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Abstract. We explicitly determine all of the transitive groups of degree p2, p a prime, whose Sylow p-subgroup 
is not isomorphic to the wreath product Z p  i Zn. Furthermore, we provide a general description of the transitive 
groups of degree p2 whose Sylow p-subgroup is isomorphic to Z p  i Zn, and explicitly determine most of them. 
As applications, we solve the Cayley Isomorphism problem for Cayley objects of an abelian group of order p2, 
explicitly determine the full automorphism group of Cayley graphs of abelian groups of order p2, and find all 
nonnormal Cayley graphs of order p2 .  
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1. Introduction 

In 1901, Burnside [5]  proved the following theorem. 

Theorem 1 (Burnside, [ 5 ] )  Let G be a transitive group ofprime degree. Then either G is 
doubly transitive or G contains a normal Sylow p-subgroup. 

If G is a transitive group of prime degree and has a normal Sylow p-subgroup, then it is not 
difficult to show that G is permutation isomorphic to a subgroup of AGL(1, p). Similarly, 
it is also straightforward to show that if G is a transitive group of prime degree, then G has 
a normal Sylow p-subgroup if and only if G is solvable. 

A well-known consequence of the classification of the finite simple groups is that all 
doubly transitive groups are known [8, Theorem 5.31, and hence all doubly transitive groups 
of prime degree are known. 

Combining these results yields the following well-known classification of all transitive 
groups of prime degree. 

Definition 1 We use the following standard notation. 

a Sn and An, respectively, denote a symmetric group and an alternating group of degree p, 
0 AGL(d, p) = Z" GL(d, p) denotes the group of affine transformations of the d- 

dimensional vector space F; over Fp, 
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0 M H  and Mn denote Mathieu groups, 
0 PSL(d, q) and PGL(d, q ) ,  respectively, denote a projective special linear group and a 

projective general linear group over the field IFo of q elements, and 
0 PrL(d ,  q) denotes the semidirect product of PGL(d, q) with the group of Galois auto- 

morphisms of Fg . 

Theorem 2 ([12, Corollary 4.21) Suppose H is a subgroup of Sp that contains Zp .  Let S 
be a minimal normal subgroup of H ,  and let N = N s ( S ) ,  so S is simple and S :< H 5 N.  
Then N/S is cyclic, and either: 
1. S = Zip ,  N = AGL(1, p),  and N/S Z Zp-i; or 
2. S = A p ,  N = S p , a n d N / S E Z 2 ; o r  
3. p = 11 and S = H = N = PSL(2 , l l ) ;  or 
4. p = l l a n d S = H = N = M n ; o r  
5 .  p = 23 and S = H = N = Mz; or 
6 .  p = ( r d "  - l ) / ( rdm - 1) for some prime r and natural numbers d and m ,  and we have 

S = PSL(d, rdm) ,  N = PrL(d ,  r d m ) ,  and N/S 2 Z,,,. 

In this paper, we will begin the classification of all transitive groups of degree p2. Our 
starting point is Theorem 3 below (proved at the end of Section 3), which provides an 
analogue of Burnside's Theorem 1. This allows us to determine all of the transitive permu- 
tation groups of degree p2 that do not have Sylow p-subgroup isomorphic to the wreath 
product Z p  z Z p  (see Theorem 4; the proof appears at the end of Section 4). Furthermore, 
Proposition 1 below describes how to construct every imprirnitive permutation group of 
degree p2 whose Sylow p-subgroup is isomorphic to Z p  ; Z p .  (This proposition is proved 
at the beginning of Section 5.) Unfortunately, this proposition does not provide a com- 
plete classification of these permutation groups, because, in some cases, we do not have an 
explicit description of the possible choices for K and d )  in the conclusion of the proposi- 
tion. However, Theorem 2 describes the possible choices for H and L, and, in most cases, 
Section 5.1 describes the possible choices for K ,  and Section 5.2 describes the possible 
choices for ( p .  This leads to a complete classification for most primes p; specifically, the 
classification is complete for any prime p, such that p <f. {1 l , 2 3 }  and p # - l ) / ( q  - I ) ,  
for every prime-power q and natural number d. The problems that remain are described in 

' 

a remark at the end of Section 5. 

Definition 2 (cf. Definition 5) Let P'.,_^ denote the unique subgroup of Spi (up to conju- 
gacy) having order pp and containing a transitive subgroup isomorphic to Z p  x Z p  (and 
therefore not containing a transitive cyclic subgroup; see Lemma 4). 

Theorem 3 Let G be a transitive permutation group of degree p2, p a prime, with Sylow 
p-subgroup P. Then either 
1. G is doubly transitive; or 
2. P a G; or 
3. P is equivalent to either Z p  x Z p ,  PL_l, or Z p  2 Z,,. 
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Theorem 4 Let G be a transitive group of degree p2 such that a Sylow p-subgroup P of I 

G is not isomorphic to l ip  ; Zp.  Then, after replacing G by a conjugate, one of the following 
is true. 
1. G is doubly transitive, and either 

G = Apz or Sp2; or 
PSL(d, q )  5 G 5 PrL(d, q ) ,  where (qn - 1)/(q - 1 )  = p2; or 
Z p  x Z p  5 G 5 AGL(2, p). 

2. G is simply primitive, has an elementary abelian Sylow p-subgroup and either 
l ip  x Z p  5 G < AGL(2, p); or 
G has a transitive, imprimitive subgroup H of index 2, such that H 5 Sp x Sp (so 
H is described in Lemma I), 

3. G is imprimitive, P 7 Z p  x Z p ,  P 7 PL_i, and P a  G, so P 5 G 5 N s # )  (and 
N s 2  ( P )  is described in Lemma 5 or 6 ) ;  

4. G is imprimitive, P = Z p  x Z p  and G < Sp x Sp (so G is described in Lemma 1) ;  or 
5. G is imprimitive, P = P L l ,  and G = L P ,  where Z p  x Zp 5 L 5 Sp x AGL(1, p) 

(so L is described in Lemma 1). 

Definition 3 ([9, p. 1681) Let H be a group and let A be an H-module. (That is, A is 
an abelian group on which H acts by automorphisms. Also note that abelian groups, when 
viewed as modules, are written additively.) A function 4: H -+ A is a crossed homomor- 
phism if, for every hl ,  h2 e H ,  we have 

(This is equivalent to the assertion that the function H -+ H K A defined by h i~ (h ,  #(h))  
is a homomorphism.) 

Proposition 1 Let 
1. p be a prime; 
2. H and L be transitive subgroups of Sp,  such that L is simple; 
3. K be an H-invariant subgroup of the direct product (Ns(L) )P  containing LP; 
4. 4: H Ã‘Â NS(L)P/K be a crossed homomorphism; and 
5. GH,L,K,+ = {(h,  V) E H K NsP(L)P : = vK} 5 Sp z Sp. 
Then GH,L,K,+ is a transitive, imprimitive subgroup of Sp2, such that a Sylow p-subgroup 
of G is isomorphic to Zn z Zp .  

Conversely, if G is a transitive, imprimitive permutation group of degree p2, such that 
a Sylow p-subgroup of G is isomorphic to lip 1 lip, then G is equivalent to GH,L.K,<I>, for 
some H ,  L ,  K ,  and d )  as above. 

To some extent, our proofs follow the outline that was used to determine all transitive 
groups of prime degree. 

In Section 2, we recall known results that provide a classification of certain types of 
transitive permutation groups of degree p2, namely, doubly transitive groups, groups with 
elementary abelian Sylow p-subgroup, and simply primitive groups. (Recall that a permu- 
tation group is simply primitive if it is primitive, but not doubly transitive.) 
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In Section 3, we extend Theorem 1 to transitive groups of degree p2. It follows by [33, 
Theorem 3.4'1 that every transitive group of prime power degree contains a transitive Sy- 
low p-subgroup; in particular, every transitive group of degree p2 contains a transitive 
Sylow p-subgroup. We first show that there are exactly 2p - 1 transitive p-subgroups 
of SPz up to permutation isomorphism and explicitly determine them (see Theorem 9). 
We also calculate the normalizer of each of these p-subgroups (see Lemmas 5 and 6). 
Next, we prove Theorem 3, which extends Burnside's Theorem 1 to transitive groups of 
degree p2; that is, it determines which of these 2p  - 1 p-subgroups P have the prop- 
erty that if G <. Spi with Sylow p-subgroup P, then either P a G or G is doubly tran- 
sitive. Happily, only three of the 2p - 1 transitive p-subgroups of Sp2 fail to have this 
property. 

We are left with the problem of finding every imprimitive or simply primitive sub- 
group of Spz whose Sylow p-subgroup is one of the three transitive p-subgroups of Sn2 
for which the extension of Bumside's Theorem mentioned above does not hold. Two of 
these p-subgroups are Z: and the group P__^ (see Definition 2 or 5), which can, in a 
natural way, be regarded as the "dual" of Zt. These two p-subgroups are considered 
in Section 4, and the remaining p-subgroup, Z,, ; Zn, is considered in Section 5. How- 
ever, as explained in the comments before Definition 2, our results on Z p  ; lip are not 
complete. 

In Section 6, we prove some straightforward applications of the above results that are of 
interest to combinatorialists. 

We remark that some of the intermediate results (as well as some of the applications) in 
this paper are known, and will give appropriate references as needed. 

2. Some known results 

2.1. Doubly transitive groups 

The doubly transitive groups of degree p2 can be determined much as in the case of degree p. 
Burnside [6, p. 2021 proved the following result. 

Theorem 5 (Burnside, [6]) The socle of a finite doubly transitive group is either a regular - 
elementary abelian p-group, or a nonregular nonabelian simple group. 

If G is doubly transitive of degree p2, then it is not difficult to show that the socle of G 
is abelian if and only if G 5 AGL(2, p). (Note that an elementary abelian group of order 
p2 is isomorphic to Zi. Also, we remark that the doubly transitive subgroups of AGL(d, p)  
have been determined [16, 201, cf. [8, proof of Theorem 5.31). 

The doubly transitive groups with nonabelian socle are listed in [8, Table on p. 81. (This 
result relies on the classification of finite simple groups.) By inspection of this list, we see 
that the only such doubly transitive groups of degree p2 are as follows. 

Theorem 6 Let G be a doubly transitive group of degree p2 with nonabelian socle. Then 
either G = Apz, or G = Sp2, or PSL(d, q )  <: G <. P w d ,  q). 
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2.2. Imprimitive groups with elementary abelian Sylow p-subgroup 

In [22, Proposition B] ,  Jones determined the imprirnitive permutation groups o f  degree p2 

whose Sylow p-subgroup is elementary abelian o f  order p2. 

Theorem 7 (Jones, [22])  Let G be an imprimitive permutation group of degree p2, where 
p is prime, such that a Sylow p-subgroup of H is elementary abelian of order p2. Then 
G 5 Sp x S,,. 

The following simple lemma expresses the conclusion o f  Theorem 7 more concretely. 

Lemma 1 Let G be a transitive subgroup of Sp2. The following are equivalent: 
1. G s S p x S n .  
2. There are transitive subgroups H and K of Sp ,  such that H x K 5: G 5 N s ( H )  x 

Ns. (a. 
3. There are transitive subgroups H and K of Sp ,  anda homomorphism f : H Ã‘> N s  ( K ) / K ,  

such that G = { ( c ,  r )  e H x N s ( K )  : f (c)  = r K } .  

Proof: (1 =+ 2)  Let H = G n (Sp  x 1) and K = G n (1 x Sp) ,  so H ,  K a G. Then 
G 5 Ns,xsp(H x K )  = N s p ( H )  x Ns,(K). 

(1  => 3)  Let H be the image o f  G under the projection to the first factor, and let K = G n 
(1 x Sp) .  Then G 5 H x N s ( K ) .  By definition o f  K ,  we have ( G / K )  f l  [1 x ( N s p ( K ) / K ) ]  = 

1, so G/K is the graph o f  a well-defined homomorphism f : H -+ N s  ( K ) /  K .  The desired 
conclusion follows. 

(2 ==?> 1) and (3 + 1) are obvious. 

2.3. Simply primitive groups 

The simply primitive groups of  degree p2 are given by the following theorem o f  Wielandt 
[34, Theorems 8.5 and 16.21. (Recall that any subgroup H as in part (2)  o f  this result is 
described in Lemma 1 .) 

Theorem 8 (Wielandt, [34]) Let G be a simply primitive permutation group of degree p2,  

where p is prime. Then the Sylow p-subgroups of G are elementary abelian of order p2, 
and either 
1. G has a unique elementary abelian Sylow p-subgroup, or 
2. G has an imprimitive subgroup H of index 2 (and, from Theorem 7 ,  we have H 5 

s p  x Sp). 

3. The extension o f  Burnside's Theorem 

In view o f  the results in Section 2, this section is mainly concerned with imprimitive groups 
G o f  degree p2 whose Sylow p-subgroups P are not elementary abelian. W e  begin in a 
slightly more general context. 
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Let G be a transitive permutation group of degree mp acting on Zm x Zp that admits a 
complete block system B of m blocks of cardinality p.  We may suppose without loss of 
generality that G acts on Zm x Zp such that B = {{i} x Zp : i e Zp}. If g G, then g 
permutes the m blocks of B and hence induces a permutation in Sm denoted g/B. We define 
GIB = {g/B : g 6 G}. Let fixG(B) = {g G : g(B) = B for every B B}. Assume that 
fixG@) # 1 so that a Sylow p-subgroup Po of fixc@) is nontrivial. Then Po is contained in 
(zi : i e Zm), where each z; is a p-cycle that permutes the elements of {i} x Zp. For h Po, 
wethenhavethath = TV^yl eZp.Definev: Po + ZF by v(h) = (ao, a i ,  . . . , am-1). 

Lemma 2 The set {v(h) : h Po} is a linear code of length m over Fn. 

Proof: As a linear code of length m over IFp is simply an m-dimensional vector space 
over IFp, we need only show that { ~ ( h )  : h e Po} is a vector space. Note that for g, h e Po 
and r e Zp, we have 

and 

Hence v(gr) = rv(g) and v(gh) = v(g) + v(h), so {v(h) : h E Po} is a linear code. 

Definition 4 The code of Lemma 2 will be denoted by Cy, and will be called the code 
induced by B. If G admits a unique block system B of m blocks of cardinality p ,  we say 
CB is the code over Fp induced by G. We remark that Cg depends upon the choice of the 
Sylow p-subgroup Po, but that different choices of Po give monomially equivalent (that is, 
isomorphic) codes. 

Remark Lemma 2 was proven in a less general context in [17]. 

Lemma3 I f t h e r e e x i s t s x e G s u c h t h a t x ( i , j )  = ( i + l , a j + b i ) ,  b i e Z p , a ~ F * ,  
then {v(h) : h Po} is a cyclic code of length m over Fp. Conversely, ifC is a cyclic code 

m-1 a; . of length m over Fp, then there exists a group G as above such that Po = {Y[i=o zi . 
(a03a1 . . am-1) 6 C}. 

Proof: From the form of x, we know that x normalizes (z, : i Zm). Also, because x G, 
we know that x normalizes fixG(@. Thus, x normalizes (z; : i Zm) n fixG(B) = Po. 

f f Q i t 1  For h = n z: Po we have x l h x  = zi , so, because x normalizes Po, we see that 
the linear code {v(h) : h e Po} is cyclic. 

Conversely, define x : Zm x Zp Ã‘> Zm x Zn by x ( i ,  j) = (i + 1, j). Then it is also 
straightforward to check that G = {xig : i Zm, g e C} will do. 
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In the following we consider the case m = p, where Zn x Zp is identified with Zpz via 
(a, b) i ~ r  a +bp.  

Definition 5 Let a;^ = (;)(-1)'j. A straightforward calculation will show that a; , ,_~ = 
ai+l,j + a;,j. For 1 < i $ p, let 

Define r :  ZPz -+ Zp2 by 

r(i) = i + 1 (mod p2) 

Using die above identification of Zp x Zn with Zp2, we have, for example, 

i f a # i  
~ i ( a  +bp) = 

a + (b + l ) p  (mod p2) if a = i, 

P-1 pi = n i = ,  Zi and p2(a + bp) = (a + 1) (mod p) + bp. Hence r = zp-\pi. Let 

for 1 5 i 5 p. We remark that Pp = Pi Ã Zip z Zp. There are thus 2p  - 1 distinct groups 
Pi, P;, 1 î̂  p. 

Theorem 9 Let G be a transitive group of degree p2 with Sylow p-subgroup P. Let 
P =pi+1, i 2 1. 
Ifr E P, then P = Pi. 
I f  (pl,  p2) 5 Pi  then P = a-' P+ for some a AU~(Z;). 

Proof: By [27], if C is acyclic code of length p over Fp, then C has generator polynomial 
f (x), where f (x) divides xp - 1 in Zp [XI. By the Freshman's Dream [21], xP - 1 = ( x  - 1)P 
so that f ( x )  = (x - 1)' for some 0 <_ i 5 p - 1. As C is generated by the cyclic shifts of 
the vector a,, 1, . . . , ai,p_l) where (x - 1)' = ai, jxj, we have ai,j = ( i  )(-I)'"-'. 
Finally, we remark that the dimension of the code C is p - i. 

Let G be a transitive group of degree p2 such that r G. Let P be the Sylow p-subgroup 
of G that contains T. Then P admits a complete block system B of p blocks of cardinality 
p formed by the orbits of (rp).  Then lfixGB1 = pi and C = {u (g)  : g fixG(B)} is a cyclic 
code of length p over IFn  by Lemma 3, so that C contains p' codewords and is thus of 
dimension i .  We conclude that P = (r, n f ~ ~ ~  z: : (ao, a , ,  . . . , up-1) C) = (r, yi). 

If (pi ,  p2) 5: P ,  then again P admits a complete block system B formed by the or- 
bits of (a), where (6) = (pi) or (pip2), 0 <. i <. p - 1. Hence there exists a group 
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automorphism a of Zt  such that a ' &  = p2. It then follows by arguments above that 
P = a l ( p l ,  ~ 2 ,  y i b .  

Remark Every transitive group G of degree p2 contains a subgroup isomorphic to either 
( r )  or (p i ,  pi}, as every Sylow p-subgroup of G is transitive and contains anontrivial center. 
Hence the above result determines all transitive p-subgroups of Spz up to isomorphism. 

Remark Theorem 9 was already proven in [I  91 for the case where P contains a regular 
subgroup isomorphic to ( r  ) . 

Lemma 4 Let P be a transitive p-subgroup of Spz. Then P admits a complete block 
system B of p blocks of cardinality p. 

Furthermore, the following are equivalent: 
1. P does not contain regular copies of both Zp2 and Z:. 
2. P y Z p  1 Zp.  
3. Letting C be the code induced by B, we have xo ai =0 (mod p) ,  for every 

(ao, a1,. . . , an-I )?  c. 

Proof: (1 + 2) If P Z Z p  1 Z p ,  then P is a Sylow p-subgroup of Sni, so it is clear that . . 
P contains both a regular subgroup isomorphic to Zn2 and a regular subgroup isomorphic 
to z;. 

(2 =+ 1) Assume P contains regular copies of both Zp2 and Zi .  Without loss of generality 
assume that r P. As P contains a nontrivial center, TJ' Z ( P ) ,  so that P admits a complete 
block system B of p blocks of cardinality p formed by the orbits of ('tp}. As P contains 
a regular subgroup isomorphic to Z;, there exists T I ,  ~2 P such that ( r l ,  r2) '= Z;. As 
\P /B\  = p, we assume without loss of generality that r2/B = 1 so that lrl/Bl = p.  As 
In I = p ,  T; 'TPT~  = T ^  and ITPI = p, we may assume that r2 = rp. We regard Zp2 as Z;. 
Hence~( i ,  j j  = ( i + l ,  &(j))where&(j) = j , 0  <_ i 5 ~ - 2 a a d 8 ~ - ~ ( j )  = j+l.Further, 
ri(i, j )  = (i  +r, j + bi), r, bi E Zp.  As 1 T I  1 = p ,  xc bi = 0 (mod p). We assume without 
loss of generality that r = 1. Then r l r l ( i ,  j) = (i, j + ci) where xf2 ci = -1 (mod p). 
T h e n f i x p ( B ) = ( ~ , Â ¥ c ~ ~ y i d : 1 ~ j ~ p - 1 ) , f o r s o m e 1 ~ i < p . I f 1 ~ k ~ p - 1 a n  . 
ilf E Pk with +(i, 7) = (i, j + di),  we have that xfzt di = 0 (mod p). Hence i = p and 
( T ,  r 1 r 1 )  E Z p  ? Z p  as required. 

(3 =?> 2) Obvious. 
(2 =>Â 3) If P 7 Z p  ? Z,,, then, from the proof of Theorem 9, we see that the generating 

polynomial of C is divisible by x - 1. The desired conclusion follows. 0 

We now calculate the normalizers of Pi and P', i <_ p.  (We remark that the normalizer 
of each Pi was calculated in [19].) 

Definition 6 For ft Fi, define 6, ,8: Zi  + Zt  by 

f i i ,  j )  = (p i ,  j )  and ft(i, j )  = (i, pj ) .  
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For p E Z> define f f  : Zp2 + T L p 2  by 

Remark Of course, N s 2  (P i )  admits a (unique) complete block system B of p blocks of 
cardinality p formed by the orbits of ( r p ) .  It is straightforward to show that fixNs ip,)(B) 

P2 is a p-group of order 1 < i < p - 1. 

Lemma 5 ([19])  We have 

Proof: It is well known that 

and it essentially follows by arguments in [I] and was explicitly shown in [19] that 

so we may assume 2 5 i 5 p - 1. 
We first show that \Nsp2(Pi)\ = ( p  - l)pi+2. 
Let X = { ( x )  : ( x )  is a regular cyclic subgroup of Spz} and let Spi act on X by conju- 

gation. Denote the resulting transitive permutation group on X by A. Note that there are 
p 2 ! / ( p  - 1)p3 = [Sp2 : N s 2 ( ( r ) ) ]  elements of X .  As ( r p )  5: Z (Pi )  and is the unique 
subgroup of Z(Pi)  of order p,  N s 2  (P i )  admits a complete block system B of p blocks of 
cardinality p, formed by the orbits of ( r p ) .  Observe that if ( x )  e X and ( x )  5 Pi, then we 
may assume that x = r y ,  y 6 fixp (B) .  Then 1 fixp (B) \  = pi, and by Lemma 4 r y is a 
p2-cycle for every y e fixpi (23) as every minimal transitive subgroup of Pi is isomorphic to 
Zp2. Furthermore, there are exactly p elements of ( r  y ) contained in fixpi (23). We conclude 
that Pi contains p i / p  = pi-1 elements of X. Let B = { ( r y )  : y e fixp,(B)}. We first will 
show that B is a block of A. 

Let 6 e Sp2 such that S ^ B S  D B # 0. Then there exists x = r y ,  y e fixpi(@ such 
that 8-'(x)S 5 Pi. Then S-'(x)8/B = ( x ) / B  and hence S-l(y)L?/B = ( r ) / B  for every 
(y)  B.  Then (8 -I  BS) satisfies the hypothesis of Lemma 3 (as 6"' (x)S Pi) so the code 
corresponding to ( 8 '  B(^ is the code corresponding to ( B )  which implies ( 8 '  BS} = ( B )  so 
that 8 '  BS = B as required. Hence the number of subgroups conjugate in Sp2 to Pi = ( B )  
is the number of blocks conjugate to B in A. As there are ( p 2 ! / p 3 ( p  - l ) ) / p i l  such blocks, 
lNsp2(Pi)I = ( p  - l)pi+2 as required. 

It is straightforward to check using the recursion formula given in Definition 5 that 
yi+l e N S 2  (Pi) .  Note that the result is clearly true for i = 1 as ( r ,  y2) 5: N s 2 ( ( r ) ) .  Hence 
N s P 2 ( ( r ) )  5 NsP2({r,  ~ 3 ) )  as ( T ,  ~ 2 )  is the unique Sylow P-subgroup of Ns,({r)) .  
Continuing inductively, we have that N s 2  ( ( T ) )  5 N s 2  ( ( T ,  y;) and as \ ( N s 2  ( ( r ) ) ,  yi) 1 = 
( p  - the result follows. 
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Lemma 6 We have 

Proof: The case i = 1 is well known, and the case i = p appears in Lemma 5, so we may 
assume 2 < i < p - 1. 

Because i 2 2, we know that (r2) = Z(P/ )  is characteristic in P,', so that (rz) <i q, (P,'). 
Hence if S <= N s 2  (P;), then 8(i, j )  = ( ~ ( i ) ,  y j + bi),  a e Sp,  y e q, bi Zp .  Furthermore, 
a ( i )  = fti + b, j3 6 F> b Zp .  It is straightforward to check that p, 7 Ns, (P:), so we may 
assume j3 = y = 1. As rl e P,', we may assume without loss of generality that b = 0. As 
yl, y2, . . . , yi E PL1, we may assume, for 0 <_ k < i - 1,  that bk = 0. It is then straightforward 
to show that S ? (y,+,).  

Definition 7 A code C of length m over Fp is said to be degenerate if there exists 
k 1 m ,  k # m, and a code D of length k over Fp such that C = (~2; D. That is, a code 
C = { (d l ,  dz ,  . . . , dmit) I d l ,  . . . , dm/k â D}. If C is not degenerate, we say that it is non- 
degenerate. 

Lemma 7 Let G 5 Sp2 admit a complete block system B of p blocks of cardinality p. I f  
fixG(@ contains at least two Sylow p-subgroups and CB is nondegenerate, then a Sylow 
p-subgroup of G is isomorphic to Z p  x Zp.  

Proof: We assume that ( r )  5: G or ( p i ,  p2) < G. Let P be a Sylow p-subgroup of G 
that contains ( r )  or (p i ,  pa). Observe that P cannot contain both ( r )  and ( p i ,  pz) ,  for then 
Lemma 4 would imply P '= Z p  z Z p ,  in which case Cg is degenerate. If fixG@) contains at 
least two Sylow p-subgroups, then fixG(B)IB contains at least two Sylow p-subgroups for 
every B B and hence, by the comments following Theorem 1, is nonsolvable. By Theorem 
1 fixG(B) 1 B is doubly transitive for every B e B. 

Suppose, for the moment, that f ixp(@ is faithful on some block of B. Then a Sylow 
p-subgroup of G has order p2. If P = (pl  , p2), we are finished, so we assume that P = 
( r  ) and hence fixp@) = ( rp) .  Clearly ( T P )  lg is a Sylow p-subgroup of fixG(B)l B ,  and 
if N{ar(Bh((rp) \B) = (rP)lB, then by Burnside's Transfer Theorem [14, Theorem 4.3, 
p. 2521, ( rp )  1 g has a normal p-complement in fixG(B)1 Whence fixG(B)\ admits a 
complete block system of p blocks of cardinality m, where m # 1, a contradiction. Thus 
NhG(B)\s((~p)\B)  # ( q B ,  so there exists S e fixG(@ - ( rp)  such that 8-'rp8 = T ^ ,  
a # 1.  By the remark preceding Lemma 5,8 N ; , ( ( Z ) ) ,  so that S 1 ^ S r l  E fixG(B), but 
8 l r S r - l  $ ( rp ) .  A straightforward computation will then show that S ' r ~ r '  centralizes 
( rp) .  As ~ - ' r S r - ~  E fixG(B), (rlrSr-I l B  centralizes (qB, and of course, ( rp )  \B is 
regular and abelian. As a regular abelian group is self-centralizing [33, Proposition 4.41, we 
conclude that (xP)IB. Whence S - ' T S T ' ~  has order p and ( rp ,  ~ ^ r S r ^ )  5: 
fixc(B) and has order p2, a contradiction. 
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Henceforth, we assume that fixp@) is not faithful on any block of B, so the Sylow p- 
subgroups of fixG(@ have order at least p2. Let y e fixG(B) such that y l  a # 1 for the 
fewest number of blocks B 6 B, and let C = {B B : y \B # I}. If UC is a block of G, 
then CB is degenerate and we are finished. Otherwise, define TC: fixg(@ Ã‘Â SupPo by 
~ ( g )  = gluCBPC). Then y e Ker(7r). As Ker(7r) a fixG(@ and fixG(B)1~ is primitive for 
every B e B, Ker(7i)\~ is transitive for every B e C. Hence we may assume 1 y 1 = p. As 
any two Sylow p-subgroups of fixG(B) are conjugate and one Sylow p-subgroup of fixg(@ 
is contained in (zi : i Z n ) ,  we assume without loss of generality that y e (zi : i e Zp).  
Finally, observe that as y 6 fixG@) such that y l a  # 1 for the fewest number of blocks of 
B, ( y )  is a Sylow p-subgroup of Ker(7r). As Ker(n) a fixG(@, Ker(7r)lB contains at least 
2 Sylow p-subgroups. It then follows by Bumside's Transfer Theorem that ZVieerfc)((y)) # 
(Y).  

ha,, 
Let y = z"̂ ? . . . zy . Let 8 E NKer(T)((y)) such that c?$ ( y  ).  Then 6-I y~ = zit 

bai2 bat, 11 12 

z i  . . . z i  , for some b ZE. As UC is not a block of G, there exists L e G such that 
L-'(uC)L n (UC) # 0 and L-'(uC)L # UC. Let LC' y~ = z:zz . . . z;:, for some j l ,  7 2 ,  . . . , 
jr Zpt-i and cjL e Z;. Then 8-'1-' yi6'(~-1 /L)-" # 1 for fewer blocks of B than y , a 
contradiction. 

Definition 8 For a code C of length n over a field IFn of prime order p,  let Aut(C) be the 
group of all linear bijections of Kn which map each codeword of C to a codeword of C of 
the same weight. Thus Aut(C) is the subgroup of Mn (IFp) that map each codeword of C to 
a codeword of C, where Mn(Fp) is the set of all n x n monomial matrices over IFp. That is, 
matrices with exactly one nonzero entry from IFp in each row and column. 

Let [mij] = M Mn(Fp). Then M = PD, where P = [pij] is the permutation matrix 
given by pij = 1 if mu # 0 and pi, = 0 otherwise and D = [dij] is a diagonal matrix 
with dii = m;j if mi, # 0 and dij = 0 if i # j. As the group of all permutation matrices is 
simply the symmetric group on the coordinates of a vector in IF> there is thus a canonical 
isomorphism between Mn(Fp) and Sn K (IF*)", with multiplication in Sn K (IF*)" given by 
(a, a)(r,  b) = (o-r. (o--lb)a) ^mdSn IX (IF:)" acts o n F p y  (a, d)(x) = a(xd). We will abuse 
notation and write that (a, d) = M e Mn(Fn). If (o-, d) e Aut(C), then (0, d) is diagonal if 
and only if o- = 1. Finally, we let PAut(C) = {a  : (a, d) Aut(C)}. 

Theorem 10 ([26], Theorem 1.3) IfC is a nontrivial code such that PAut(C) is primitive, 
then C is nondegenerate and every diagonal automorphism of C is scalar. 

Definition 9 A code C of length p over Fp is affine invariant if AGL(1, p) < PAut(C). 

Let P <  ̂ S? be a transitive p-group. Then P admits a complete block system 13 of p 
blocks of cardinality p, formed by the orbits of a serniregular element of order p contained 
in the center of P. By Theorem 9, we may assume that P = Pi or Pi. Note that if G 5 Spz 
admits B as a complete block system with Sylow p-subgroup P ,  then conjugation by an 
element of G induces an automorphism of Cg. It then follows by Lemmas 5 and 6 that Cg 
is affine invariant. 
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Let B  B  and L  = {g  G : g ( B )  = B}.  Then L  has a unique Sylow p-subgroup 
P ,  namely the Sylow p-subgroup of fixG@), so that P 4 L .  By the Schur-Zassenhaus 
Theorem [14, Theorem 2.1, p. 2211 L  contains a pl-subgroup M  which is a complement 
to P in L .  Let P' = ( z ,  : i  e Z p )  and W = G PI. Note that IWI = p .  IGI, and let 
K = { w  W : w ( B )  = B } .  Then P' a K and is the Sylow p-subgroup of K. Again by the 
Schur-Zassenhaus Theorem, as P' is solvable, any two p'-subgroups of K are conjugate 
in W. As M  is a p'-subgroup of L ,  M  is a p'-subgroup of A". Recall that if g  G, then 
g(i ,  j )  = (cr(i), a j  + bi), a  e S p ,  a  E Fi, and b, e Z p .  For g  E G, define g: sz2 Ã Sv by 

g(i ,  j )  = ( ~ ( i ) ,  a j ) ,  and let M = { g  : g E M } .  Clearly M is a subgroup and \M\ = \M\. 
Furthermore, as P' = (zi : i  E Z p ) ,  <  ̂ K .  Thus 4 is also a p' subgroup of K  so that 
there exists 8 P '  such that S-'MS = M .  Let G' = S"GS. Clearly h? <_ G' and as 
S l P' 5 N s 2  (Ppp1) we have that P;_' 5 G'. Let H = ( T ~ ,  M )  . Then H 5 G' and for 
every h  e H, h( i ,  j )  = ( a ( ; ) ,  a j )  so that H 5 Sp x AGL(1, p). As \MI = lGl/pP we have 
that IHI = lGl/pP-' so that \ H .  fixpA(B)l = [GI = IG'I. As H . f i ~ p ; - ~ ( B )  < GI, we 
conclude that G' = H . f i xp ; ,  (B)  and the result follows. 0 

Proof of Theorem 4: (1) Follows from Lemma 6, and (2) follows from Theorem 8. 
Thus, we assume, henceforth, that G is imprimitive. By Theorem9 the Sylow p-subgroups 

of G are isomorphic to Pi or P / ,  1 5 i 5 p.  If no Sylow p-subgroup of G is isomorphic to 
P[ or then (3) follows from Theorem 3. If a Sylow p-subgroup of G is isomorphic 
to P[, then (4) follows from Theorem 7 and Lemma 1. Finally, if a Sylow p-subgroup of G 
is isomorphic to PAel, then (5) follows from Lemma 9. 

5. Imprimitive subgroups that contain a Sylow p-subgroup of Spz 

Note that Z p  z Z p  is a Sylow p-subgroup of Spz. 

Proof of Proposition 1: (=+) Because N s  ( L ) / L  is cyclic (see Theorem 2), we know that 
( N s ( L ) / L ) P  is abelian, so it is obvious that K/LP is a normal subgroup of ( N s ( L ) / L ) P ;  
hence K  is a normal subgroup of N s  (L)p .  Then, because <^> is a crossed homomorphism and 
K is H-invariant, it is easy to verify that G H , ~ , ~ , < ~  is closed under multiplication. Therefore, 
it is a subgroup of S p  i Sp. 

It is straightforward to verify that K is a normal subgroup of G H , ~ , ~ , < ~ > ,  and we have 
G H , ~ , ~ , ~ / K  "= H ,  so \ G H , ~ , K , ( ~ > \  is divisible by 1K11H1. Because K 3 Lp, this implies 
that \GH,L,K,<t,\ is divisible by pP^.  Therefore, G H , L , ~ , 4  contains a Sylow p-subgroup of 
Sp i S p ,  so G H , ~ , ~ , < f i  is transitive. Because G H , ~ , ~ , @  5 Sp i Sp ,  we know that GH,L,K,<I, is 
imprimitive. 
(e) Because G is imprimitive, we may assume that G 5 Sp i Sp.  Then, because p^l 1 

IGI, we know that G contains a Sylow p-subgroup of Sp ; S p ;  assume, without loss of 
generality, that G contains lip i Z p .  In particular, G admits a unique block system 23, 
consisting of p blocks of cardinality p.  

Let H = G / B  5 S p ,  let K = fixG(@, and let L be the smallest normal subgroup of G 
that contains 1 i Z p .  It is easy to see that L = 1 i L  "= LP, for some transitive, simple 
subgroup L of Sp .  
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The map g I+ g / B  is a homomorphism from G onto H ,  with kernel K.  Thus, there is 
an isomorphism & H Ã‘ G / K ,  given by h = d>(h)/B. Because 1 ? L is normal in G ,  we 
know that G 5 H ? Nsp(L) ,  so we may write 4 ( h )  = h (J)(h), with @(h) 6 (1 ? Nsp(L)P)/K. 
Because d) is a homomorphism, it is straightforward to verify that <j) is a crossed 
homomorphism. 

The assumption that L is simple is not necessary in the definition of G H L K d i ,  but this 
restriction makes L unique (up to conjugacy). For a given group G, the corresponding 
H ,  L ,  K ,  (f) are not uniquely determined, but the following simple lemma describes how to 
tell whether G H l , L l , K , , ~ l  is equivalent to GHA K ~ .  

Definition 10 (cf. [9, Proposition 4.11) Let H be a group, let A be an H-module, and let 
41, 4 2 :  H +- A be crossed homomorphisms. We say that 41 is cohomologous to 4; if there 
is an element a of A, such that, for every h H ,  we have 

(This is equivalent to the assertion that the homomorphisms h }-> ( h ,  4>m) and h t+ 

( h  , (f>i ( h ) )  are conjugate via an element of A .) 
We remark that the equivalence classes of this equivalence relation are, by definition, the 

elements of the cohomology group H ' ( H ,  A). 

Lemma 10 Let Hi ,  L i ,  K i ,  be as in Proposition 1 ,  for i = 1,2.  
1. I f  G H , , L , , ~ , ~  is equivalent to G H i , L z , ~ z , h ,  then L )  is conjugate to L2 (in Sp). 
2. I f  GHl ,L, ,K, ,<in is equivalent to G  L z , K 2 , ~ ,  and L = L2, then there exists g E Sp , such 

that, letting 2 = ( g ,  1) e Sp ; Sn, we have 
(A) gH1g-I = Hz; 
(B) = K2; and 
(C) <j) f  is cohomologous to 4 2 ,  where ^ > f :  H2 +- ( f i p ( L 2 ) / L 2 ) P  is defined by @ ( A )  = 

i? ( f ) l ( g l h g )  2 ' .  

Proof: L e t h e S p ~ , w i t h h G H i . ~ l , ~ i , ~ ~ h "  = GH2,L2,~z,~z,andletBbethe~niq~e~~m- 
plete block system for Iip ? Z p .  Because Zp ; Tip is contained in both GHi,z. l , /s- l ,~l  and 
GH~,&,K^ ,  the uniqueness of B implies that hB = B; thus, h e Sp  ; Sp, so we may write 
h = ( g ,  x ) ,  with g Sp andx e (Sp)^ .  Because Li = L2,  we must have x E N , S ( L ~ ) ~ .  

Because NsP(L2)/Lz is abelian, this implies that x normalizes K2, so we must have 
g ~ l g - l  = Ki. 

Because Hi = GH,,L, ,K, ,(I>, / B ,  we must have H~~~~ = H2. 
Replacing GH~,L, ,K~,(I>~ by its conjugate under 2, we may assume that g = 1, so Hl = Hz, 

Kl = K2, and </>f = Because 

we see that (fri is cohomologous to $2. 
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5.1. Cyclic codes modulo n 

The Chinese Remainder Theorem (Lemma 11) reduces the study of codes modulo n to 
the case where n is a prime power. Assuming that p \ n ,  the problem can often be further 
reduced to the case where n is prime (see Lemma 12 and Remark 11). This reduced case is 
considered in Lemma 13. 

Lemma 11 (cf. [14, Theorem 1.2.13, p. 81) Let n = nlnz . . . n,., where each ni is a prime 
power, and n l ,  n2, . . . , nr are pairwise relatively prime. 
1. We have (Zn)P S= (Zn,)P @ (Zn2)P @ Â Â @ (Zn,)^.  
2. For any subgroup C of (Zn,)P @ (Znz)P @ . . . @ (Znr)P, we have 

Definition 11 If n = q' ,  where q is prime, and 0 5 i < t ,  we let I$; : qi (Zn)P + (Zo)^  be 
the natural homomorphism with kernel qi+l(Zn)p. 

Lemma 12 Let n = qt where q is prime, and p # q ,  and let G be any transitive group 
of degree p that contains Z p .  
1. If C is any G-invariant subgroup of (Zn)P, define C; = &(C C\ qi(Zn)J') for 0 5 i < t .  

Then Co C Cl C Â Â C Ct_i is an increasing chain of G-invariant subgroups of (Zq)P. 
2. I fG  5 AGL(1, p) ,  or G = An,  or G = Sn, then the converse holds: For any increasing 

chain Co c Cl c . . . c CtPi c (Zq)P of G-invariant subgroups of (Zq)P, there is a 
subgroup of (Zn)P, such that q$(C n qi(Zn)J') = C; ,  for 0 5 i < t .  

3. Each G-invariant subgroup of (Zn)P is uniquely determined by the corresponding chain 
Co C Cl C Â . c CtPi of G-invariant subgroups of (Zq)p. 

Proof: (1)  This follows from the observation that, for any c 6 C n qi(Zn)P, we have 
qc q i + l ( Z n ) ~  and &(c)  = I$i+l(qc). 

(3)  Suppose there is a code C',  such that Ci = Ci for each i .  Let M = C fl q ( Z f l .  
B y  induction on t ,  we may assume that C' n q(Zn)P = M .  Consider the composite 
homomorphism: 

If C # C',  then this homomorphism is nontrivial, so Co and q(Zn)P/M have a composition 
factor in common. Because 

is an increasing chain of G-submodules with quotients 
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we conclude that Co has a composition factor in common with (Zg)*/Ci, for some i > 1. 
This is impossible, because Co c Ci, and the representation of G on (ZqY is multiplicity 
free. (In fact, the restriction to the subgroup Zp is multiplicity free, because there are 
p distinct pth roots of unity in an appropriate extension of Fg .) 

(2) It suffices to show, for each i, that there is a G-invariant subgroup Ci of (Zn)^, such 
that C, = C; for j 5 i and Cj  = 0 for j > i. (For then we simply let C = ( t o ,  . . . , ei-l).) 
Thus, we may assume that, for some i,  we have Co = Cl = . . . = Ci and Ci+i = Ci+2 = 
. . .  = Ct-i = 0. Furthermore, may assume that i = t - 1 (because C' = satisfies 
C. = 0 for j > t - k). 

If Ci is the repetition code, let C be the repetition code in (Zn)P. If Ci is the dual of the 
repetition code, then let C be the dual of the repetition code in (Zn)P; that is, 

I P 

C = (zi , . . . , zp) e : zi = 0 (mod n) . 
i=1 1 

Thus, we may now assume that Ci is neither the repetition code nor its dual. Then, from 
Lemma 13 and the assumption on G, we see that G 5 AGL(1, p). Therefore Zp a G, so, 
from uniqueness (3), we see that every Zp-invariant subgroup of (Zn)P is G-invariant. Thus, 
we may assume that G = Zp. 

In this case, the desired conclusion is a special case of [7, Theorem 37.4, p. 1561, but we 
give an explicit construction. Let f (x) e IFo [x] be the monic generating polynomial for Ci . 
Because f (x) is a divisor of xP - 1, and xp - 1 has no repeated roots, we know, from 
Hensel's Lemma [7,36.5, p. 1451, that there is a monic polynomial g(x) e & [x], such that 
g(x) = f (x) (mod q), deg(g) = deg( f ), and g is a divisor of x* - 1 in Zn [XI. Now let C 
be the ideal of Zn [x]/(xP - 1) generated by g(x). 

Remark In applying Lemma 12 to the study of subgroups of Spz, one is interested only 
in the case where n is not prime and there is a subgroup L of Sp, such that n is a divisor 
of \ Ns(L)/L 1 .  Note that 3' { 11 - 1, 2' \ 23 - 1, and neither 11 nor 23 can be written 
in the form (qd - \)/(q - 1) for a prime-power q. Therefore, we see from Lemma 13 
that if G = PSL(2, l l ) ,  Mil, or M73, then, in the cases of interest, Ci must be either the 
repetition code or its dual. Thus, the proof of Lemma 12 is valid in these cases. It is only 
when PSL(d, q)  5: G 5 PFL(d, q) that the possible choices of K in Proposition l(3) have 
not yet been completely classified. 

Lemma 13 ([3,23, 291) Let 
0 p and r be prime; 
0 G be a transitive subgroup of Sp that contains Zp, and 
0 C be a nontrivial cyclic code over Zr that admits G as a group ofpermutation automor- 

phisms. 
I fC is neither the repetition code nor its dual, then either 
1. Zp G 5; AGL(1, p), and C is described in Lemma 14 below; or  
2. G = PSL(2, 1 I), p = 11, r = 3, and C is either the (1 1,6) ternary Golay code or its 

dual; or 
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3. G = Mz3,  p = 23, r = 2, and C is either the (23, 12) binary Golay code or its dual; or 
4. PSL(d, q) 5 G 5 PrL(d, q), p = (qd - l)/(q - I), q is a power of r, and C is 

described in Theorem 12 below. 

Proof: From Theorem 2, we know that there are only a few possibilities for G. In each 
case, the desired conclusion is a known result. 

0 If Zp < G 5 AGL(1, p),  see Lemma 14. 
If G = An (or S p ) ,  see [23, Beispiele 9(a)]. 
If G = PSL(2, 11) and p = 11, see [29, (J)]. 
If G = MH or Af23 (and p = 11 or 23, respectively), see [23, Beispiele 9(bc)]. 
Suppose PSL(d, q) 5 G 5 PrL(d, q) and p = (qd - l)/(q - 1). If r { q, see [29, 
Section 3(C)]; if r \ q, see Theorem 12. 

5.1.1. Cyclic codes invariant under a given subgroup of AGL(1, p). Lemma 14 char- 
acterizes the cyclic codes of prime length p that admit a given subgroup of AGL(1, p) as 
permutation automorphisms. This result must be well known, but the authors have been 
unable to locate it in the literature. 

Lemma 14 Let f (x) e Fq [x] be the generating polynomial of a cyclic code C of prime 
length p over IFq, and let A be a subgroup of q. 
1. I f  p \ q ,  then C is A-invariant if and only iff (x) is a factor o f f  (xa), for every a A. 
2. I f  p 1 q , then C is A-invariant. 

Remark Suppose p \ q. For a given subgroup A of Z*, one can construct all of the 
A-invariant cyclic codes of length p by the following method. 

Let P c IFg [x] be the set of all monic factors of the polynomial xP - 1, and let Pin- be 
the subset consisting of those polynomials that are irreducible over Fq. Then A acts on both 
P and Pim by 

From the lemma, we see that f (x) is the generating polynomial of an A-invariant code if ' 

and only if f a  = f ,  for every a A. 
If F is any A-invariant subset F of Pix (that is, if F is any union of orbits of A), then 

nfeF f (x) is the generating polynomial of an A-invariant code, and conversely, every 
A-invariant generating polynomial can be constructed in this way. 

In particular, the number of A-invariant cyclic codes is 2d, where d is the number of 
A-orbits on Pin-. However, it is probably easier to calculate d by using the formula d = 

1 + lq, : (A, q)l. 

5.1.2. Codes that admit PSL(d, q). Bardoe and Sin [3, Theorem A] recently gave an 
explicit description of the codes that admit PGL(d, q) as a group of permutation automor- 
phisms. (They [3, Theorem C] also considered monomial automorphisms, but we do not 
need the more general result.) For the case of interest to us, where (qd - l)/(q - 1) is prime, 
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we know that gcd(q - 1, d) = 1, so the natural embedding of PSL(d, q) into PGL(d, q) is 
an isomorphism. Therefore, the codes described in [3] are precisely the codes that admit 
PSL(d, q) as a group of permutations. 

Furthermore, the results of Bardoe and Sin yield an explicit description of the image 
of each code under the Frobenius automorphism (cf. [3, Theorem A(b)]), so the results 
generalize easily to any subgroup G of PrL(d, q) that contains PSL(d, q). After some 
necessary definitions, we state this slightly more general version of [3, Theorem A]. 

Definition 12 Suppose r is a prime number, q = r t ,  and p = (qd - l)/(q - 1) is prime. 
Let c be a divisor of t .  

Let Ti.^ denote the set of t-tuples (so, sl, . . . , stpi) of integers satisfying (for j = 
0, 1, . . . , t - 1, and with subscripts read modulo t ) :  

1 . 1 * 5 d - 1 ;  
2. 0 5 rsj+i - S, 5 (r - 1)d; and 
3. sj+c = sj.  

Let Ti.^ be partially ordered in the natural way: (sh, . . . , s k )  <: (so, . . . , sfpi) if and only 
if si  <: sj for all j. 

Let 'I-@ = H^ U {(O, 0, . . . , O)}, and extend the partial order on H^ to @, by making 
(0,0, . . . ,0)  incomparable to all other elements. 

Definition 13 A monomial X = n f = l  X: e &.[Xi, Xi, . . . , X d ]  is a basis monomial if 

a O$bi < q , f o r i  =1 ,  . . . ,  d; . deg(X) = l_^=l bi is divisible by q - 1; and 
a x # x;-lx;-l.. . xj- l .  

Definition 14 ( [ 3 ,  Section 3.21) Let X = Y[,=l X' be a basis monomial. For each 
ee{O, 1 , .  . . , t - l},let 

where d> is the permutation on (0, 1, . . . , q - l} defined by @(k)  = rk + (1 - q) \rk/q\ . 
(In other words, if we write k = =z i  a j r j  as a t-digit number in base r ,  then d>(k) = 
at-l + x:~i ajPlr j  is the t-digit number obtained by rotating the t digits of k ,  including 
the leading 0's.) 

Define 

Then s(X) '?-@ 
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Definition 15 Any basis monomial X defines an IFn-valued function fx on the vector 
space IF:. Because deg(X) is divisible by q - 1, we have f x ( v )  = f^( .^v),  for every 
k IF* and v IF:, so fx  factors through to a well-defined function f x  on the projective 
space Pd-I ( I F g ) .  

Theorem 12 (Bardoe-Sin [3] )  Suppose r is aprime number, q = r t ,  p = (qd - l ) / ( q  - 1) 
is prime, and PSL(d, q )  5 G 5 PrL(d,  q).  Let c = 1 PFL(d, q )  : G 1. 

For any ideal I of the partially ordered set @, let MI C Z,.[P~"(F,)] be the span 
over Z,- of the functions f x ,  for all basis monomials X ,  such that s ( X )  6 1. Then MI is 
G-invariant. 

Conversely, for each G-invariant subspace M ,  there is a unique ideal T of 'Hp, such 
that M = Mr. 

5.2. Crossed homomorphisms 

Theorem 13 Let 
0 p be a prime; 
0 H be either A p  , Sp , or subgroup of AGL(1, p )  that contains Z p  ; 
0 n be a natural number such that either n = 2 or n p - I or n m ,  where m satisfies 

p = ( r  - l ) / ( r d  - I )  for some prime r and natural number d ;  
0 K be an H-invariant subgroup of (Z,,)P; and 
0 @: H Ã‘> (Zn)P/K be a crossed homomorphism. 
Then @ is cohomologous to a homomorphism from H to Co/(K Fl Co), where Co is the 
repetition code in (Zn)p. 

Remark The conclusion of the theorem can be stated more concretely: If @ is not coho- 
mologous to 0, then either 

1. H 5 AGL(1, p),  and there is some c Z,, , and some generator h of H / Z n ,  such 
that \h\{c, c ,  . . . , c)  K and, after replacing @ by a cohomologous cocycle, we have 
@(ha, z )  = a(c ,  c ,  . . . , c),  for a e Z and z E Z p ;  or 

2. H = S p ,  n is even, and there is some c E Zn,  such that (2c, 2c, . . . , 2c )  E K and, after 
replacing 4 by a cohomologous cocycle, we have 

Proof: Let V = (Zn)P/K,  let, and let C: be its dual. 
Because gcd(p, n )  = 1, we know that every element of C v ( Z p )  has a representative in 

C ( Z  jp ( Z p )  (cf. [14, Theorem 5.2.3, p. 1771). Therefore 
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Thus, it suffices to show that, after replacing (A by a cohomologous crossed homomorphism, 
we have @(H) c Cv(Zp). 

Case 1 Assume H < AGL(1, p). Because gcd(p, n) = 1, we know that H1(Zp, V) = 0 
[9, Corollary 12.2.7, p. 2371. Therefore, replacing d> by a cohomologous cocycle, we may 
assume that @(En) = 0. Because </> is a crossed homomorphism, this implies that @(H) c 
CdZp).  

Case 2 Assume H = An. Assume that n is prime. From Lemma 13, we know that (Zn)P/K 
is either Co or c:. Because An is perfect (or p = 3, in which case An = Zp), we know 
that H ' ( A ~ ,  Co) = 0. From [24, Lemma I], we know that H ' ( A ~ ,  c;) = 0. 

Let m be a divisor of n, such that n/m is prime. By induction on n, we may assume that 
</> is cohomologous to a crossed homomorphism into m V. Then the preceding paragraph 
implies that <b is cohomologous to 0. 

Case 3 Assume H = Sp. From Case 2, we may assume, after replacing 4 by a cohomol- 
ogous crossed homomorphism, that </>(An) = 0. Therefore, @(Sp) c Cv(Ap) = Cv(Zp). 

a 

Remark To complete the classification of transitive subgroups of Spi, the following prob- 
lems remain: 

a For PSL(d, q )  5 G < PrL(d, q), extend the Bardoe-Sin Theorem 12 from a classifica- 
tion of subgroups modulo a prime to a classification modulo a prime-power. 

a Calculate H \ H ,  V) for H = PSL(2, 11) (with p = 1 I), MI Mz and PSL(d, q) .  
a For each nontrivial cohomology class, find an explicit crossed homomorphism to repre- 

sent it. 

6. Applications 

6.1. The Cayley isomorphism problem 

Let H be a set, and E 5 2^ U 2 '  U . . .. We say that the ordered pair X = (H, E)  is 
a combinatorial object. We call H the vertex set and E the edge set. If E 2H, then 
X is a hypergraph. An isomorphism between two combinatorial objects X = (H, E) and 
Y = (H', E') is a bijection 6 :  H + H' such that 6(E) = E'. An automorphism of a 
combinatorial object X is an isomorphism from X to itself. Let G be a group and X = (G, E) 
a cornbinatorial object. Define g ~ :  G -+ G by gL(h) = gh and let GL = (gL: g e G). Then 
X is a Cayley object of G if and only if GL <: Aut(X). A Cayley object X of G is a 
CZ-object of G if and only if whenever X' is a Cayley object of G isomorphic to X, then 
some a E Aut(G) is an isomorphism from X to X'. Similarly, G is a CI-group with respect 
to K if and only if every Cayley object in the class of combinatorial objects K is a CI-object 
of G, and a CI-group if G is a CI-group with respect to every class K of combinatorial 
objects. It is known [31] that G is a CI-group if and only if IGI = 4 or G ?= Z n ,  with 
gcd(n, (p(n)) = 1. Hence neither Zpi nor Z i  is a CI-group unless p = 2, although Z i  is a 
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CI-group with respect to graphs [13]. We begin with a characterization of when two Cayley 
objects of a p-group G can be isomorphic provided their automorphism groups share a 
common Sylow p-subgroup. 

Lemma 15 Let X and Y be Cayley objects of a p-group G, and P a Sylow p-subgroup of 
both Aut(X) and Aut(Y). Then X and Y are isomorphic ifand only if there exists 8 E NsG (P) 
such that S(X) = Y. 

Proof: (+) Let w :  X Ã‘> Y be an isomorphism. Then a > '  PO c Aut(X), and m 1  P O  < 
PI, a Sylow p-subgroup of Aut(X). Hence there exists j3 Aut(X) such that ,!F P̂ ff = P,  
so that j3-'wl PUB 5: P ,  which means wj3 Nsr(P). Furthermore, w/S: X Ã‘ Y is an 
isomorphism. 

Corollary 1 Let X and Y be Cayley objects of L$, such that Pi is a Sylow p-subgroup 
of both Aut(X) and Aut(Y), for some 2 5 i 5 p - 1. Let j3 c IF; such that \ft\ = p - 1. 
Then X and Y are isomorphic if and only of they are isomorphic by a = bj for some 
15: j < p - l a n d l ^ k < p .  

Proof: (+) From Lemmas 15 and 5, we know that X and Y are isomorphic if and only 
if they are isomorphic by some 8 E Nsp#;) = (Ns2  ((T)), ~ i + l )  . AS P; a Ns f l i )  and 

N s p i W / P i  1 = ( p  - 1)p, there are (p  - 1)p cosets of Pi in Ns2(P,). As f t ,  yi+, @Pi, 
these (p  - 1)p cosets are ~ ~ p ~ h  1 < j < p - 1 and 1 5: k 5 p. Hence S may be 
written in the form 8 = ga,  with g e Pi and a = J^ y$r Then a Nsp2(P;) and, because 
S(X) = Y and g e Aut(Y), we have a(X) = Y. 

Corollary 2 Let X and Y be Cayley objects of Z$ with FIl a Sylow p-subgroup of Aut(X) 

and F12 a Sylow p-subgroup of Y. Let oil E ~ u t ( Z 2 )  such that a l I ' I l a ~ l  = P[ and a 2  

~ u t ( Z 2 )  such that a2F12a;l = Pi,  1 5 i 5 p - 1. Let 3̂ e IF; such that lpl = p - 1. 

Then X and Y are isomorphic ifand onlyifthey are isomorphic by aifS-'/Sk y$c, 1 < j ,  
k 5 ~ - 1 , 1 + p .  

Proof: Note that Pi is a Sylow p-subgroup of both Aut(al(X)) andAut(a2(Y)). It follows 
then by arguments analogous to those in Corollary 1 that al(X) and m) are isomorphic 
if and only if they are isomorphic by some o e Ns2 (P/). The result follows. 

We remark that the case P = Pi was considered in [4]. 

6.2. Automorphism groups of Cayley graphs of 7$ 

Using Theorem 4 we can calculate the full automorphism group of any vertex-transitive 
graph of order p2. We actually will prove this result in slightly more generality, determining 
all 2-closed groups G that contain a regular subgroup isomorphic to Z; (as was done in the 
previously cited paper). We remark that Klin and Poschel [25] have already calculated the 
full automorphism groups of circulant graphs of order pk (that is, of Cayley graphs of ZPk). 
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Theorem 14 Let G be a 2-closed subgroup of Sp2 such that G contains the left regular 
representation of q. 
1. If G is doubly transitive, then G = Sp2. 
2. I f  G is simply primitive and solvable, then G < AGL(2, p). 
3. If G is simply primitive and nonsolvable, then G 5 AGL(2, p)  or G = S2 ? Sp in its 

product action. 
4. I f  G is imprimitive, solvable, and has elementary abelian Sylow p-subgroup, then either 

G < AGL(1, p)  x AGL(1, p) or G = Sy x S3 (and p = 3). 
5. If G is imprirnitive, nonsolvable, and has elementary abelian Sylow p-subgroup, then 

either G = Sp x Sp or G = Sp x A ,  where A < AGL(1, p). 
6. I f  G is imprimitive with Sylow p-subgroup of order a t  least p3, then G = GI ? G2, where 

GI  and G2 are 2-closed permutation groups of degree p. 

Proof: (1) If G is doubly transitive, then clearly G = Sp2. 
(5) If G is imprirnitive, nonsolvable, and has elementary abelian Sylow p-subgroup, then 

by Theorem 4, we have that G = {(u, r )  H x Nsp(K) : f (a) r K}, where K, H 5 Sp 
and f :  H Ã‘ Ns(K)/K is a group homomorphism. 

Let TI H be a p-cycle and TZ e K be a p-cycle. Then (ri , I s )  G and ( I s ,  T;) G. 
Furthermore, G admits complete block systems B\ and B2 of p blocks of cardinality p 
formed by the orbits of ( (rI ,  Is^))) and ((Isp, T ~ ) ) ,  respectively (because G 5 Sp x Sp). 

If both fixG(B~) = {(5, lsp) : 5 e Ker( f )} and fixG(&) = {(Isp), y)  : y K} are 
solvable, then fixG(B1) 5 AGL(1, p) and fixG(&) 5 AGL(1, p). Then K < AGL(1, p)  
and Ns(K)  = AGL(1, p)  is solvable. Hence both Ker( f )  and f (H) are solvable so that H 
is solvable. Thus G is solvable, a contradiction. 

We now know that either fixG(&) or fixc(&) is nonsolvable. We will show that if 
fixG(B2) is doubly transitive (which includes the nonsolvable case), then G = H x Sp. The 
case where fixG(B1) is nonsolvable is handled in a similar fashion. 

If fixG(&) is nonsolvable, then by Theorem 1 fixG(B^)\B is doubly transitive for every 
B e. B2. Hence Stabfixds,^', j )  # 1 for every (i, j )  Zi. Define an equivalence relation = 
on Z i  by (i, j )  = (k, t )  if and only if StabfixG(~2)(i, J )  = Stab^B,)(k, l ) .  As G 5 Sp x Sp, 
there are p equivalence classes of = and each equivalence class of = contains exactly one 
element from each block of By.. As fixG(B2)13 is doubly transitive, StabfiXGiB2)(i, j)lB has 
two orbits for every B e &. One orbit consists of {(k, l ) } ,  where (k, t) = (i, j) and the 
other consisting of the remaining elements of the block B' of By. that contains (k, l ) .  Let r 
be an orbital digraph of G with ((i, j), (k, t ) )  E(F). If i = k, then r = pKp (the union 
of p disjoint copies of Kp) and so Aut(T) = Sp z Sp. If i # j ,  then, as F is an orbital 
digraph, either (i, j )  is only adjacent to (k, t )  or (i, j )  is adjacent to every element of B' 
except (k, 4). In either case, it is straightforward to verify that { ( I s ,  y)  : y e Sp} 5 Aut(r). 
As G is the intersection of the automorphism group of all orbital digraphs of G, we have 
K = Sp, Ns (K)  = Sp and f = 1. Thus G = H x K = H x S p  as required. Thus either 
H < AGL(1, p) or H is doubly transitive (as AGL(1, p )  is doubly transitive). Analogous 
arguments will then show that if H is doubly transitive, then H = Sp. Thus (5) follows. 

(4) If G is imprirnitive, solvable, and has elementary abelian Sylow p-subgroup, then 
we may define H ,  K, and f as in Theorem 4. Both H and Ns(K) are solvable, so that 



66 DOBSON AND WITTE 

K is solvable and, by Theorem 1, we have H, K 5 AGL(1, p). As N s  (AGL(1, p)) = 
AGL(1, p), we have that G < AGL(1, p) x AGL(1, p). As AGL(1, p) is itself doubly 
transitive, if G = AGL(1, p) x AGL(1, p) then fixG(B)lg is doubly transitive for every 
complete block system B of G and every block B B. It then follows by arguments above 
that fixo(B) S Sn, a contradiction unless p = 3. If p = 3, then AGL(1, p) x AGL(1, p )  = 
S3 x S3, a group listed in (4). Thus (4) follows. 

(2, 3) If G is simply primitive, then by Theorem 4, G has an elementary abelian Sylow 
p-subgroup and either G 5: AGL(2, p) or G contains an imprimitive subgroup H of index 
2. If G < AGL(2, p), then the result follows, so we may assume G contains an imprimitive 
subgroup H of index 2. Note that G is solvable if and only if H is solvable. 

If H is solvable, then H has an elementary abelian Sylow p-subgroup, and so G has an ele- 
mentary abelian Sylow p-subgroup. Furthermore, G is solvable. Let N be a minimal normal 
subgroup of G. Then N is an elementary abelian q-group for some prime q. As G is primitive, 
N is transitive, q = p and \N\ = p2. Thus G 5 N S z ^  (N) < AGL(2, p) and (2) follows. 

If H is nonsolvable, then by (5) proven above and the fact that if H <. G ,  then cl(H) 5 
cl(G), we have that either H = Sp x Sp or H = A x Sp ,  with A < AGL(1, p). It then 
follows by [lo, Theorem 4.6AI that G = S2 Sp with the product action. Thus (3) follows. 

(6) If G has a Sylow p-subgroup P of order at least p3, then P admits a complete block 
system B of p blocks of cardinality p. Then ~fixp(B)~ >: p2 so that StabfixpcB/O, 0) # 1. 
As fixp(B) is a p-group, we have that if y e Stabfixp(g)(O, O), then y fixes every point of the 
block of B that contains (0,O). Define an equivalence relation =' on Z; by (i, j )  =' (k, 8) 
if and only if Stabfix,,(B)(i, j )  = Stabhp&k, i). It follows by comments above and the fact 
that Stabfix,(B)(i, j) = Stabp(0, O), that the cardinality of each equivalence class of =' is a 
multiple of p. It is straightforward to verify that the equivalence classes of =' are blocks 
of P so that each equivalence class of =' has order p. Thus the equivalence classes of d 
form the complete block system B. For convenience, we assume without loss of generality 
that B = {{(i, j )  : j E Z p }  : i e Z p } .  

Let T be an orbital digraph of G, with PI a Sylow p-subgroup of Aut(I') that contains 
P.  Then P' admits B as a complete block system as well. If T is disconnected, then 
T = of^, where pFz is the disjoint union of p copies of the directed graph r2 so that 
Aut(F) = Sp z Aut(F2). If T is connected, let ((i, j), (k, C)) e E(T) such that i # k. Then 
(i, j )  #' (k, C) so that there exists y e P such that y(i, j )  = (i, j )  but y(k, i) # (k, i). 
Then y permutes the p elements of {(k, m) : m Z p }  as a p-cycle. We conclude that 
((i, j), (k, m)) E E (I?) for every m E Zp .  As fixp(B)\B is semiregular, where B E B such 
that (i, j )  e B, we have that ((i, n), (k, m)) E(T) for every n, m E Zp.  Thus F = Fl i' T2 
where Fi and T2 are digraphs of order p. It follows by [32, Theorem 11 that Aut(F) = 
Aut(Fl) ? Aut(rz) (although the cited theorem is stated only for graphs, it works as well for 
digraphs). As cl(G) is the intersection of the automorphism groups of all orbital digraphs 
of G, we conclude that G = G\z Gz for 2-closed groups GI ,  G2 of degree p. Thus (6) 
holds. 

Theorem 15 Let G be a 2-closed subgroup of Spz that contains the left regular represen- 
tation of Zp2. Then one of the following is true: 
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1. G = Sp2, 
2. G <Nsp2((Zp4~)> 
3. G = GI ? G2, where Gl and G2 are 2-closed groups of degree p. 

Proof: If G is doubly transitive, then G = Spi. Otherwise, as Zp2 is a Bumside group 
[33, Theorem 25.31, G is imprirnitive. By Theorem 4, either a Sylow p-subgroup of G is 
normal in G ,  or a Sylow p-subgroup is isomorphic to Zp ; Zp. By arguments in Theorem 14, 
if a Sylow p-subgroup of G has order at least p3, then G = GI ? G2, where GI and G2 are 
2-closed groups of degree p. The result then follows. 

Definition 16 A Cayley digraph r of a group G is normal if the left regular representation 
of G is normal in Aut(T). 

In [35, Problem 31, Ming-Yao Xu posed the problem of determining all nonnormal Cayley 
graphs of order p2. We are now in a position to solve this problem. 

Corollary 3 A Cayley digraph r of a group of order p2 is nonnormal if and only ifV is 
isomorphic to one of the following graphs. 
1. r = Kpi, p g, o r p  = 2and G = Z4, 
2. r = Fl ? r2, where Fl and r2 are Cayley digraphs of the cyclic group of order p ,  p > 3, 
3. r is a Cayley digraph of but not Q, p > 5, with connection set S = {(i, O), (0, j) : 

i, j E Zp} or the complement of this graph, 
4. r is a Cayley digraph of L but not Q, p > 5, whose connection set S satisfies the 

followingproperties, where H = {(O, i)  : i E Zp}, 
(A) H f l S = < S o r H f l S =  H-{(0,0)}, 
(B) for every coset (a, 0) + H # H of H ,  ((a, 0) + H) n S = (a, b) + H, 0, {(a, O)}, 

or ((a, 0) + H) - {(a, 0)). 

Proof: Let G = Aut(T). Then r is normal if (2), (4) of Theorem 14 hold or (2) of 
Theorem 15 hold. 

If either (1) of Theorem 14 or (1) of Theorem 15 holds, then Aut(F) = Sp2 and r is 
not normal unless p = 2, in which case the left regular representation of Zz is a normal 
subgroup of S4 but the left regular representation of lia, is not a normal subgroup of So, and 
(1) follows. 

If (6) of Theorem 14 or (3) of 15 holds, then F = Fl ; r2 where Fl and F2 are Cayley 
digraphs of Zp. It is then straightforward to verify, as Aut(T) = Aut(Tl) ? Aut(rz) that left 
regular representations of Zp2 and Z$ are not normal in Aut(F) unless p = 2. Whence (2) 
holds. We conclude that the remaining nonnormal Cayley digraphs must be Cayley digraphs 
of Z; but not Zp2. 

If (3) of Theorem 14 holds, then (3) follows by [35, Theorem 2.121. 
Finally, if (5) of Theorem 14 holds, F will be nonnormal provided that p >. 5. Further, 

Aut(F) admits a complete block system B of p blocks of cardinality p ,  which we may assume 
(by replacing F with its image under an appropriate automorphism of Z;) that B is formed 
by the orbits of HL and that fixAut(rj(B) 1 B = Sp for every B c B. As 1 B = Sp, we 
have that F[H] = Kp or 4, the complete graph on p vertices or its complement. Whence 
H n S = 0 or H n S = H - {(O, O)}. Define an equivalence relation = on Z; by (i, j) = 
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(k, t )  if and only if S t a b ~ , , , . , ~ ~ ~ ( i ,  j )  = Stabf,xAunr)(B)(k, f ) .  It is then straightforward to 
verify that there are p equivalence classes of = and that these p equivalence classes of = 
form a complete block system C of Aut(r). Again, if necessary, we replace r with its image 
under an appropriate automorphism of Z i  and assume that B is formed by the orbits of HL 
and C = {{(i, j )  : i Zp} : j E Zp} .  Let a e Zz. Then (0,O) is adjacent to either: no vertex 
of (a, 0) + H ;  every vertex of (a, 0) + H ;  only the vertex of ( a ,  0) of (a, 0) + H ;  or every 
vertex of (a, 0) + H except (a, 0). Thus (4) follows. 

The converse is straightforward. 
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