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Abstract. A homogeneous space G/H is said to have a compact Clifford-Klein form if there 
exists a discrete subgroup r of G that acts properly discontinuously on G/H,  such that the quotient 
space r\G/H is compact. When n is even, we find every closed, connected subgroup H of 
G = SO(2, n), such that G/H has a compact Clifford-Klein form, but our classification is 
not quite complete when n is odd. The work reveals new examples of homogeneous spaces of 
SO(2, n) that have compact Clifford-Klein forms, if n is even. Furthermore, we show that if 
H is a closed, connected subgroup of G = SL(3, R), and neither H nor G / H  is compact, then 
G / H  does not have a compact Clifford-Klein form, and we also study noncompact 
Clifford-Klein forms of finite volume. 
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1. Introduction 

ASSUMPTION 1.1. Throughout this paper, G is a Zariski-connected, almost simple, 
linear Lie group. ('Almost simple7 means that every proper normal subgroup of G 
either is finite or has finite index.) In the main results, G is assumed to be 
SO(2, n) (with n > 3). 

There would be no essential loss of generality if one were to require G to be 
connected, instead of only Zariski connected (see 3.1 1). However, SO(2, n) is not 
connected (it has two components) and the authors prefer to state results for 
SO(2, n), instead of for the identity component of SO(2, n). 

DEFINITION 1.2. Let H be a closed, connected subgroup of G. We say that the 
homogeneous space G/H has a compact Clifford-Klein form if there is a discrete 
subgroup r of G, such that 
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r acts properly on G/H; and 
r \ G / H  is compact. 

(Alternative terminology would be to say that G/H has a tessellation, because the 
r-translates of a fundamental domain for Y\G/H tessellate G/H, or one could 
simply say that G/H has a compact quotient.) See the surveys [21] and [24] for 
references to some of the previous work on the existence of compact Clifford-Klein 
forms. 

We determine exactly which homogeneous spaces of SO(2, n) have a compact 
Clifford-Klein form in the case where n is even (see 1.7), and we have almost com- 
plete results in the case where n is odd (see 1.9). (We only consider homogeneous 
spaces G/H in which H is connected.) The work leads to new examples of homo- 
geneous spaces that have compact Clifford-Klein forms, if n is even (see 1.5). 
We also show that only the obvious homogeneous spaces of SL(3, R) have compact 
Clifford-Klein forms (see 1.10), and we study noncompact Clifford-Klein forms 
of finite volume (see Section 6). These results were announced in [29] (along with 
a construction of new examples of homogeneous spaces of SU(2,n) and 
S0(4,4n) that have compact Clifford-Klein forms). 

NOTATION 1.3. We realize SO(2, n) as isometrics of the indefinite form 

on (for v = (vl, v;, . . . , vn+;) e IRn+;). 

Let A be the subgroup consisting of the diagonal matrices in SO(2, n) whose diagonal 
entries are all positive, and let N be the subgroup consisting of the upper-triangular 
matrices in SO(2, n) with only 1's on the diagonal. Thus, the Lie algebra of AN is 

Note that the first two rows of any element of a + n are sufficient to determine the 
I 

! 
entire matrix. 

Let us recall a construction of compact Clifford-Klein forms found by Kulkarni 
[23, Thm. 6.11 (see also [17, Prop. 4.91). The subgroup SU(1, m), embedded into 
S0(2,2m) in a standard way, acts properly and transitively on the homogeneous 
space S0(2,2m)/ SO(1,2m). Therefore, any co-compact lattice F in SO(l,2m) acts 
properly on S0(2,2m)/ SU(1, m), and the quotient r\ SO(2,2m)/ SU(1, m) is 
compact. Now let Hsu = SU(1, m) n (AN). Then the Clifford-Klein form 
r\ SO(2, 2m)/HW is also compact, since SU(1, m)/Hsu is compact. (Similarly, 
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Kulkarni also constructed compact Clifford-Klein forms 

by letting A be a co-compact lattice in SU(1, m).) 
The following theorem demonstrates how to construct new examples of compact 

Clifford-Klein forms F\ SO(2, 2m)/HB. The subgroup HB of S0(2,2m) is obtained 
by deforming Hsu, but HB is almost never contained in any conjugate of SU(1, m). 

THEOREM 1.5. Assume that G = SO(2,2m). Let B: R ~ ~ - ~  + R*"-~ be a linear 
transformation that has no real eigenvalue. Set 

let HB be the corresponding closed, connected subgroup of G, and let Y be'a 
co-compact lattice in SO(l,2m). Then 

(1)  the subgroup F acts properly on SO(2, 2m)/Hy; 
(2) the quotient Y\ SO(2, 2m)/He is compact; and 
(3) HB is conjugate via 0(2,2m) to a subgroup of SU(1, m)  i f  and only i f  for some 

a, b R (with b # O), the matrix of B with respect to some orthonormal basis 
of R ~ ~ - ~  is a block diagonal matrix each of whose blocks is 

Furthermore, by varying B, one can obtain uncountably many pairwise nonconjugate 
subgroups. 

We recall that T. Kobayashi [22, Thm. B] showed that a co-compact lattice in 
SU(1, m)  can be deformed to a discrete subgroup A, such that A acts properly 
on S0(2,2m)/ SO(l,2m) and the quotient space A\ S0(2,2m)/ S0(1,2m) is compact, 
but A is not contained in any conjugate of SU(1, m). (This example is part of an 
extension of work of W. Goldman [7].) Note that Kobayashi created new compact 
Clifford-Klein forms by deforming the discrete group while keeping the homo- 
geneous space S0(2,2m)/ SO(l,2m) fixed. In contrast, we deform the homogeneous 
space SO(2, 2m)/Hsu to another homogeneous space SO(2, 2m)/HB while keeping 
the discrete group F in SO(l,2m) fixed. 

For even n, we show that the Kulkarni examples and our deformations are 
essentially the only interesting homogeneous spaces of SO(2, n) that have compact 
Clifford-Klein forms. We assume that H c AN,  because the general case reduces 
to this (see 3.9). 

THEOREM 1.7 (cf. Thm. 5.7). Assume that G = S0(2,2m). Let H be a closed, con- 
nected subgroup of A N ,  such that neither H nor G/H is compact. The homogeneous 
space G/H has a compact Clifford-Klein form if and only if either 
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(1) H is conjugate to a co-compact subgroup of SO(1,2m); or 
(2) H is conjugate to Hy ,  for some B, as described in Theorem 1.5. 

It is conjectured [22, 1.41 that if H is reductive and G / H  has a compact 
Clifford-Klein form, then there exists a reductive subgroup L of G ,  such that L 
acts properly on G / H ,  and the double-coset space L\G/H is compact. Because there 
is no such subgroup L in the case where G = S0(2,2m + 1) and H = SU(1, m )  
(see 5.1 I ) ,  the following is a special case of the general conjecture. 

CONJECTURE 1.8. For m 2 1 , the homogeneous space 

does not have a compact Clifford-Klein form. 

If this conjecture is true, then, for odd n ,  there is no interesting example of a 
homogeneous space of SO(2, n) that has a compact Clifford-Klein form. 

THEOREM 1.9. Assume that G = S0(2,2m + I),  and let H be a closed, connected 
subgroup of G ,  such that neither H nor G / H  is compact. I f  G/ SU(1, m )  does not 
have a compact Clifford-Klein form, then G / H  does not have a compact 
Clifford-Klein form. 

The main results of [30] list the homogeneous spaces of SO(2, n) that admit a 
proper action of a noncompact subgroup of SO(2, n) (see Section 2). Our proofs 
of Theorems 1.7 and 1.9 consist of case-by-case analysis to decide whether each 
of these homogeneous spaces has a compact Clifford-Klein form. The following 
proposition does not require such a detailed analysis, but is obtained easily by com- 
bining theorems of Y. Benoist (see 7.1) and G. A. Margulis (see 3.6). 

PROPOSITION 1.10. Let H be a closed, connected subgroup of G = SL(3, R). If 
G/H has a compact Clifford-Klein form, then H is either compact or co-compact. 

The paper is organized as follows. Section 2 recalls some definitions and results, 
mostly from [30]. Section 3 presents some general results on Clifford-Klein forms. 
(The reader who is interested in the general techniques used in this paper, not 
the specific answers for SO(2, n ) ,  may wish to skip to Section 3 after reading 2.1, 
2.2, and 2.3.) Section 4 proves Theorem 1.5, the new examples of compact 
Clifford-Klein forms. Section 5 proves Theorems 1.7 and 1.9, the classification 
of compact Clifford-Klein forms. Section 6 discusses noncompact Clifford-Klein 
forms of finite volume. Section 7 briefly discusses Clifford-Klein forms of homo- 
geneous spaces of SL(3, R) , proving Proposition 1.10. An appendix presents a short 
proof of a theorem of Benoist. 
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2. Cartan Projections of Subgroups of SO(2, n) 

Our study of the compact Clifford-Klein forms of homogeneous spaces of SO(2, n) is 
based on a case-by-case analysis of the subgroups of SO(2, n) that are not Cartan- 
decomposition subgroups (see Definition. 2.1). We need to know not only what 
the subgroups are, but also the image of each subgroup under the Cartan projection 
(see Definition. 2.3). This information is provided by [30]. In this section, we recall 
the relevant results, notation, and definitions. (However, we have omitted a few 
of the more well-known definitions that appear in [30].) 

DEFINITION 2.1 ([30, Defn. 1.21). Let H be a closed, connected subgroup of G. We 
say that H is a Cartan-decomposition subgroup of G if there is a compact subset C 
of G ,  such that CHC = G. (Note that C is only assumed to be a subset of G; it 
need not be a subgroup.) 

NOTATION 2.2. Fix an Iwasawa decomposition G = KAN and a corresponding 
Cartan decomposition G = KA+K, where A+ is the (closed) positive Weyl chamber 
of A in which the roots occurring in the Lie algebra of N are positive. Thus, K 
is a maximal compact subgroup, A is the identity component of a maximal split 
torus, and N is a maximal unipotent subgroup. 

DEFINITION 2.3 (Cartan projection). For each element g of G ,  the Cartan 
decomposition G =  KA+K implies that there is an element a of A+ with 
g KaK. In fact, the element a is unique, so there is a well-defined function 
p: G + A  ̂ given by g K p(g) K. The function p is continuous and proper (that 
is, the inverse image of any compact set is compact). Some properties of the Cartan 
projection are discussed in [I, 211, and [30]. 

NOTATION 2.4. For subsets X, Y c A + ,  we write X = Y if there is a compact 
subset C of A with X c YC and Y c XC. 

NOTATION 2.5. Define a representation 

Note that if 

a = diag(al,aZ, 1, 1, . . . , 1, 1, a;', a;') e A+, 

then, for the usual operator norm, we have llall = a1 and ]lp(a)ll = a m .  
For functions f l  ,fi: R+ -+ R+ , and a subgroup H of SO(2, n), we write p(H) : 

[/l(llhll),/2(llhll)] if, for every sufficiently large C > 1 ,  we have 
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where HhH denotes the norm of the linear transformation h. (If f l  and f2 are 
monomials, or other very tame functions, then it does not matter which particular 
norm is used, because all norms are equivalent up to a bounded factor.) In particular, 
H is a Cartan-decomposition subgroup of SO(2, n) if and only if p(H) % [llhl], ]lh]12] 
(see [30, Lem. 5.71). 

Remark 2.6. Let H and H' be closed, connected subgroups of SO(2, n). Suppose 
that 

satisfy 

If, for all large t R+ , we have/i(t) < f/(t) <A(/) </2(t) ,  then there is a compact 
subset C of G.  such that H' c CHC. 

NOTATION 2.7 (cf. 1.4). Assume that G = SO(2, n). For every h n, there exist 
unique <̂ ,, Q R and xh, yh e E k n 2 ,  such that 

NOTATION 2.8. We let a and f l  be the simple real roots of SO(2, n),  defined by 
a(a) = ai/a2 and b(a) = 02, for an element a of A of the form 

a = diag(ai, a2, 1, 1, .  . . , 1, 1, a;, a,). 

Thus, 

the root space uu is the &axis in n ,  
the root space up is the y-subspace in n ,  
the root space uu+p is the x-subspace in n ,  and 
the root space ua+2p is the q-axis in n. 

We now reproduce a string of results from [30] that describe the subgroups of 
SO(2, n) that are not Cartan-decomposition subgroups, and also describe the image 
of each subgroup under the Cartan projection. 

THEOREM 2.9 ([30, Thm. 5.5 and Prop. 5.81). Assume that G = SO(2, n). A 
nontrivial, closed, connected subgr-qup H of N is not a Cartan-decomposition 
subgroup of G if and only if either 

(1) dim H = 1, in which case p(H) % [\hllP, llhllp], for some p e {I, 3/2,2}; or 
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(2) (hi, = 0 and dim(xh, yh) # 1, for every nonzero element h of I ) ,  in which case 
( 1  [ 1 2  1 2 ]  or 

(3) (hi = 0 and dim(xh, yh) = 1, for every nonzero element h of I) ,  in which case 

AH) 4 1 h 1 1 ,  I I ~ I I ] ;  or 
(4) there exists a subspace Xo of r 2 ,  b XQ, c e x:, andp  e R  with llb]12 - 11cl[~- 

2p < 0 ,  such that for every element of I ) ,  we have yh = 0 ,  xh d>i,c + Xo, and 
rif, = p(bi, + b . xh (where b . xh denotes the Euclidean dot product of the vectors 
b and xh in R""~),  in which case p(H) % [llhll, llhll]. 

THEOREM 2.10 ([30, Cor. 6.21). Assume that G = SO(2, n). Let H be a closed, 
connected subgroup of A N ,  such that H = ( H  n A) x ( H  n N ) ,  and H g' N.  The 
subgroup H is not a Cartan-decomposition subgroup of G i f  and only i f  either 

H = H H A is a one-dimensional subgroup of A; or 
H n A = ker a ,  and we have oh = 0 and dim(xh, yh) # 1 for every nonzero 
element h of I )  fl n, in which case p(H) % [\hl12, l l h ~ [ ~ ] ;  or 
H A = ker f i ,  and we have d>h = 0 ,  yh = 0, and xh # 0 for every nonzero 
element h o f t )  n n, in which case p(H) % [\hll, \hll]; or 
H fl A = ker(a + 5) , and we have d)i, = 0,  xi, = 0, and yh # 0 ,  for every nonzero 
element h of I )  n n, in which case p(H) % [\\h\\. llhllj; or 
H n A = ker fi , and there exist a subspace Xo of R n  , b Xo, c x:, andp e R ,  
such that [1bll2 - llcl12 - 2p < 0,  and we have yh = 0,  xh e. dhc + Xo, and qh = 

p4 + b . xh for every h e f )  n n, in which case p(H) [llhl[, llhll]; or 
H D A = ker(a - fS), dim H = 2, and there are (f) uÃ and j) e up, such that 
(f, # 0 ,  j) # 0, and I )  n n = R($ +j), in which case p(H) % [ljhll3I2, ~ l h l l ~ ~ ~ ] ;  or 
H n A = kerfi, dim H = 2, and we have yh = 0 and 1 1 ~ ~ 1 1 ~  # -24hqh for every 
h e H ,  in which case p(H) % [llhll, \\h\]; or 
there is a positive root co and a one-dimensional subspace t of a, such that 
t) n TI c urn, t) = t + ( I )  n n), and Proposition 2.14 implies that H is not a 
Cartan-decomposition subgroup, in which case, either 

(a) co {a, a + 2(?} and p(H) % [\hlls, llhl12] for some s e (1,2); or 
(b) co e {P, a + PI and A H )  % [llhll, llhlls] for some s (1,2). 

Not every connected subgroup of AN is conjugate to a subgroup of the form 
T K U ,  where T c A and U c N .  The following definition and lemma describe 
how close we can come to this ideal situation. 

DEFINITION 2.1 1. Let us say that a subgroup H of A N  is compatible with A i f  
H c TUCN(T) ,  where T = A n ( H N ) ,  U = H C\ N ,  and CN(T)  denotes the 
centralizer of T in N.  

LEMMA 2.12 ([30, Lem. 2.31). If H is a closed, connectedsubgroup of A N ,  then H is 
conjugate, via an element of N ,  to a subgroup that is compatible with A. 
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THEOREM 2.13 ([30, Cor. 6.41). Assume that G = SO(2, n). Let H be a closed, con- 
nected subgroup of AN that is compatible with A (see 2.1 \ ) ,  and assume that 
H # ( H  ft A)  K (H  Fi N). Then there is a positive root a ,  and a one-dimensional 
subspace 2 of (ker a )  + ua,, such that I )  = i + (I) D n). 

If H is not a Carton-decomposition subgroup of G ,  then either: 

(1) a = a and I )  n n c ua+g, in which case 

or 
(2) a = a and I )  n n c ua+zp, in which case 

or 
(3) a = a + 2B and lj n n c ua, in which case 

or 

(4) CD = a + 2fS and either I )  n n c up or I )  n n c ua+p, in which case 

or 

(5) Q)  6 {fS, a + f ! }  , I) fl tt C Ua, + Ua+2j3, and I )  H ua, = I )  ft ua+2p = 0 ,  in which case 

or 

(6) there is a root y with {a, y} = {fS, a + f S }  , I )  n n c uy + ua+2p, and I )  n ~ + 2 p  = 0 ,  in 
which case 

or 

(7) a {fl, a + f ! }  and I )  n n = ua+2b, in which case 

or vf 
(8) CD = a + /3 and lj n n = ua , in which case 
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PROPOSITION 2.14 (cf. [30, Prop. 3.17, Cor. 3.181). Assume that G = SO(2, n). Let 
H be a closed, connected subgroup of A N ,  such that there is a positive root co and a 
one-dimensional subspace t of a ,  such that 0 # J j  n n c urn, and J j  = t + (Jj n n). 

Let y be thepositive root that is perpendicular to co , so {co, y }  is either {a, a + 2f)} or 
{p ,  a + p}. Ift = ker co, then H is a Carton-decomposition subgroup of G. Otherwise, 
there is a real number p ,  such that t = ker(pco + y). 

If \p\ 2 1, then H is a Carton-decomposition subgroup of G. 
// \p\ < 1, and co G {a, a + 2p},  then p(H) w [ljhl12/(1+tpl), [jhl12]. 
If \p\ < 1, and co { h a + p } ,  then p(H) [llhll, [ ~ h l l ' + ~ ~ ~ ] .  

For ease of reference, we now collect a few miscellaneous facts. 

LEMMA 2.15 ([30, Lem. 2.81). Let H be a closed, connected subgroup of AN. If 
dim H - dim(H n N )  2 R-rank G ,  then H contains a conjugate of A ,  so H is a 
Carton-decomposition subgroup. 

Remark 2.16. We realize SO(1, n) as the stabilizer of the vector 

Thus, the Lie algebra of SO(1, n) n AN is 

that is, it is of type 2.10(5), with Xo = R " - ~ ,  b = 0 ,  c = 0 ,  andp = 1. Therefore, we 
see that p(SO(1,n)) = [IlhIl, IIhlI]. 

PROPOSITION 2.17 (cf. [30, Case 3 of the pf. of Thm. 6.11). Assume that 
G = SO(2, n). Suppose that H is a closed, connected subgroup of A N ,  such that 
H = ( H  C\ A) K ( H  r\ N). Assume that there exist a subspace Xo of R n 2 ,  vectors 
b G Xo and c E x:, and a real number p ,  such that, for every h E H n N ,  we have 
yh = 0 ,  xh â &c+ Xo,  andqh   if.^ + b.xh. ~ f \ \ b \ \ ~  - [1cjl2 - 2p < 0 ,  thenHiscon- 
jugate to a subgroup of SO(1, n). 

3. General Results on Compact Clifford-KIein Forms 

Before beginning our study of the specific group SO(2, n) , let us state some general 
results on compact Clifford-Klein forms. Recall that G is a Zariski-connected, 
almost simple, linear Lie group. 

The 'Calabi-Markus phenomenon' asserts that if H is a Cartan-decomposition 
subgroup of G ,  then no closed, noncompact subgroup of G acts properly on 
G/H (cf. [23, pf. of Thm. A. 1.21). The following well-known fact is a direct conse- 
quence of this observation. 
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LEMMA 3.1 Let H be a Carton-decomposition subgroup of G. Then G/H does not 
have a compact Clifford-Klein form, unless G/H itself is compact. 

By combining this lemma with the following proposition, we see that if G/H has a 
compact Clifford-Klein form, and R-rank G = 1, then either H or G/H is compact. 

PROPOSITION 3.2 ([30, Prop. 1.81, 119, Lem. 3.21). Assume that we have 
R-rank G = 1. A closed, connected subgroup H of G is a Cartan-decomposition 
subgroup if and only if H is noncompact. 

Lemma 3.1 can be obtained as a special case of Theorem 3.4(1) by letting L = G. 
The generalization is very useful. 

NOTATION 3.3. (cf. [17, (2.5), $51). For any connected Lie group H ,  let 
d(H) = dim H - dim KH , where KH is a maximal compact subgroup of H. This 
is well defined, because all the maximal compact subgroups of H are conjugate [lo, 
Thm. XV.3.1, p. 180-1811. (This concept originated with K. Iwasawa 113, 
p. 5331, who called d(H) the 'characteristic index' of H.) Note that if H c AN, then 
d(H) = dim H ,  because AN has no nontrivial compact subgroups. 

THEOREM 3.4 (Kobayashi, cf. [17, Cor. 5.51 and [18, Thm. 1.51). Let H andL be 
closed, connected subgroups of G, and assume that there is a compact subset C 
of G ,  such that L c CHC. 

(1) I f  d(L) > d(H), then G/H does not have a compact Clifford-Klein form. 
(2) Ifd(L) = d(H), and G/H has a compact Clifford-Klein form, then G/L also has a 

compact Clifford- Klein form. 

(3) If there is a closed subgroup L' of G, such that L acts properly on G/H, 
d(H) + d(L1) = d(G), and there is a co-compact lattice T in L', then G/H has 
a compact Clifford-Klein form, namely, the quotient Y\G/H is compact. 

Comments on the proof. Kobayashi assumed that H is reductive, but the same 
proof works with only minor changes. From Lemma 3.9 below, we see that we 
may assume that H c AN. Then, from the Iwasawa decomposition G = KAN, 
it is immediate that the homogeneous space G/H is homeomorphic to the Cartesian 
product K x (ANIH). Because AN is a simply connected, solvable Lie group 
and H is a connected subgroup, the homogeneous space AN/H is homeomorphic 
to a Euclidean space R̂  (cf. [26, Prop. 11.21). Therefore, we see that G/H has 
the same homotopy type as K (= K/(H fl K), because H f l  K is trivial). Thus, 
the proof of [17, Lem. 5.31 goes through essentially unchanged in the general setting. 
This yields a general version of 117, Cor. 5.51, from which general versions of [IS, 
Thm. 1.51 and [17, Thm. 4.71 follow. Our conclusion (1) is the natural generalization 
of [18, Thm. 1.51. Conclusion (3) is the natural generalization of [17, Thrn. 4.71, and 
conclusion (2) is proved similarly. 

The following useful theorem of G. A. Margulis is used in the proof of 
Proposition 3.7. 
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DEFINITION 3.5 (cf. [25, Defn. 2.2, Rmk. 2.21). A closed subgroup H of G is 
(G, K)-tempered if there exists a (positive) function q e L^(H), such that, for every 
nontrivial, irreducible, unitary representation n of G with a K-fixed unit vector v, 
we have 1 (n(h)v, v) \ < q(h) for all h e H.  

(We remark that, because n is irreducible, the K-invariant vector v is unique, up to 
a scalar multiple [16, Thm. 8. I].) 

THEOREM 3.6 (Margulis [25, Thm. 3.11). If H is a dosed, noncompact, (G, K)- 
tempered subgroup of G, then G/H does not have a compact Clifford-Klein form. 

PROPOSITION 3.7. IfH is a closed, noncompact one-parameter subgroup of a con- 
nected, simple, linear Lie group G, then G/H does not have a compact Clifford-Klein 
form. 

Proof. Suppose that G/H does have a compact Clifford-Klein form. 
Assume for the moment that R-rankG = 1. Then H is a Cartan-decomposition 

subgroup of G (see 0.2), so we see from Lemma 3.1 that G/H must be compact. 
But the dimension of every connected, co-compact subgroup of G is at least 
d(G) [8, (1.2), p. 2631, and d(G) > 2. This contradicts the fact that dim H = 1. Thus, 
we now know that R-rank G 2 2. 

From the Real Jordan Decomposition [9, Lem. IX.7.1, p. 4301, we may assume, 
after replacing H by a conjugate subgroup, that H c {a,u, 1 t R } E  where 
a.t e A is a semisimple one parameter subgroup, u, e N is a unipotent one parameter 
subgroup, and E is a compact subgroup, such that a,, u, and E commute with each 
other. Because E is compact, we see from Theorem 3.4(2) that G/H has a compact 
Clifford-Klein form if and only if G/{a,u, I t e R} has a compact Clifford-Klein 
form. Thus, we may assume that H = {atul \ t e R} (so E is trivial). 

Case 1. Assume that at is trivial(i.e., H i s  unipotent). The Jacobson-Morosov Lemma 
[14, Thm. 17(1), p. 1001 implies that there exists a connected, closed subgroup L of G 
that is locally isomorphic to SL(2, R)  (and has finite center), and contains H. Then H 
is a Cartan-decomposition subgroup of L (see 0.2), and d(L) = 2 > 1 = d(H), so 
Theorem 3.4(1) applies. 

Case 2. Assume that a, is not trivial. It is well known (cf. [15, 53, p. 1401, where a 
stronger result is obtained by combining [ l l ,  Cor. 7.2 and $71 with [6, Thm. 2.4.21) 
that there are constants C > 0 and p > 0 such that, for any nontrivial irreducible 
unitary representation p with a K-fixed unit vector, say v, we have 

where d is some bi-K-invariant Riemannian metric on G. We may assume that 
d(e, a,) = \t\ with a suitable parameterization. Since the growth of a unipotent 
one parameter subgroup is logarithmic while that of semisimple one parameter 
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subgroup is linear, we can find a large T such that d(e, atat) 2 d(e, at)  = It112 for all 
t > T. Hence 

1 (p(a,ut)v, v)l s C e x p ( - 9  for t > T .  

Since the function exp(-p[t\/2) is in L'(R), it follows that H is (G, K)-tempered. 
Therefore, Theorem 3.6 implies that G/H does not have compact Clifford-Klein 
forms. 

Remark 3.8. Y .  Benoist and F. Labourie [2] proved that if H is unimodular, and 
the center of H contains a nontrivial, connected subgroup of A,  then G/H does 
not have a compact Clifford-Klein form. This provides an alternate proof of 
Proposition 3.7 in the special case where H is conjugate to a subgroup of A. 

We use the following well-known lemma to reduce the study of compact 
Clifford-Klein forms of G/H to the case where H c AN. We remark that the proof 
of the lemma is constructive. For example, replace H by a conjugate, so that 
H n AN is co-compact in H ,  where fl" is the Zariski closure of fl", and choose a 
maximal compact subgroup C of zO. Then write C = C1 C 2 ,  where Cl is a maximal 
compact subgroup of H ,  and C2 is contained in the Zariski closure of Rad H.  
Finally, let H' = (HC2) n (AN). 

LEMMA 3.9 (cf. [30, Lem. 2.91). Let H be a closed, connected subgroup of G. Then 
there is a closed, connected subgroup H' of G and compact, connected subgroups 
Cl and C2 of G ,  such that 

(1) H' is conjugate to a subgroup of AN; 
(2) dim H' = d(H)  (see Notation 3.3); 
(3) C2H = CI C2 H'; 
(4) CI  c H ,  C-i is Abelian, C1 centralizes C2,  and C2 normalizes both H and H'; and 
(5) if H /  Rad H is compact, then Cl normalizes H'. 

Moreover, from 3.4(2), we know that the homogeneous space G/H has a compact 
Clifford-Klein form i f  and only i f  G/H1 has a compact Clifford-Klein form. 

We now recall a fundamental result of Benoist and Kobayashi. 

THEOREM 3.10 (Benoist [I, Prop. 1.51, Kobayashi [20, Cor. 3.51). Let Hi andHz be 
closedsubgroups of G. The subgroup Hi actsproperly on G/H2 ifand only i f ,  for every 
compact subset C of A, the intersection ( ~ . ( H ~ ) C )  n A H 2 )  is compact. 

LEMMA 3.11. Let Go be the identity component of G ,  let H be a closed, connected 
subgroup of G ,  and let T be a discrete subgroup of G. Then: 

(1) acts properly on G/H i f  and only if r GÂ acts properly on GO/H. 
(2) T\G/H is compact i f  and only i f  (T n GÂ¡)\GÂ¡ is compact. 
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Proof. ( 1 )  Because every element of the Weyl group of G has a representative in GÂ 

[4, Cor. 14.61, we see that G and GÂ have the same positive Weyl chamber A + ,  and the 
Cartan projection Go Ã‘> A+ is the restriction of the Cartan projection G -+ A+. 
Thus, the desired conclusion is immediate from Corollary 3.10. 

(2) This is an easy consequence of the fact that GIGÂ is finite [27, Appendix]. 

4. New Examples of Compact Clifford-Klein Forms 

Proofof Theorem 1.5. From Remark 2.16, we have /i(SO(l, 2m)) Ã [llhl~, ]]hl]]. From 
Theorem 2.10(2), we have /i(HB) % [\h1l2, m2]. Thus, Theorem 3.10 implies that 
SO(1,2m) acts properly on S 0 ( 2 , 2 m ) / H ~ .  We have 

and 

Therefore, conclusions (1) and (2) follow from Theorem 3.4(3). 
To show conclusion (3 ) ,  suppose that ghee,' c su(1, m) for some g e. S0(2,2m). 

Because all maximal split tori in SU(1, m)  are conjugate, we may assume that g 
normalizes ker a. In fact, because SU(1, m) has an element (namely, the nontrivial 
element of the Weyl group) that inverts kera, we may assume that g centralizes 
ker a. Thus, g is a block diagonal matrix with R ,  S and J ( R ~ ) '  J on the diagonal, 
where 

0 1 
R ? GL(2, R) ,  S O(2m - 2), and J = ( o ) .  

Conjugating by I2 x S x I2 amounts to choosing a different orthonormal basis 
for so we may assume that S is trivial. Now, the assumption that 
gfjBgl  c su(1, m)  implies that R (G) is of the form 

A direct calculation, setting 

and 



38 HEE OH AND DAVE WITTE 

for all i e {l ,  . . . , m - I}, now establishes that B is block diagonal as described in 
conclusion (3). 

All that remains is to show that there are uncountably many nonconjugate sub- 
groups of the form HB. Let L be the group of all block diagonal matrices with 
R ,  S and J ( R ~ ) J  on the diagonal, where 

and let B be the set of all matrices in GLZmp2(R) that have no real eigenvalues, so B is 
an open subset of GL2m-2(R). Because B I+ HE is injective, the action of L by con- 
jugation on { HE \ B e B} yields an action of L on B. By arguing as in the proof 
of (3), we see that if Bi and B2 are in different L-orbits in B , then H B  is not conjugate 
to HE-,. Thus, it suffices to show that there are uncountably many L-orbits on B. 

If 2m 2 .6 ,  then 

so each L-orbit on B has measure zero. Thus, obviously, there are uncountably many 
L-orbits. 

Now assume that m = 2. In this case, for each B 6 ,  there exists 5' B , such that 

where v and B'(v) are considered as column vectors. Note that the centralizer of B' in 
GL(2, R) contains a two-dimensional connected subgroup. Thus, B' is centralized by 
a nontrivial connected subgroup of PGL(2, R)  , so we see that the normalize! NL(HB) 
contains a 2-dimensional subgroup (consisting of block diagonal matrices with R , Id 
and ~ ( ~ ~ 1 - l  J on the diagonal, for R centralizing B'), so dim L - dim(iVL(~~)) < 
3 < 4 = dim B. Therefore, as in the previous case, each L-orbit on B has measure 
zero, so there are uncountably many L-orbits. 

Remark 4.1. The subgroups HB of Theorem 1.5 are not all isomorphic (unless 
m = 2). For example, let m = 3 and let 

The characteristic polynomial of B is det(A - B) = A4 - A2 + 1, which has no real 
zeros, so B has no real eigenvalues. Let v = (0,0,0,1). We have B ~ V  = Bv, so, 
for every x e iR4, we have x . Bv - v . Bx = 0. Thus, if h is any element of be n n 
with xh = v, then h is in the center of ijE n n. Therefore, the center of IjE n n contains 
(h, u ~ + ~ ~ ) ,  so the dimension of the center is at least 2. (In fact, the center is 
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3-dimensional, as will be explained below.) Because the center of t)sv n n is ua+2p, 
which is one-dimensional, we conclude that IjB is not isomorphic to Ijsu. 

Remark 4.2. Almost every HB is isomorphic to HSU. Namely, HB is isomorphic 
to HSU if B belongs to the dense, open set where d e t ( ~ ~  - B) # 0. (Perturb B by 
adding almost any skew-symmetric matrix to make the determinant nonzero. If 
the skew-symmetric matrix is small enough, the perturbation will not have any real 
eigenvalues.) To see this, note that, for every B ,  the torus A f l  HB has only two 
weights on the unipotent radical (one on (up + ua+p), and twice that on 
U ~ + ~ D  = [IjB n n, IjB fl n]). So two HB7s are isomorphic if and only if their unipotent 
radicals are isomorphic. We show below that each unipotent radical is the direct 
product of an Abelian group with a Heisenberg group, so the unipotent radicals 
are isomorphic if and only if their centers have the same dimension. Finally, the 
dimension of the center of HB is 1 +the dimension of the kernel of BT - B. 
Therefore, it is easy to see which HB's are isomorphic. (Also, there are only finitely 
many different He's, up to isomorphism.) 

We now show that the unipotent radical of HB is the direct product of an Abelian 
group with a Heisenberg group. Let qo be the kernel of B~ - B ,  and let mo be a 
subspace of R~~~ that is complementary to q. Define 

and 

and let j be the center of n. Then the Lie algebra of the unipotent radical of HB is 
(m + j) + q. Let us see that m + j is a Heisenberg Lie algebra. Choose some nonzero 
ZQ j. For any v, w E m ,  there is some scalar (v 1 w) , such that 

(because [TO, m] c 3 and j is one-dimensional). Clearly, (. 1 .) is skew symmetric, 
because [v, w] = -[w, v]. Also, for every v e m ,  we have (v I m) # 0 ,  because 
m n q = 0; so the form is nondegenerate on TO. Thus, (. 1 .) is a symplectic form 
on TO, so (0.1) is the definition of a Heisenberg Lie algebra. 

5. Non-Existence Results on Compact Clifford-Klein Forms of SO(2, n ) / H  

The following lemma is obtained by combining Theorem 3.4 with some of our results 
on Cartan projections. 



40 HEE OH AND DAVE WITTE 

LEMMA 5.1. Assume that G = SO(2, n). Let H be a closed, connected subgroup 
of AN. 

(1) I f  p(H) [\h 11, Â ¥  and dim H < n , then G/H does not have a compact Clzford- 
Klein form. 

(2) I f  p(H) = [-, \h1l2] and dim H < 2Ln/2] , then G / H  does not have a compact 
Clifford- Klein form. 

Proof. By Theorem 3.4(1), it is enough to find a subgroup L of A N ,  such that 
dim L > dim H and L c CHC for some compact set C. 

(1) We take L to be SO(1, n) n AN. We have dim L = n > dim H.  Furthermore, we 
know from Remark 2.16 that p(L) = [\hll, \hll]. Thus, from the assumption on the 
form of p(H) ,  we know that there is a compact subset C of G with L c CHC (see 2.6). 

(2)  Let n' = 2[n/2\. Because n' - 2 is even, there is a linear transformation 
B. ~ n ' - 2  s n l - 2  that has no real eigenvalues. In other words, dim(x, Bx) = 2 

for all nonzero x <= Let 

where we identify R n 2  with a codimension-one subspace of I R n 2  in the case where 
n is odd (so n' = n - I ) ,  and let HB be the corresponding connected, closed subgroup 
of AN.  

Let L = Hs. (Thus, for the appropriate choice of B, we could take L = 

SU(1, nf /2)  n AN.) Then dim L = n' > dim H .  We know from Corollary 2.10(2) that 
p(L) w [llhl\\1, l]hl12]. Thus, from the assumption on the form of A H ) ,  we know that 
there is a compact subset C of G with L c CHC (see 2.6), as desired. 

PROPOSITION 5.2 (see 6.7). Assume that G = SO(2, n). If H is a nontrivial, con- 
nected, unipotent subgroup of G ,  then G/H does not have a compact Clifford-Klein 
form. 

NOTATION 5.3. Let L5 c SL5(R)  be the image of SL2(R)  under an irreducible 
5-dimensional representation of SL2(R). There is an &-invariant, symmetric, bilin- 
ear form of signature (2,3) on IR5, so we may view L5 as a subgroup of 
S0(2,3). More concretely, we may take the Lie algebra of L5 to be the image of 
the homomorphism n: sl(2, R )  + 50(2 ,3 )  given by 

Via the embedding R5 <-> given by 
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we may realize S0(2,3) as a subgroup of SO(2, n ) ,  so we may view L5 as a subgroup 
of SO(2, n) (for any n 2 3). 

PROPOSITION 5.4 (Oh [28, Ex. 5.61). Assume that G = S0(2,3). Then L5 is 
(G, K)-tempered (see 3.5). 

COROLLARY 5.5. Assume that G = SO(2, n). Then G/Ls does not have a compact 
Clifford-Klein form. 

Proof. From Proposition 5.4, we know that L5 is (~0(2 ,3 ) ,  K')-tempered, for any 
maximal compact subgroup K' of S0(2,3). From the definition, it is clear that this 
implies that L5 is (G, K)-tempered. (More generally, a tempered subgroup of any 
closed subgroup of G is a tempered subgroup of G.) Therefore, Theorem 3.6 implies 
that G/Ls does not have a compact Clifford-Klein form. !J 

PROPOSITION 5.6 (Kulkarni [23, Cor. 2.101). If n is odd, then 

does not have a compact Clifford-Klein form. 
One direction of Theorem 1.7 in the introduction is contained in the following 

theorem. The converse is obtained by combining Theorem 1.5 with Kulkarni's con- 
struction [23, Thm. 6.11 of a compact Clifford-Klein form of SO(2, n)/ SO(1, n) when 
n is even. 

THEOREM 5.7. Assume that G = SO(2, n ) ,  with n 3. Let H be a closed, connected 
subgroup of A N ,  andsuch that H is compatible with A (see 2.1 1).  Assume that neither 
H nor G/H is compact, and that G/H has a compact Clifford-Klein form. If n is even, 
then H is one of the two types described in Theorem 1.7. I f  n is odd, then either 

(1) dimH = n - 1, and H is of type 2.10(2); or 
(2) n = 3, dim H = 2, and either 

(a) H is of type 2.13(2); or 
(b) H is of type 2.13(3); or 
(c) H is of type 2.10(8), and there is a positive root y and a real number 

p 6 (-1/3,1/3), such that {a, y} = {a, a + 25} and T = kerfocu + y). 

Proof. Because of Proposition 6.7 below and Lemma 3.1, we know that H ({. N 
and that H is not a Cartan-decomposition subgroup. Thus, H must be one of 
the subgroups described in either Theorem 2.10 or Theorem 2.13. From Proposition 
3.7, we know that H cannot be of type 2.10(1)'. 

Let us first consider the cases where p(H) is of the form p(H) w [\\h\\, .]. 
If H is of type 2.10(3) , then dim H < n - 1 (see 5.8 below). 
If H is of type 2.10(4), then dim H < n - 1 (see 5.8 below). 
If H is of type 2.10(5), then dim H < n. 
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If H is of type 2.10(7), then dim H = 2. 
If H is of type 2.10(8b), then dimH ̂ n - 1. 
If H is of type 2.13(1), 2.13(4), 2.13(5), or 2.13(6), then dimH < n - 1. 

Thus dimH < n except possibly when H is of type 2.10(5). Thus, in all cases 
except 2.10(5), we conclude from Lemma 5.1(1) that G/H does not have a compact 
Clifford-Klein form. Now suppose that dim H = n and that H is of type 2.10(5). 
From Proposition 2.17 (and comparing dimensions), we see that H is conjugate 
to SO(1, n) n (AN). If n is even, then H is listed in Theorem 1.7(1); if n is odd, 
then Proposition 5.6 implies that G/H does not have a compact Clifford-Klein 
form. 

We now consider the one case where 

namely, we assume that H is of type 2.10(6). Then H is conjugate to a co-compact 
subgroup of the subgroup Â£ (see 5.3), so Corollary 5.5 implies that G/H does 
not have a compact Clifford-Klein form. 

Finally, we consider the cases where p(H) is of the form p(H) w [., 1[hll2]. 

0 If H is of type 2.10(2), then dimH < 2[n/2] (see 5.9). 
If H is of type 2.10(8a), then dimH = 2. 

0 If H is of type 2.13(2), 2.13(3), 2.13(7), or 2.13(8), then dim H = 2. 

Assume for the moment that n > 4. Then 2[_n/2] > 3 ,  so dim H < 2I_n/2] except 
possibly when H is of type 2.10(2), in which case H is either listed in 
Theorem 1.7(2) (if n is even; see 5.10) or listed in Theorem 5.7(1) (if n is odd). 
In all other cases with n > 3, we conclude from Lemma 5.1(2) that G/H does 
not have a compact Clifford-Klein form. 

We assume, henceforth, that n = 3. Let H5 be a subgroup of AN of type 2.10(6). 
We know, from above, that G/Hs does not have a compact Clifford-Klein form. 

If H is of type 2.10(2), 2.13(2), or 2.13(3), then H is listed in Theorem 5.7. 
If H is of type 2.13(7) or 2.13(8), then there is a compact subset C of G with 

He, c CHC. Because dim H5 = dim H ,  we conclude from Lemma 3.4(2) that 
G/H does not have a compact Clifford-Klein form. 

We may now assume that H is of type 2.10(8a). If T is not of the form described in 
Theorem 5.7(2c), then Proposition 2.14 implies that there is a compact subset C of G 
with Hs c CHC, so we conclude from Lemma 3.4(2) that G/H does not have a 
compact Clifford-Klein form. 

We now prove two simple lemmas used in the proof of the preceding theorem. 

LEMMA 5.8. Assume that G = SO(2,n). If H is either of type 2.10(3) or of 
type 2.10(4), then dim H < n - 1. 
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Proof. The Weyl reflection corresponding to the root a conjugates a subgroup of 
type 2.10(4) to a subgroup of type 2.10(3); thus, we may assume that H is of 
type 2.10(3). 

Define a linear transformation B: t )  D n Ã‘ ua+p by B(h) = xh. By assumption, we 
have B(h) # 0 for every nonzero h e I) fl n ,  so B is injective. Hence dim@ C\ n) < 
dim ua+p = n - 2. Therefore 

LEMMA 5.9. Assume that G = SO(2, n) and that n is odd. IfH is of type 2.10(2), then 
d i m H G n - 1 .  

Proof. Suppose that dim H n. Let X = {xh \ h I) n n 1. For any x e X , there is 
a unique B(x) e IRn2 such that there is some h e t)  n n with xh = x and 
yh = B(x). (The element B(x) is unique because of the assumption that 
dim(x, y) # 1 .) Because n - 1 < dim@ n n) < 1 + dim X (with equality on the right 
if ua+2p c I)) and X c R " ^ ,  we must have X = R"-~. 

Thus, B: R n 2  Ã‘> R n 2  is a linear transformation, and [x, Bx} is linearly indepen- 
dent for all nonzero x R " .  This is impossible, because any linear transformation 
on a real vector space of odd dimension has an eigenvector. 0 

COROLLARY 5.10 (of proof). Assume that G = SO(2, n), and that n is even. If H is 
of type 2.10(2), and dim H = n , then there is a linear transformation B: R"-~ 4 RnP2 
without any real eigenvalue, such that H = HB is the corresponding subgroup 
described in Theorem 1.5. 

Proof of Theorem 1.9. Assume that G/H has a compact Clifford-Klein form. 
Replacing H by a conjugate subgroup, we may assume that there is a closed, con- 
nected subgroup H' of AN and a compact subgroup C of G ,  such that 
CH = CHI (see 3.9). Furthermore, we may assume that H' is compatible with A 
(see 2.12). Then H' must be one of the types listed in Theorem 5.7 (with 
n = 2m + 1). Therefore, noting that ^(SU(l, m)) w [m2, I I ~ I I ~ ]  and using the 
calculation of ^(HI) (see 2.10(2), 2.13(2), 2.13(3), or 2.14), we see that there is 
a compact subset Cl of G, such that SU(1, m) c C1 H1C1. Then, because 
d(SU(1, m)) = 2m = dim H' , we conclude from Theorem 3.4(2) that G/ SU(1, m) 
has a compact Clifford-Klein form. This is a contradiction. 

The following lemma is used in the above proof of Theorem 1.9. Although the 
result is known, we are unable to locate a proof in the literature. The proof here 
is based on our classification of possible compact Clifford-Klein forms 
(Theorem 5.7), but the result can also be derived from the classification of simple 
Lie groups of real rank one. 

LEMMA 5.1 1. Assume that G = S0(2,2m + 1). There does not exist a connected, 
reductive subgroup L of G, such that L acts properly on G/SU(l,m), and 
L\G/ SU(1, m) is compact. 
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Proof. Suppose that such a subgroup L does exist. Let L = KLALNL be an Iwasawa 
decomposition of L ,  and let H =A& c AN. For any co-compact lattice T in 
SU(1, m), we see that the Clifford-Klein form T\G/H is compact, so H must be 
one of the subgroups described in Theorem 5.7 (or 1.7). Because 2m + 1 is odd, 
we know that (1.7) does not apply. Thus, we see, from Theorem 2.10 (or 
Proposition 2.14 in Case 5.7(2c)), that p(H) w [., \\h\\2}. Because 

we see (e.g., from 2.6) that the action of H on G/ SU(1, m) is not proper. This con- 
tradicts the fact that L acts properly on G/ SU(1, m). 

6. Finite-Volume Clifford-Klein Forms 

DEFINITION 6.1 (cf. [17, Def. 2.21). Let H be a closed, connected subgroup of G, 
such that G/H has a G-invariant regular Borel measure. (Because G is unimodular, 
this means that H is unimodular [31, Lem. 1.4, p. 181.) We say that G/H has a 
finite-volume Clifford-Klein form if there is a discrete subgroup F of G, such that 

r acts properly on G/H; and 
there is a Borel subset F of G/H, such that F has finite measure, and 
r r  = gm. 

Unfortunately, the study of finite-volume Clifford-Klein forms does not usually 
reduce to the case where H c AN, because the subgroup H' of Proposition 3.9 
is usually not unimodular. 

THEOREM 6.2. Assume that G = SO(2, n). Let H be a closed, connected subgroup 
of G. If G/H has a finite-volume Clifford-Klein form, then either 

(1) H has a co-compact, normalsubgroup that is conjugate under O(2, n) to the identity 
component of either 

(see Definition 5.3); or 

(2) d(H) < 1 (see 3.3); or 
(3) H = G. 

It is natural to conjecture that the homogeneous spaces 

SO@, 2m -I- I)/ SU(1, m) and SO(2, n)/L5 

do not have finite-volume Clifford-Klein forms, and that G/H does not have a 
finite-volume Clifford-Klein form when d(H) = 1, either. 

To prepare for the proof of Theorem 6.2, we present some preliminary results. 
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Unfortunately, we do not have an analogue of Theorem 3.4(1) for finite-volume 
Clifford-Klein forms. The following lemma is a weak substitute. 

LEMMA 6.3. Let H be a closed, connected, unimodular subgroup of G. Suppose that 
there is a closed subgroup L of G containing H, such that L c C H C ,  for some 
compact subset C. I f L / H  does not have finite (L-invariant) volume, then G/H does 
not have a finite-volume Clifford-Klein form. 

Proof. Suppose that T\G/H is a finite-volume Clifford-Klein form of G/H. 
Because L c CHC, we know that F is proper on G/L. (In particular, F n L must 
be finite.) We have a quotient map F\G/H -+ F\G/L, and, because F\G/H 
has finite volume, (almost) every fiber has finite measure (cf. [32, $3, p. 26-33]). 
Thus (perhaps after replacing F by a conjugate subgroup), (T D L)\L/H has finite 
volume. Because F fl L is finite, this implies that L / H  has finite volume, which 
is a contradiction. 

We now state two special cases of the Bore1 Density Theorem. 

LEMMA 6.4 (cf. [31, Thm. 5.5, p. 791). Let H be a closed subgroup of G. I f  H is 
connected, and G/H has finite (G-invariant) volume, then H = G. 

LEMMA 6.5 (Mostow [26, Prop. 11.21, [3 1, Thm. 3.1, p. 431). Suppose that R is a 
simply connected, solvable Lie group. If H is a closed, connectedsubgroup of R ,  such 
that R/H either is compact or has finite (R-invariant) volume, then H = R. 

The following lemma is analogous to the fact [31, Rmk. 1.9, p. 211 that a locally 
compact group that admits a lattice must be unimodular. 

LEMMA 6.6 (cf. [33, Prop. 2. I]). Let H be a unimodular subgroup of G ,  and assume 
that there is an element a of the normalizer of H such that the action of a by con- 
jugation on H does not preserve the Haar measure on H. Then G/H has neither 
compact nor finite-volume Clifford-Klein forms. 

PROPOSITION 6.7. Assume that G = SO(2, n). If H is a nontrivial, connected, 
unipotent subgroup of G, then G/H has neither a compact nor a finite-volume 
Clifford-Klein form. 

Proof. Replacing H by a conjugate, we may assume that H is contained in N. 
Furthermore, because Lemma 6.4 implies that G/H does not have finite volume, 
we see from Lemma 6.3 that we may assume that H is not a Cartan-decomposition 
subgroup. The proof now breaks up into cases, determined by Proposition 2.9. 
Because H is unimodular, any compact Clifford-Klein form would also have finite 
volume, so we need only consider the more general finite-volume case. 

Case 1. Assume that dim H s$ 1. Because H is nontrivial and connected, we must 
have dim H = 1. Then H i s  contained in a subgroup S of G that is locally isomorphic 
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to SL(2,R), and we have H = N s ,  where S =  KsAsNs is an Iwasawa 
decomposition of S [14, Thm. 17(1), p. 1001. The subgroup As normalizes H ,  
but does not preserve the Haar measure on H ,  so we conclude from Lemma 6.6 
that G/H does not have a finite-volume Clifford-Klein form. 

Henceforth, we assume that dim X '$- 2. 

Case 2. Assume, for every nonzero element h of I ) ,  that we have = 0 and 
dim(xh, yh) # 1. From Lemma 2.9(2), we have 

Thus, if G/H has a finite-volume Clifford-Klein form, then Lemma 6.3 implies that 
U ^ e H / H  must have finite volume. Therefore, Lemma 6.5 implies that 
Ua+ieH/H must be trivial, so Ua+2p c H. Then ker a normalizes H ,  but the action 
of kera by conjugation on H does not preserve the Haar measure on H ,  so 
Lemma 6.6 implies that G/H does not have a finite-volume Clifford-Klein form. 

Case 3. Assume, for every nonzero element h of I ) ,  that we have <bi, = 0 and 
dim{xh, yh) = 1. Because dim!) 5? 2 ,  we know that I) (f ua+2p, so it cannot be the 
case that both of xh and yh are 0 ,  for every h e 9. Therefore, by perhaps 
replacing H with its conjugate under the Weyl reflection corresponding to the 
root a ,  we may assume that xh # 0 for some ho e I). Then, because 
dim(xh, yh) = 1 for every h I), it follows that there is a real number p ,  such that 
for all h e t ) ,  we have yh =pxh. Therefore, by replacing H with a conjugate 
under Ups, we may assume that yh = 0 for every h E I). So I) c ua+p + ua+2/;, so 
ker normalizes H. But the action of ker ft by conjugation on H does not preserve 
the Haar measure on H ,  so Lemma 6.6 implies that G/H does not have a 
finite-volume Clifford-Klein form. 

Case 4. Assume that there exists a subspace Xo of w 2 ,  b e Xo,  c e X t  , andp e R 
with ]]b1l2 - ]lcl12 - 2p < 0, such that for every element of t),  we have y = 0 ,  
x e (be + XQ,  and r f  = p4 + b . x. Replacing H by a conjugate, we may assume that 
H is contained in G' = SO(1, n) (see 2.17). Then H is a Cartan-decomposition 
subgroup of G' (see 3.2), but Lemma 6.4 implies that Gf /H does not have finite 
volume, so we conclude from Lemma 6.3 that G/H does not have a finite-volume 
Clifford-Klein form. 

Proof of Theorem 6.2. By replacing H with a conjugate, we may assume that there 
is a compact subgroup C of G and a closed, connected subgroup H' of A N ,  such that 
CH = CH' (see 3.9). (Note that if H' is unimodular, then it is easy to see that G/Hf  , 
like G / H ,  has a finite-volume Clifford-Klein form.) We may assume that H is not a 
Cartan-decomposition subgroup (see 6.3 and 6.4), so H' is not a Cartan- 
decomposition subgroup. From Proposition 6.7, we see that H' (f N .  Then, 
assuming, as we may, that H' is compatible with A (see 2.12), the subgroup H' must 
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be one of the subgroups described in either Corollary 2.10 or Corollary 2.13. 
Furthermore, we may assume that dimH1 2 2 ,  for otherwise, conclusion (2) 
holds. 

The only unimodular subgroups listed in either Corollary 2.10 or Corollary 2.13 
are the subgroups of type 2.10(1), which are one dimensional. Therefore, H' is 
not unimodular. Because CH' = CH is unimodular, this implies that C does not 
normalize H' , so we see from 3.9 that H I  Rad H is not compact. In other words, 
we may assume that there is a connected, noncompact, semisimple Lie group L with 
no compact factors, and a closed, connected subgroup R of AN, such that 
H = L x R. Because H is not a Cartan-decomposition subgroup, we know that 
A if L , so R-rank L = 1. Thus, L n A is one-dimensional, so H' n A is nontrivial. 
Thus, H' cannot be any of the subgroups listed in Corollary 2.13. In other words, 
we have H'= (H'n A) x (H'n  N). Also, because A if H ,  we know that that 
R c N (see 2.15). 

Case 1. Assume that R is nontrivial. Because R is a unipotent, normal subgroup of H , 
a fundamental theorem of Bore1 and Tits [5, Prop. 3.11 implies that there is a 
parabolic subgroup P of G ,  such that H is contained in P ,  and R is contained 
in the unipotent radical of P. Now, because R-rank G = 2,  there are, up to con- 
jugacy, only two parabolic subgroups of G whose maximal connected semisimple 
subgroups have real rank one. 

Subcase 1.1. Assume that L = (Ua, U+.) and that R c UgUy+gUw. Every non- 
trivial L-invariant subalgebra of ug + uy+g + ua+2g contains ua+2fi, so r must 
contain ua+2,j. Then ker a normalizes L and R but does not preserve the Haar measure 
on LR , so Lemma 6.6 implies that G/H does not have a finite-volume Clifford-Klein 
form. 

Subcase 1.2. Assume that L = (Up,  U-g) and that R c UaUa+pUa+w Then kerp 
normalizes L and R, but does not preserve the Haar measure on LR, so 
Lemma 6.6 implies that G/H does not have a finite-volume Clifford-Klein form. 

Case 2. Assume that R is trivial. This means that H is reductive. Then, because 
l - rank H = 1, we may assume that H is almost simple, by removing the compact 
factors of H. Thus, we see from Lemma 6.8 (and 6.3) that the identity component 
of H is conjugate under O(2, n) to the identity component of either SO(1, n) ,  
SU(1, Ln/2J), or L5 , as desired. 

We now prove a classification theorem we used in the above proof. Although this 
result is known, the authors are not aware of any convenient reference. 

LEMMA 6.8. Assume that G = O(2,n). If L is any connected, almost-simple 
subgroup of G ,  such that R-rankL = 1, then L is conjugate to a subgroup of either 
SOU, n), SU(1, Ln/2J), or L5. 
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Sketch of proof. Let L = KLALNL be an Iwasawa decomposition of L ,  and let 
H = ALNL. We may assume that AL c A and that NL c N. Because u(L) FX 

p(AL) 9s A+,  we know that H is not a Cartan-decomposition subgroup of (7, so 
H must be one of the subgroups described in Theorem 2.10. Because H is an 
epimorphic subgroup of L [3, $21, it suffices to show that His  conjugate to a subgroup 
of either SO(1, n) , SU(1, Ln/2]), or Ls. 

Because NL is nontrivial, we know that H is not of type 2.10(1). 
If H is of type 2.10(3), 2.10(4), 2.10(5), or 2.10(7), then H is conjugate to a 

subgroup of SO(1, n) (cf. 2.17). 
If H is of type 2.10(6), then H is conjugate to a subgroup of Ls. 
If H is of type 2.10(8), then, because p(H) FX p(AL), we see from Proposition 2.14 

that p = 0. Replacing H by a conjugate under the Weyl group, we may assume that 
co {a + 5, a + 25}. Therefore, H is contained in either SO(1, n) or SU(1, Ln/2]). 

We may now assume that H is of type 2.10(2). 

Case 1. Assume that ua+2p c n ~ .  There is a subspace V of JRn2 and a linear 
transformation B: V + I R n 2 ,  such that 

Because [ n ~ ,  nL] = ua+2p is one-dimensional, the classification of simple Lie groups of 
real rank one (SO(1, k) , SU(1, k) , Sp(1, k) , F ~ O )  implies that L is locally isomorphic 
to SU(1, k), where k - 1 = (dim V)/2. 

For any ho e V-L \ ua+2~, we have (ho, ua+2p, ~-(a+28)) E su(l,2). In particular, if ho 
is the element of S0(2,4) with xho = (1,O) and yh  = (0, I ) ,  then 

From this, we conclude that B(V) = V. 
The desired conclusion is easy if k = 1, so let us assume that k 2 2. From the 

structure of SU(1, k), we know that CL(AL) contains a subgroup M that is 
isomorphic to SU(k - 1) and acts transitively on the unit sphere in nL/ua+2p. Then 
the action of M on V is transitive on the unit sphere in V and, because M normalizes 
V-L , we see that B is M-equivariant. Therefore B is a scalar multiple of an orthogonal 
transformation, so H is conjugate to a subgroup of SU(1, l_n/2]). 

Case 2. Assume that ua+2p f- V-L. There is a subspace V of IRn2 and a linear trans- 
formation B: V -+ such that 

Note that NL must be Abelian (because n~ n ua+2p = O), so, from the classification of 
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simple Lie groups of real rank one, we see that L is locally isomorphic to SO(1, k) , 
where k - 1 = dim V. 

Assume, for the moment, that k $s 4 ,  so SO(k - 1) is almost simple. From the 
structure of SO(1, k) , we see that CAAL) contains a subgroup M that is isomorphic 
to SO(k - 1) and acts transitively on the unit spheres in V and B(V), such that 
B is M-equivariant. (In particular, the ratio ~ ~ B v ~ ~ / ~ ~ v ] ~  is constant on V \ {O}.) 
Therefore, letting n: I E t n 2  Ã‘Ã V be the orthogonal projection, we see that the com- 
position n o  B: V Ã‘ V must be a real scalar. Replacing L by a conjugate 
under Ups, we may assume that this scalar is 0; thus, B(V) is orthogonal to V, 
so H is conjugate to a subgroup of SU(1, Ln/2J), as desired. 

Now assume that k < 4. The desired conclusion is easy if k = 2 ,  so we may assume 
that k = 3. Let V1 be a nontrivial irreducible summand of the L-representation on 
I R E ,  and let ( I )  be the SO(2, n)-invariant bilinear form on 

Subcase 2.1. Assume that the restriction of ( 1 )  to V1 is 0. Because the signature of (I) is 
(2, n) , we know that dim VÂ± < 2. However, the smallest nontrivial representation 
of L is 3-dimensional, so this contradicts the choice of Vl. 

Subcase 2.2. Assume that the restriction of ( 1 )  to Vl has signature (1, m), for some m. 
Let Vl = WPr Q) . . . Q) Wr-\ Q) Wr be the decomposition of V1 into weight spaces 
(with respect to A]). We must have ( Wi 1 Wj) = 0 unless i = -j. From the assump- 
tion of this subcase, we conclude that r = 1 and dim Wl = 1. It follows that V1 
is the standard representation of L on IEt4 (whose L-invariant bilinear form is unique 
up to a real scalar). 

The restriction of (I) to V: has signature (1, *). We may assume that L acts 
nontrivially on V: (otherwise, L fixes a vector of norm -1, so L is contained in 
a conjugate of SO(l,n), as desired). Thus, there is a nontrivial irreducible 
summand V2 of Vf. Because Subcase 2.1 leads to a contradiction, we conclude that 
the restriction of ( I )  to V2 has signature (1, *). From the argument of the preceding 
paragraph, we see that dim V2 = 4 ,  and that the representations of L on Vl 
and V2 are isomorphic (so L acts diagonally on IR4 Q) IR4 2 R*). Then L is conjugate 
to a subgroup of SU(1,3). 

Subcase 2.3. Assume that Vl = R"'~. Let Vl = W+ @ . . . @  WrPl Q) Wr be the 
decomposition of VI into weight spaces (with respect to AL). Because ( I )  has sig- 
nature (2, n), we know that dim Wl + . - - + dim Wr < 2. 

If dim Wr = 2 ,  then, via an isomorphism 50(1,3) s sl(2, C) , we may think of V1 as 
an irreducible C-representation of d(2, C), so dim Wi = 2 for all i. Then r = 1, so Vl 
is the three-dimensional irreducible C-representation of sl(2, C) , that is, the adjoint 
representation. However, the invariant bilinear form RefTr x2) for this represen- 
tation has signature (3,3), not (2, n). This is a contradiction. 

We now know that dim Wr = 1. There is no irreducible representation of s0(1,3) 
with r = 2 and dim Wl = dim W2 = 1, so we must have r = 1. Then Vi is the stan- 
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dard representation of SO(1,3) on R4. However, the unique S0(1,3)-invariant bilin- 
ear form on R4 is of signature (1,3), not (2, n). This is a contradiction. 

7. Nonexistence of Compact Clifford-Klein Forms of SL(3, W / H  

Y. Benoist [I, Cor. 11 proved that SL(3, R)/ SL(2, R)  does not have a compact 
Clifford-Klein form. By combining Benoist's method with the fact that if G/H 
has a compact Clifford-Klein form, then H cannot be one-dimensional (see 3.7), 
we show, more generally, that no interesting homogeneous space of SL(3, R)  
has a compact Clifford-Klein form. 

THEOREM 7.1 (Benoist [1, Thms. 3.3 and 4.11 (see also Prop. A.1)). Let H be a 
closed, connected subgroup of G, such that, for some compact set C in A, we have 
B4' c p(H)C, where B^ is defined in Notation 7.2. Then G/H has neither compact 
nor finite-volume Clifford-Klein forms, unless G/H is compact. 

NOTATION 7.2. Let i be the opposition involution in A+ , that is, for a <i A+ , i(a) is 
the unique element of A+ that is conjugate to a 1  , and set B^ = { a  <i A+ \ i(a) = a } .  

PROPOSITION 7.3. Assume that G = SL(3, R). Let H be a closed, connected 
subgroup of G with d(H) 2 2 (see 3.3). Then B+ c p(H). 

Proof. Since H i s  noncompact, there is a curve ht in H such that ho = e and A t  Ã‘> oo 
as t Ã‘ oo. Since d(H) 3 2 (so H/Kn is homeomorphic to R^, for some k > 2), it is 
easy to find a continuous and proper map S>: [O, 11 x R* Ã‘> H such that 
@(0, t) = h, and @(I, t) = h? , for all t R+. 

If we identify the Lie algebra a of A with the connected component of A 
containing e ,  then A+ is a convex cone in a and the opposition involution i is 
the reflection in A+ across the ray B+. Thus, for any a A+, the points a 
and i(a) are on opposite sides of B^,  so any continuous curve in A+ from a 
to i(a) must intersect B+. In particular, any curve from p(ht) to p ( h l )  must 
intersect B+. Thus, we see, from an elementary continuity argument, that 
ju[@([O, 11 x R')] contains B+. Therefore, B+ is contained in p(H). 

Proof of Proposition 1.10. Suppose that H is noncompact. By Proposition 3.7, we 
may assume that d(H) 3 2. Then, from Proposition 7.3, we know that p(H) 3 

B+ , so Theorem 7.1 implies that G/H is compact. 
The following is proved similarly. 

COROLLARY 7.4. Let H be a closed connectedsubgroup of G = SL(3, R). I f G / H  
has a finite-volume Clifford-Klein form, then either d(H) < 1, or H = G. 



CLIFFORD-KLEIN FORMS OF SO(2, n) /H 51 

Appendix A. A Short Proof of a Theorem of Benoist 

Most of Benoist's paper [l] is stunningly elegant; the only exception is Section 4, 
which presents a somewhat lengthy argument to eliminate a troublesome case. 
We provide an alternative treatment of this one case. Our proof does not match 
the elegance of the rest of Benoist's paper, but it does get the unpleasantness over 
fairly quickly. 

Our version of the result is not a complete replacement for Benoist's, because we 
require the action of F on G/H to be proper, while Benoist makes no such 
assumption. There are many situations where one is interested in improper actions 
(for example, a quotient of a proper action is usually not proper), but, in applications 
to Clifford-Klein forms, the action is indeed proper, so our weaker version of the 
proposition does apply in that situation. Our proof has the virtue that, for the real 
field, it does not require the subgroup H to be Zariski closed. It also applies to 
finite-volume Clifford-Klein forms, not just compact ones. 

PROPOSITION A.1 (Benoist [I, Thm. 4.11). Let G be a Zariski connected, semi- 
simple, algebraic group over a local field k of characteristic 0 ,  and let G = &. Sup- 
pose that F and H are closed subgroups of G ,  and assume that 

(1) F is nilpotent; 
(2) F acts properly on G / H ;  
(3) either 

(a) r\G/H is compact, or 

(b) is discrete and T\G/H has finite volume; and 

(4) either 

(a) H is Zariski closed, or 
(b) k = R or C, and H is almost connected. 

Then H contains a conjugate of N. IJ 

Proof. To clarify the exposition, let us assume that T is Abelian, that H = 
(H n A) K (H n N} , and that T\G/H is compact. Remark A.3 describes appropriate 
modifications of the proof to eliminate these assumptions. 

Let X be the Zariski closure of F. By replacing F with a finite-index subgroup, we 
may assume that X is Zariski connected. Note that X ,  like F ,  is Abelian. Then, 
by replacing F with a conjugate subgroup, we may assume that X = 
(X n A)(X n A^)Â£' where E is an anisotropic torus, hence compact. Because we 
may replace F with (FE) n (AN), there is no harm in assuming that r c AN. 

NOTATION A.2 (and remarks) 

We define a right-invariant metric on G by d(g, h)  = log \\ghP1 1 1 .  
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Let n: AN Ã‘ A and v: AN Ã‘ N be the canonical projections, so g = 7t(g)v(g), 
for all g AN. Note that n is a homomorphism, but v is not. Also note that 
n(H) = H D A and v(H) = H n N ,  because H = (H A) K (H f? N).  Also note 
that n(Q c X n A and v(T) c X n N ,  so n(r) and v(F) centralize each other. 
Thus, the restriction of v to F is a homomorphism. 

a Because n(r) c A,  and the centralizer of any Zariski-connected subgroup of A 
is a Zariski-connected, reductive k-subgroup of G [12, Thm. 22.3, p. 1401, 
we may write cG(n(F)) = L Z ,  where L is a Zariski-connected, reductive 
k-subgroup of G with compact center, and Z is a Zariski closed (Abelian) 
subgroup of A that centralizes L. We have F c L Z  and n(F) c Z. Note that 
we must have v(F) c L ,  because Z ,  being a subgroup of A ,  has no nontrivial 
unipotent elements. 

a Let k: L -+ A f? L be the Cartan projection for the reductive group L. We 
define pLz: L Z  Ã‘ A by ~ry(1z) = p,-(l)z, for 1 e L and z e Z. (Unfortunately, 
pry is not well defined if Lfl  Z # e. On the other hand, at key points of 
the proof, we only calculate kz up to bounded error, so, because L f l  Z is 
finite, this is not an important issue.) In particular, for y e F, we have 
pLz(y) = p&(y))n(y). Note that, because kz(g) e (K n L)g(K n L) , we have 
p(g) = P-{^Lz(g)) , for every g e LZ. Therefore, for any g ? LZ and a A, 
we have d(p(g), p(a)) < d(pLz(g), a). Thus, if we find a sequence y,, Ã‘> oo 
in F , with d ( , ~ ~ ~ ( ~ ~ ) '  H n A) = 0(1), then we have obtained a contradiction 
to the fact that F acts properly on G/H. 

Because I'\AN/H is a closed subset of the compact space F\G/H , we know that it 
is compact. Therefore, we see, by modeling out N , that A / ~ ( F H )  is compact, so there 
is a free Abelian subgroup F' of F ,  such that 

(1) n(T1) is a co-compact, discrete subgroup of A/n(H); and 
(2) Y' n (NH) = e. 

We may assume that G/H is not compact (else AN/H is compact, so Lemma 6.5 
implies that H 3 N ,  as desired). Then H cannot be a Cartan-decomposition 
subgroup of G , so d im(n(~) )  < dim A (see 2.15). Therefore, A/n(H) is not compact, 
so r' is infinite. 

Suppose, for the moment, that T' is co-compact in F. (In this case, there is no harm 
in assuming that F = r ' .) Then, from (I), we see that n(FH) is closed, so the inverse 
image in F\AN/H must be compact; that is, Y\FNH/H is compact. Therefore, 
from (2), we see that NHJH is compact. Then N/(H n N),  being homeomorphic 
to NH/H,  is compact. Therefore, N c H (see 6.5) as desired. 

We may now assume that F/H is not compact. Then, for any R > 0 ,  there is some 
yo e r,  such that d(yo, H) > R. (Let yo be any element of r that is not BR(e)Fr , where 
BR(e) is the closed ball of radius R around e.) Because n(Tr) is co-compact in A/n{H), 
there is some yr e F' , such that d(pLz(yo)~ ' ) ,  TC(H)) < C , where C > 0 is an appro- 
priate constant that is independent of R, yo, and yr. 
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Now, to clarify the argument, assume, for the moment, that I" c 2. In this case, 
we see from the definition that prz(yoyl) = fcz(yo)yl, and we have y' = n(yf) , so 
d(pLz(yoy'), "(H))  < C. But, because yoyl yor', we have log llyoy'll > ̂ (yo, F1) > 
R. Because R can be made arbitrarily large, while C is fixed, this contradicts the 
fact that acts properly on G/H. 

Now consider the general case, where F' is not assumed to be contained in Z. For 
convenience, define f :  F Ã‘> R+ by 

and, for y I?', let t(y) be the word length of y with respect to some (fixed) finite 
generating set of I". To a good approximation, the argument of the preceding para- 
graph holds. Note that t(yl) is of order /(yo). The map F' + R': y i+I/v(y)l/ is 
bounded above by a polynomial function of Â£(y (because v(F) c N consists of 
unipotent matrices), so 

Therefore, from Lemma A.4, we have 

iff (yo) > CI, where C1 is an appropriate constant that is independent of R ,  yo, and 

7'. 
This is the start of an inductive procedure: given yo with d(yo, V) > R , construct a 

sequence yo, y l ,  . . . , y~ in yo^', such that f (yn+l) < f (yn)/2, for each n. Terminate the 
sequence when f(yM) < C,, which, obviously, must happen after only finitely many 
steps. However, because log l[yMll > d(yM, I?) = d(yo, I?') > R is arbitrarily large, 
this contradicts the fact that F acts properly on G/H. 

Remark A.3. We now describe how to eliminate the simplifying assumptions 
made at the start of the proof of Theorem A. 1. We discuss only one assumption at a 
time; the general case is handled by employing a combination of the arguments 
below. 
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(1) Suppose that Y is not Abelian. Because F is nilpotent, its Zariski closure (if con- 
nected) is a direct product T x U x E,  where T is a split torus, U is unipotent, 
and E is a compact torus. Thus, the beginning of the proof remains valid without 
essential change, up to (but not including) the definition of F'. 
Choose a co-compact, discrete, free Abelian subgroup r of A/(H n A) that is 
contained in 7r(F), choose y l ,  y2, . . . , yn E F ,  such that 7t(yi), z(y7), . . . , 7r(yn) 
is a basis of F, and let F' be the subgroup generated by y l ,  y2, . . . , y .  (We remark 
that F' may not be closed, because [Y', F'] need not be closed.) 
If the closure of F' is not co-compact in F , then essentially no changes are needed 
in the proof. Thus, let us suppose that that the closure of F' is co-compact in F. 
Then there is no harm in assuming that F' is dense in F ,  so F' is not Abelian. 
If k is non-Archimedean, then the closure of every finitely generated unipotent 
subgroup is compact; thus, by replacing F with its projection into X n A, we 
may assume that F is Abelian, so the original proof is valid. 
We may now assume that k is Archimedean. Because the closure of [F, F] is a 
nontrivial unipotent group, we know that it is noncompact. Thus, there is some 
yo [ r ,  I-I with I I Y ~ I I  > R. 
Choose y' Y', such that d(hz(yo)z(y'), Z(H)) < C. By choosing y' efficiently, we 
may assume that {.(yl) = 0(log(]]yoll)). This is the inductive step in the con- 
struction of yo, y l ,  . . . , y ~ .  Because i(y;lYn+l) = O ( l ~ g ( \ \ y ^ y ~ + ~  [I)), we see that 

Therefore IlyMll \ >lv(yM)ll w Ilv(yo)l[ is large. So F is not proper on G/H. 
(2) Do not assume that H = ( H  n A) K (H n N).  There is no harm in assuming that 

H c AN (see 3.9 or [I, Lem, 4.2.21). If H is Zariski closed (and Zariski con- 
nected), then, after replacing H by a conjugate subgroup, we have H = 

(H n A) K (H n N). Thus, the problem only arises when H is not Zariski closed. 
In this case, H must be almost connected (and k must be Archimedean). 
The proof remains unchanged up until the choice of y'. Instead of only choosing 
an element y' e F', we also choose an element h' H. Namely, let ho = e ,  
and choose y' e F' and h' e H ,  such that 

This begins the inductive construction of sequences 

yo, y l ,  . . . , yMinF and ho, hl, . . . , h ~ i n H ,  
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such that d(yn, e)  > R for each n ,  and 

for an appropriate constant C2 that is independent of R. This contradicts the fact 
that F is proper on G/H. 

(3) Suppose that Y\G/H is not compact. The compactness was used only to show that 
A/n{TH) is compact, and that if T' is co-compact in T , then H contains N. Thus, 
it suffices to show, after replacing H by a conjugate, that (3a) A / ~ ( T ( H  f~ AN)) is 
compact, and that (3b) if F' is co-compact in F , then H contains a conjugate of N. 
The finite measure on r \ G / H  pushes to a finite measure on the quotient 
AN\G/H. (We may assume that Rad H c AN, so the quotient AN\G/H is 
countably separated.) By considering a generic fiber of this quotient map, we 
see that we may assume, after replacing H by a conjugate subgroup, that 
r \AN/(H n AN) has finite volume. 

(a) Because A/~(T(H n AN)) is a quotient of r\AN/(H n AN), it must have 
finite volume. Therefore, it is compact. 

(b) Suppose that r' is co-compact in F. Almost every fiber of the quotient map 
r\AN/(H fl AN) + A / ~ ( F ( H  fl AN)) must have finite measure. Thus, 
we may assume that r \TN(H n AN)/(H n AN) has finite measure. Because 
F' is co-compact in F (and r is discrete), this implies that N(H n AN)/ 
(H n AN) has finite measure, or, equivalently, that N/(H n N) has finite 
measure. Therefore, H ("l N = N (see 6.5), so N c H ,  as desired. 

PROPOSITION A.4 (Benoist, cf. [I, Prop. 5.11). There is some C > 0 such that, for 
all g,  h E G, we have 
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