matrix 
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So Step 6 implies that all of the root reflections of the anisotropic kernel 
can be realized over Q. These reflections generate the entire Weyl group. 

Step 8. For any odd prime p, and any a 6 a, such that a( t )  = 0, the Lie 
algebra g*a is Qn -split. The quadratic form xy +xi +xi is isotropic over Qp 
(see, for example, [BS, Corollary 1.6.2, p. 50]), so so(3) is Qp-split. Since 
so(3)Qp 5u(2)Qp and s ~ ( 2 ) ~ ~  (gÂ±a)Q (see Step 6), we conclude that 
gkQ is &-split. 

Step 9. gop is quasi-split, for every odd prime p. Let $ be a maximal set 
of pairwise orthogonal roots in { a  c @ 1 a( t )  = O}. For each a 6 Q, we 
know, from Step 8, that ( g k a ) ~  contains a nontrivial Qp-split torus ~ a ,  let 

From the maximality of Q, we know that the centralizer of the torus 

in 9Qp is hQp,  a (maximal) torus of g Q .  Now both s and 5' are maximal 
tori of the Lie algebra 

so they are conjugate over the algebraic closure of Qp. Therefore, the 
centralizer of 5 is also a (maximal) torus of gop. Because 5 is Qp-split, this 
implies that gQp is quasi-split. 

7 Which Q-forms are K-universal? 

Definition 7.1 Let us say that a Lie algebra go over Q is universal for 
real representations (or simply US-universal, for short) if every real repre- 
sentation of go has a Qform. 

We have shown that every semisimple real Lie algebra has an R-universal 
Q-form (see 2.6). Furthermore, our construction yields an example that is 
(2)-spl i t  (see 6.1(1)). In fact, results of J. Tits [TI show it is often the 
case that every Q(2)-split Q-form of g is US-universal. 
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Proposition 7.2 Let g be a compact, simple Lie algebra over R. If g 
has a Q-form that splits over some quadratic extension of Q,  but is not 
US-universal, then either 

g su(n), for some even n > 4 ,  

or 
g S so(n), for some n $ 3 ,5  (mod 8). 

In this section, we show that the converse is true (cf. 7.4). 
Using Tits' approach, it should be possible to give an explicit list of 

the Qforms of su(n) and so(n) that are not US-universal (except, perhaps, 
those that are triality forms of type 3D4 or 'D4). The author intends to 
attack this project in a future paper. 

Proof of Proposition 7.2 Let F be a quadratic extension of Q, and 
suppose g o  is a Qform of g that splits over F, but is not US-universal. (We 
remark that F must be an imaginary extension, because g~ = g is compact, 
not split.) There is an irreducible Qrepresentation V of go, such that V 
is reducible over R (see 3.3). Thus, we may write VR = W @ X (with W 
and X nontrivial). From Corollary 3.2(2), we see that We and Xc are 
irreducible. 

Let A be the highest weight of We, and let w be the longest element 
of the Weyl group of g. Because We is irreducible, and has an US-form 
(namely, W), it must be the case that 

w(A) = - A ,  and 

when A is expressed as a linear combination of simple roots, the sum 
of the coefficients is an integer 

(see [T, Proposition 6.1 and following comments]). Because We has no Q 
form (any such Qform would be isomorphic to a proper submodule of V), 
it must be the case that 

A is not an integral linear combination of roots 

(see [T, Theorem 3.31). Now Lemma 7.3 below yields the desired conclusion. 

The following observation is obtained by inspection of a list of the fun- 
damental dominant weights of the complex simple Lie algebras of each type 
At, Bl, Ct, Dl, EG, ET, Es, F4, G2. Such a list appears in [H, Table 1, p. 691. 
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Lemma 7.3 Suppose g is a simple Lie algebra over C ,  and let w be the 
longest element of the Weyl group of g. There is a dominant weight A of g, 
such that 

1. w ( A )  = -A, and 
2 .  when A is  expressed as a linear combination of simple roots, the sum 

of the coefficients is an  integer, and 
3 .  A is not an integral linear combination of roots, 

if and only if either 

a .  g is  of type At, with I odd (and I > 3 ) ,  or 

b. g is of type BI, with I E 3 or 4 (mod 4 )  (and I > 3), or 

c.  g is of type Dl (and 1. > 3 ) .  

Combining Lemma 7.3 with the following result establishes the converse 
of Proposition 7.2. 

Proposition 7.4 Suppose that G is a compact, real, semisimple Lie group, 
g is the Lie algebra of G ,  t is a maximal torus of g, and $ is the root system 
of g (with respect to t) .  Let w G G be a representative of the longest element 
of the Weyl group of G .  Let V be an irreducible C-representation of G and 
A be the highest weight of V .  If 

w ( A )  = -A; 
when A is expressed as a linear combination of simple roots, the sum 
of the coefficients i s  an integer; and 
A 4 (a) ( that  zs, A is not an  integral linear combination of roots); 

then there exist 

1 .  a real form VK of V ;  and 

2 .  a Q-form gb of g; 

such that 

a. gb splits over Q(i"); and 
b. VR does not have a Q-form (with respect to go ) .  

Proof ( 1 )  Since w ( A )  = -A, we see that the lowest weight of V is -A. 
Since the dual of V is the irreducible g-module whose lowest weight is -A, 
we conclude that V is self-dual. That is, V is isomorphic to its dual. 

Because g is compact, there is a g-invariant Hermitian form on V, so 
V is conjugate-isomorphic to its dual. Combining this with the conclusion 
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of preceding paragraph, we conclude that V is conjugate-isomorphic to 
itself. That is, V is isomorphic to  its conjugate. Therefore V <E)R C E V Q)V 
is the direct sum of two isomorphic irreducibles. 

Because the sum of the coefficients of A is an integer, V has a real 
form VR (see 7.6). (We remark that any two real forms of V are isomorphic, 
so it does not matter which one is chosen.) 

(2a) Let A be a base of @. The difference of the highest weight and the 
lowest weight is a sum of roots, so, because the highest weight is A and the 
lowest weight is -A, we may write 

with each UJ E Z. Because A f (a), there must be some r E A, such that 
aT is odd. 

Let 
{ h . s } s ~ ~  U { ~ a } a ( i ~  

be the usual Chevalley basis of gel so that 

For each a E @, we may write 

with each cs(a) G Z.  In particular, we have defined a function cr : @ -+ Z. 
Now let, 

and 

Because 
( i )  (&)-' = 3'Q(i) (&)-" = Qo (h)', 

we see that ĝ .,., is the Q(i)-span of the Chevalley basis 
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so go(,) is a split Q(i)-form of gc. From this (and because it is obvious that 
the R-span of gQ is all of g), it follows that go is a (Inform of g, such that 
go splits over Q(z) . 

(2b) Suppose VR has a gb-invariant Q-form V&. (This will lead to a 
contradiction.) Then there is a go-equivariant conjugate-linear involution 
-'Â : Vh(,) -+ V&). 

Let go be the standard Q-form of g (obtained by replacing i/3 with 1 
in the above construction). We know (from Corollary 2.3) that VR has a 
go-invariant Qform VQ. Let a :  VQ(,) -+ VQ(,) be the corresponding go- 
equivariant conjugate-linear involution. 

Because all highest-weight vectors of V are scalar multiples of each 
other, there is no harm in assuming that (vQ(,))^ n v;(~) # 0. (Simply 
replace VQ(,) with kViQ^), for some k 6 C) Then, because these are one- 
dimensional vector spaces over Q i )  , we must have 

Then, by induction on the length of a ,  it is easy to see that if a is any 
integral combination of elements of A, with non-negative coefficients, then 

In particular, because cT(2A) is odd (this was how r was chosen), we know 
that 

Because A(l&) = A(~)Q) C iQ, we have 

Let f = a' o a :  V -> V, so f is C-linear and g-equivariant; hence, f is 
a scalar, say f (v) = kv. Therefore 

so k = dk', for some k' E Q(z). 
We have 

(because 3 is not a sum of two rational squares). This contradicts the fact 
that a' is an involution. 

D 
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Example 7.5 The direct sum of R-universal Lie algebras need not be R- 
universal. For example, let g i  = so(5) and 02 = so(l1).  For j = 1,2, 
the Lie algebra (gj )c  has a (fundamental) dominant weight A,, such that,  
when \j is expressed as a linear combination of simple roots, the sum of 
the coefficients is a half-integer. Then the weight Al 8 A2 of g l @  g2 satisfies 
the hypotheses of Proposition 7.4, so g~ @ 82 has a Qform that is not 
R-universal. However, any Qform of 91 @ 02 must be the direct sum of 
Qforms of the factors and those, by Proposition 7.2, are R-universal. 

The following useful observations are well known. (4u u 4b) follows 
from Schur's Lemma. (46 u 4c) follows from [St, Lemma 79(b), p. 2261. 
(46 <^> 4d) follows from [T, Proposition 6.11. (4u <=f- 4c) is implicit in the 
proof on pp. 137-138 of [R2]. 

Lemma 7.6 Suppose G i s  a compact,  semisimple ,  real L ie  group, V is  a n  
irreducible, self-dual, real representation of G and A i s  the  highest weight 
of V .  Let  w 6 G be a representative of the  longest e l ement  of the  W e y l  
group of G.  T h e n  

1. W e  have Endc(^) 2 K o r  IHI. 
2. W e  have w(A) = -A and \(w2) = k1. 
3. W e  m a y  wri te  A as a linear combinat ion of t h e  fundamental  domi- 

n e n t  weights of G ,  and the  s u m  s of the  coefficients i n  this  l inear 
combinat ion i s  e i ther  a n  integer or  a half-integer. 

4. T h e  following are equivalent: 

(a) V @R C i s  irreducible; 
(b) Endo(V) 2 R; 
(c) A(w2) = 1; 
(d) the  s u m  s i s  a n  integer. 
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