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ABSTRACT

A process for creating repeating patterns of
the hyperbolic plane is described. Unlike the
Euclidean plane, the hyperbolic plane  has
infinitely many different kinds of repeating

patterns. The Poincare circle model of hyperbolic
geometry has been used by the artist M. C. Escher
to display interlocking, repeating, hyperbolic
patterns. A program has been designed which will
do this automatically. The user enters a motif, or

basic subpattern, which could theoretically be
replicated to fill the hyperbolic plane. In
practice, the replication process can be iterated
sufficiently often to appear to fill the circle
model. There is an interactive  ''boundary
procedure" which allows the user to design a motif
which will be replicated into a completely
interlocking  pattern. Duplication of two of
Escher”s patterns and some entirely new patterns
are included in the paper.
KEY WORDS AND PHRASES: hyperbolic geometry,
Poincare circle model, tessellations, symmetry
groups, interactive graphics, motif, repeating
pattern, M. C. Escher, computer art.
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1. INTRODUCTION

This paper describes a process by  which

repeating patterns of the hyperbolic plane may be
generated. A repeating pattern is defined to be a
pattern which remains invariant under certain
transformations of the hyperbolic plane. The
Poincare circle model of hyperbolic geometry gives
a concrete realization of the hyperbolic plane
[Coxeter, 1961]. The points of this model are the
interior points of a circle, called the bounding
circle; the hyperbolic lines are represented by the
diameters of the bounding circle and circular arcs
orthogonal to the bounding circle.
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The hyperbolic  transformations of most
interest to us are reflections across hyperbolic
lines and rotations about points. Hyperbolic
reflections consist of ordinary Euclidean
reflections across diameters and inversions with

respect to the circular arcs.
point can be
across two lines intersecting at that point and
an angle equal to half the angle of rotation.

Given a repeating pattern, the symmetry group
of the pattern consists of all the transformations
which preserve that pattern. Conversely, given a
group of transformations and a basic subpattern or
motif, a repeating pattern can be constructed by
parqueting the hyperbolic plane with copies of the
motif obtained by applying transformations from the
group to the original motif. This is the process
that will be described in this paper.

The wuser first selects one of the four kinds
of groups of transformations. These groups will be
described 1s Section 2. Then a motif is entered
interactively with the aid of a  '"boundary
procedure", to be described in Section 4. The
motifs can be designed to form an interlocking
pattern, if desired. Finally, the copies of the
motif are replicated about the circle model of the
hyperbolic plane, using transformations from the
selected group.

A rotation about a
produced by successive reflections
at

2. THE SYMMETRY GROUPS

There are infinitely many types of repeating
patterns of the hyperbolic plane, giving rise to
infinitely many symmetry groups. This paper will
concentrate on four families of symmetry groups
whose patterns are highly symmetric.

A regular tessellation, {p,a}, of the
hyperbolic plane 1is a covering of the hyperbolic
plane by regular p-sided polygons, or simply
p-gons, meeting only edge-to-edge and vertex-to-
vertex, q at a vertex [see Coxeter and Moser, 1957
for notation]. It is necessary that (p-2)*(q-2) >
4 in order that the q vertex angles add to 360
degrees. The heavy lines of Figure 1 show a {6,4}.

The symmetry group of the tessellation {p,q}
consists of reflections across three kinds of
lines: the edges of the p-gons, the perpendicular
bisectors of the edges, and the radii of the p-gons
which pass through the vertices. This symmetry
group is denoted [p,q] [Coxeter, Moser, 1957]. The
light and heavy lines of Figure 1 show the lines of
reflective symmetry of the {6,4}. These lines of
reflective symmetry divide the hyperbolic plane
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into congruent hyperbolic right triangles with
acute angles of Tf/p and T7/q. Any one of these
triangles is a fundamental region for the group

[p,q] since the images of one such triangle by all
the transformations in [p,q] will exactly cover the
hyperbolic plane. Thus to create a repeating
pattern with this symmetry group, it 1s mnecessary
only to create a motif within one of the triangles
and then successively reflect that motif over the
hyperbolic plane. Note that the motif need not
fill the fundamental region. Also the reflecting
edges form a natural boundary beyond which the
motif need not be extended, since the pattern will
automatically be extended there by the reflection
process. Figure 2 shows a motif within a
fundamental region for the {6,4} and Figure 3 shows
the complete pattern generated by the motif.
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Figure 1.
The tessellation {6,4) (outlined in dark
lines), showing all lines of reflective symmetry

(both dark and light lines).

Figure 2.

A triangular fundamental region for the
[6,4] containing a bent arrow motif.
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Figure 3.

The repeating pattern generated by the motif
of Figure 2 and the symmetry group [6,4].

The tessellation {p,q} also has rotational
symmetries of orders p, q, and 2 about the centers,

vertices, and centers of the edges, respectively,
of the p-gons. We denote this (orientation
preserving) group of rotations by [p,ql+. A

fundamental region in this case can be taken to be

an isosceles triangle with angles 2f/p, /g, and
f1/q formed from two of the triangles in the
previous case (Figure 4).
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Figure 4.
The dashed lines outline a fundamental région

for the group [6,4]+. The dotted lines outline
adjacent copies of the fundamental region.
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In this case,
boundaries. It
motif boundary.

however, there are no natural
is up to the user to supply the
The motif boundary can extend over
the edge of the triangular fundamental region,
provided that it is correspondingly indented
elsewhere along the edge of the fundamental region
(Figure 4). An interactive '"boundary procedure",
described in Section 4, aids the wuser in this
process. If the motif and any corresponding
indentations fill the  triangular fundamental
region, then the motif itself can be taken to be
the new fundamental region. In this case, the
pattern formed by the transformed images of the
motif will be completely interlocking.

If p-fold rotational symmetry about the
centers of the p-gons of a {p,q} tessellation is
combined with reflective symmetry across the edges,
then a mnew group of symmetries, [E+,g], is
obtained. Here, q must be even so that reflective
symmetry occurs only across edges. The fundamental
region can be taken to be the same isosceles
triangle used for the previous group. The base of
the isosceles triangle, being a line of reflection,
forms a natural boundary, but the interactive motif
"boundary procedure" is mneeded for the other two
sides (Figure 5a).

On the other hand, the symmetry group consisting
of q-fold rotational symmetries about the vertices
of a tessellation {p,q} together with reflective
symmetries across the perpendicular bisectors of
the edges is denoted by [p,g+]. In this case p
must be even. The fundamental region can be taken
two of
case along a

to be a kite-shaped area formed by joining
[p,ql

the right triangles of the

hypotenuse (Figure 5b).

Figure 5a.
Figure 5b.

Fundamental region for the group [p+,ql
Fundamental

region for the group
[p’q+] .

Solid lines indicate lines of reflective
symmetry. Dashed lines complete the outline of the
fundamental region. Dotted 1lines complete the
outlines of adjacent copies of the fundamental
region.
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The two edges of the kite corresponding to
reflection lines form a natural boundary, but
again, the interactive '"boundary procedure" is
needed for the other two sides. (From an abstract
point of view, this group is the same as the
previous one. It is distinguished from that case
by having reflective rather than rotational
symmetry about the center of the Poincare circle
model.)

3. HISTORY

The first well-known repeating patterns of the
hyperbolic plane were the tessellations {p,q} which
appeared in mathematical expositions [Fricke and
Klein, 1890]. Often, for clarity, one half of each
of the isosceles triangular fundamental regions for
the group [p,q]+ were shaded, the other half being
left blank. Figure 6 shows one such pattern with
symmetry group [6,4]+.

Figure 6. A pattern with symmetry group [6,4]+.
This pattern appeared in an article by
H. S§. M. Coxeter (Coxeter, 1957) which inspired the
Dutch artist M. C. Escher to create more
complicated repeating patterns of interlocking
motifs. Two of the four hyperbolic patterns which

he created are shown
symmetry groups

in Figures 7 and 8, with
[8,3+] (if differences in shading

are ignored) and [6,4+] respectively. In 1978,
Alexander (Alexander, 1978) developed a computer
program to generate repeating patterns with
symmetry group [p,q] once the coordinates of the

motif had been entered.
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4., THE PATTERN CREATION PROCESS

The process begins with the choice of one of
the four groups [p,ql, [p,ql+, [p+,ql, or [p,q+]
which will be the symmetry group of the final
pattern. Once the group has been <chosen, the
corresponding fundamental region is displayed on
the graphics screen. The natural boundaries (i. e.
lines of reflective symmetry) of the fundamental
region are drawn as solid lines; the other edges
(where the interactive '"boundary procedure"
applies) are drawn as dashed lines. Copies of the
fundamental regions which are adjacent to the
original fundamental region across non-reflecting
edges are outlined with solid lines (corresponding
to other reflection lines) and dotted lines
(Figures 2, 4, and 5). There are zero, three, two,
and two of these adjacent copies of the fundamental
region corresponding to the groups [p,ql, I[p,ql+,
[p+,q], and [p,q+] respectively.

The second step is the creation of the motif
within the fundamental region. In the case of the
group [p,ql, this is a straightforward process of
moving and drawing, using a cursor (since the
fundamental region has natural boundaries).

The second step for the other groups is more
interesting, since it 1is possible to draw line
segments across the non-reflecting edges of the

Figure 7. fundamental region. The interactive motif boundary
M. C. Escher”’s print Circle Limit II, taken procedure is required to do this. It works as
from "ihe.World of M. C. Escher” [Locher I§31]. If follows: First, that part of the segment Eetween
. L o the present position and the edge is drawn (Figure
d attern has symmetr rou
?gagi?g is ignored, this p 4 V8 P 9a). The boundary procedure then draws the
, .

transformed image of that partial segment in each
of the adjacent copies of the fundamental region
(Figure 9b). Finally it is necessary to move the

Pigure 9,

a Part of a segment

which will cross &
non-reflecting edgs of
the fundemental region.

b Trapsformed images of
the partial segment in
adjecent fundamental

Treglous,

¢ Completion of the
segment in the .
fundamental region.

Trags formed
images of the
completed peg-
ment in adjao=-
gut fundamentel
reglons,

Figure 8.

M. C. Escher”s print GCircle LImit IV, taken
from "The World of M. C. Escher" [Locher 1971].
The symmetry group of this pattern is [6,4+].
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cursor to the endpoint of the transformed image
(which will also be on a non-reflecting edge of the
fundamental region) and then draw the remainder of
the original line segment (Figures 9c and 9d).

In fact, the interactive boundary procedure draws
the transformed images of all segments, since it is
up to the user to decide which line segments will
eventually form the motif boundary. As mentioned
before, if the motif and its transformed images
fill the fundamental region, then a completely
interlocking pattern, like those of M. C. Escher,
will be created.

During the second step, the moves, draws, and
color changes are stored in three arrays: Action,
which records the action taken, and X and Y which
record the (terminal) 1location of the action
(terminal location = initial location for a color
change).

The final step, replication, will be described
in the next section.

5. THE REPLICATION ALGORITHM

The replication process occurs in two stages.
The first stage is described as follows: For
simplicity, the left-most vertex of the fundamental

region 1is taken to be the center of the bounding
circle., The fundamental region may be successively
reflected and/or rotated about this vertex to form
a complete p-gon, the central p-gon, centered
within the bounding circle. The corresponding

collection of images of the motif produced by these
reflections and rotations 1s called the p-gon
pattern (Figure 10).

\/

Figure 10a. A motif within the fundamental region
for the group [6+,4].

Figure 10b. Replication of the motif of Figure 10a
to fill the central p-gon, giving the p-gon
pattern.
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The arrays X, Y, and Action are extended to record
the entire p-gon pattern. This is done, for each
of the refelections or rotations, as follows: if n
actions were required to create the motif, then
Actionli+n] is the same as Actionl[il, and X[i+n]
and Y[i+n] are computed by applying the reflection
or rotation to the point (X[i], Y[il). (Note that
these reflections and rotations are ordinary
Euclidean reflections and rotations since they are
performed about the center of the bounding circle.)

In order to describe the second stage of the
replication process, we define p-gon layers
inductively as follow: the O-th layer contains only
the central p-gon; the (k+l)-st layer contains all
those p~gons not in any previous layer but which
share an edge or vertex with a p-gon from the k-th
layer (Figure 11).

Figure 11.

The O0-th, first, and second layers of
septagons of the tessellation {7,3}.
The pattern is extended from the k-th layer to the

(k+1)-st layer by reflecting or rotating (depending
on the group) the p-gon pattern across those edges
and vertices common to both layers (Figure 12).

In theory, this stage of the replication process
could be continued indefinitely, so that the
hyperbolic plane would be filled with a repeating
pattern. In practice, five 1layers are usually
sufficient to give the appearance of filling a
bounding circle less than a meter in diameter.

This process will be described in some detail
for the groups [p,ql and [p,ql+ when p > 3 and q >
3. The other cases use similar, but slightly more
complicated algorithms.

First, draw the p-gon pattern within the
central p-gon. Assuming the existence of a
procedure DrawPgonPattern which draws a transformed
p-gon pattern given a transformation, this can be
done by:

DrawPgonPattern(Identity)
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Then if nLayers represents the number of layers to
be drawn, the following algorithm will draw the
remaining layers. RotateCenter, RotateVertx, and T
are variable transformations (representing rotation
about the centers and vertices of p-gons and a
cumulative transformation, respectively); RotateP,
RotateQ, and RotateEdge are constant rotations by
angles of 2f/p, 2W/q, and €T about the centers,
vertices, and centers of the edges of the p-gous
respectively. Multiplication of transformations is
performed left to right.

RotateCenter := Identity;
FOR i :=1 TO p DO BEGIN
T := RotateEdge * RotateCenter;
ReplicatePattern(T, nLayers - 1, Edge);
RotateCenter := RotateP * RotateCenter;
RotateVertex := RotateQ * RotateP;
FOR j :=1 TO q - 3 DO BEGIN
ReplicatePattern(RotateVertex * T,
nLayers - 1, Vertex);
RotateVertex := RotateQ * RotateVertex
END
END

If nLayers is 1, ReplicatePattern merely calls
DrawPgonPattern once—-in this case, the above
algorithm would draw the O-th and first layers of
p-gons. Figure 12 shows such a pattern. Figure 13
shows the patern extended to the second layer.
Noting the similarity of the above algorithm to
ReplicatePattern (below), it 1is easy to see that
ReplicatePattern could be modified so that a single
call to it would generate the entire pattern.

Figure 12,

This figure shows the p-gon pattern of Figure
10b replicated to f£ill the first layer of hexagons
according to the symmetry group [6+,4].
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Figure 13.

The pattern of Figure 12 extended one more
layer.

PROCEDURE ReplicatePattern
(InitialTransform: trnasformation;
Layerdiff: integer;
Adjacency: conmectivity);
VAR
RotateCenter, RotateVertex, T:
transformation;
i, ExposedEdges, j, PgonsPerVertex:
integer;
BEGIN
DrawPgonPattern{InitialTransform);
IF Layerdiff > 0 THEN BEGIN
CASE Adjacency OF
Edge: ExposedEdges :=
Vertex: ExposedFEdges
END;
RotateCenter := RotateP *
RotateP *
InitialTransform;
FOR i := 1 TO ExposedEdges DO BEGIN
T := RotateEdge * RotateCenter;
ReplicatePattern(T, Layerdiff - 1,
Edge);

- 3
p -2

o

RotateCenter := RotateP ¥
RotateCenter;
IF i < ExposedEdges THEN
PgonsPerVertex := q — 3
ELSE IF i = ExposedEdges THEN
PgonsPerVertex := q - &4;
RotateVertex := RotateQ * RotateP;
FOR j := 1 TO PgonsPerVertex DO BEGIN
ReplicatePattern(RotateVertex * T,
Layerdiff - 1, Vertex);
RotateVertex := RotateQ *

RotateVertex
END
END
END;
See the Appendix for a description of

DrawPgonPattern and the transformations RotateP,
RotateQ, and RotateEdge.
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6. RESULTS

This program can produce repeating hyperbolic
patterns in color with any of the four symmetry
groups described in Section 2. The motif boundary
procedure allows for the ecreation of completely
interlocking patterns. Figures 3 and 14, with
symmetry groups [6,4] and [4,5] respectively, are

samples of patterns with
form [p,q]. The pattern of Figure 15 has
group [5,4]+.
pattern more

symmetry groups of the
symmetry
To our knowledge, this is the first
half-shaded,

complicated than the

half-blank patterns mentioned in Section 3 (e. g.
Figure 6) which has been created with or without
computer aid and which has symmetry group of the
form [p,ql+. TFigure 13 shows a pattern with
symmetry group [6+,4]. Again, to our knowledge, mo
other pattern has been created having a symmetry
group of the form [p+,q]l. Figure 16 shows a
duplication (ignoring shading) of M. C. Escher”s
"Gircle Limit II" (Figure 7) and Figure 17 shows
and outline of his "Circle Limit 1IV" (Figure 8),
both having symmetry groups of the form [p,q+].

Figure 14. A pattern with symmetry group [4,5].
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Figure 15. A pattern with symmetry group [5,41+.

7. EXTENSIONS

First, the program could be extended to
include more complicated symmetry groups, such as
the symmetry groups of M. C. Escher”s other
hyperbolic patterns, "Circle Limit I" and '"Circle
Limit III"., Next, the program could allow for
color symmetry, i. e. the colors would be permuted
by successive transformations of the motif.
Escher”s "Circle Limit II" and "Circle Limit III"
are examples of such color symmetry.

Another mnatural extension would be to allow
for the construction of motifs out of shaded
polygons—-the final pattern being dispalyed on an

raster CRT.
easily be

area—oriented output device such as a
The motif boundary procedure could
modified to handle polygons.

Many of the techniques
hyperbolic patterns could
repeating patterns of the Euclidean plane
sphere.

used 1in  creating
also be used to create
or the

Figure 16.

A duplication of the pattern of M. C. Escher’s
Circle Limit II (Figure 7), having symmetry group
[8,3+].
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8. SUMMARY

This program can create pleasing repeating
patterns of the hyperbolic plane in a few minutes,
a process that would require months to complete to
the same precision without computer aid. Only the
Dutch artist M. C.Escher had the patience to create
such patterns by hand. The process of creating
these patterns brings together the disciplines of
computer science, art, and mathematics. This is a
useful educational tool for the illustration of
concepts in transformation  group theory  and
hyperbolic geometry.

The computer program which generated these
figures is written in FORTRAN, using Tektronics and
Zeta supporting software.
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Figure

A duplication of the pattern of M. C. Escher”s

Circle Limit IV (Figure 8), having symmetry group

[6,4+].

APPENDIX

in our program are
For instance,

The transformations used
represented by 3-by-3 real matrices.

reflections across the sides of the triangular
fundamental region for the group [p,q] can be
represented by:
1 0 0
ReflectEdgeBisector := [0 -1 0
0 0 1
~cosh(2b) 0 sinh{(2b)
ReflectPgonEdge := 0 1 0
-sinh(2b) 0 cosh{(2b)
cos(2 /p) sin(2 /p) O
ReflectHypotenuse := sin(2 /p) -cos(2 /p) O
0 0 1

cos(*/q) / sin(M/p)
2 * cosh(b)**2 - 1
sqrt (cosh(2b)**2 -1)

where cosh(b) =
cosh(2b) =
sinh(2b) =
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The transformations RotateP, Rotateq, and
RotateEdge are given by:

RotateP := ReflectEdgeBisector *

Ref lectHypotenuse
RotateQ := ReflectHypotenuse *

Ref lectPgonEdge
RotateEdge := ReflectPgonEdge *

Ref lect EdgeBisector

The DrawPgonPattern algorithm can be described as
follows:

PROCEDURE DrawPgonPattern(T: transformation);

VAR
SumSquare, Tx, Ty: real;
Z: ARRAY[1..3] OF real;

BEGIN
FOR i := 1 TO nPgonActions DO BEGIN
SumSquare := X[1i]*X[i] + Y[i]*Y[i];
z[1] := 2 * X[i] / (1 - SumSquare);

z[2] := 2 * Y[i] / (1 - SumSquare);

Z[3] := (1 + SumSquare)/(l - SumSquare);
Z =T * Z;

Tx := z[11/(1 + Z[3]);

Ty := z[2]/(1 + Z[3]);

CASE Action[i] OF
Move: MoveTo(Tx, Ty);
Draw: LineTo(Tx, Ty);
Black: Color := “Black”;
Blue: Color := “Blue”;
Red: Color := "Red”;
Yellow: Color := “Yellow”

END

END
END;

BIBLIOGRAPHY

[Alexander 1978]. Alexander, H. Periodic Designs
in the Euclidean and Hyperbolic Planes, Realized by
Means of Computer plus Plotter, 1978 (unpublished).

[Coxeter 1957]. Coxeter, H. S. M. Crystal
symmetry and its generalizations. Trans. Royal
Soc. Canada (3), 51(1957), 1-13.

[Coxeter 1961]. Coxeter, H. S. M. Introduction to
Geometry, Wiley, New York, 1961, (2nd ed. 1969)

[Coxeter and Moser 1957]. Coxeter, H. S. M. and
Moser, W. 0. J. Generators and Relations for
Discrete Groups, Springer-Verlag, New York, 1957
(4th ed. 1980)

[Fricke and Klein 1890]. Fricke, R. and Klein, F.
Vorlesungen uber die Theorie der elliptischen
Modulfunktionen, (Publisher  unknown), Leipzig,
1890.

[Locher 1971]. Locher, J. L. (Editor) The World
of M. C. Escher, Abrams, New York, 1971.

223





