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We describe non-orientable, octagonal embeddings for certain 4-valent, bipartite Cayley graphs 
of finite metacyclic groups, and give a class of examples for which this embedding realizes the non- 
orientable genus of the group. This yields a construction of Cayley graphs for which 27 - 7 is 
arbitrarily large, where 7 and 7 are the orientable genus and the non-orientable genus of the Cayley 
graph. 

1. Introduction 

It is well-known that if a regular d-valent graph on v vertices and of girth g 
admits an embedding into an orientable surface of genus 7,  then 

In the case of a 2-cell embedding (i.e., in the case where every region of the embedding 
is homeomorphic to a disk), the'inequality can easily be derived from the Euler 
Formula, v - e + f = 2 - 2"fwhere e is the number of edges and f is the number of 
2-cells of the embedding): the Handshaking Lemma asserts 2e = dv, and applying 
the Handshaking Lemma to the dual graph yields 2e >. gf; incorporating these 
observations into the Euler Formula and using the fact that 7 is an integer results 
in precisely (1.1). For an argument extending this inequality to the case where not 
every region is homeomorphic to a disk, see [12]. 

A similar result is true for an embedding into a non-orientable surface of non- 
orientable genus y [8, Theorem 2b]. In this case, we use the non-orientable version 
of the Euler Formula, v - e + f = 2 - +, and the conclusion is 

The genus of a graph is the minimum of the genera of the orientable surfaces 
on which the graph can be embedded; the genus of a finite group [Ill ,  [7], [3] is 
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the minimum of the genera of the Cayley graphs of the group. (To find the genus 
of a finite group, it suffices to  consider only irredundant Cayley graphs.) The non- 
orientable genus of a graph or of a group is defined similarly. Most groups whose 
genus (or non-orientable genus) is known have an irredundant Cayley graph that 
yields equality in (1.1) (or in (1.2), respectively) and, at the same time, achieves the 
minimum (among all the irredundant Cayley graphs of the group) for the right- 
hand side of this inequality. Such groups are said to admit best (orientable or 
non-orientable) embeddings. Groups that do not admit best embeddings are much 
more difficult to  deal with. Here we describe non-orientable 2-cell embeddings for 
certain Cayley graphs of metacyclic groups, and give a class of groups for which this 
embedding is a best non-orientable embedding. 

For a Cayley graph of orientable genus 7 and non-orientable genus 7, the quantity 
27 - 7 is a measure of the difference between the minimal orientable embeddings 
and the minimal non-orientable embeddings of the Cayley graph [8]. (This quantity 
comDares the Euler characteristic 2 - 2~ of an orientable surface with the Euler 
characteristic 2 - 7 of a non-orientable surface.) Every graph satisfies 27 - 7 > -1 
[9, Theorem 71. There are examples of graphs of non-orientable genus one and 
arbitrarily large orientable genus [I]. For groups, Brin, Rauschenberg, and Squier [2] 
have shown that 27 - 7 = 3 when F is the nonabelian, metacyclic group of order 27. 
In this paper, we construct a family of Cayley graphs for which 27 - 7 is arbitrarily 
large; these are the first known Cayley graphs for which 27 - 7 > 3. It would be 
interesting to  construct a family of groups for which 27 - 7 is arbitrarily large. The 
groups constructed in this paper are good candidates, but we have an interesting 
lower bound on the orientable genus only for certain of their Cayley graphs; we do 
not know how to prove an interesting lower bound that holds for all of the Cayley 
graphs of the groups. 

(3.1') Proposition. Suppose {x, y} is an irredundant, 2-element generating set for a 
finite group I'. If the corresponding Cayley graph, Cay (I?; a^', y*'), is bipartite 
and 4-valent and if the subgroup generated by x is a normal subgroup of I?, then 
Cay (I?; x*~, '~")  has an octagonal, son-orientable embedding; therefore, 7(T) <. 
2 + lr1/2. 

(4.1') Theorem. Let m, n, and k be powers of 2, with 64 <. 8k <. m nk. Then the 
embedding of Proposition 3.1 is a best non-orientable embedding for the metacyclic 
group given by the following generators and relations: 

(x, y 1 xm = yn = e, y-lxy = Xk+l). 

In particular, the non-orientable genus of this group is 2 + mn/2. 

Remark. Corollary 4.2 gives some additional examples where the embedding of 
Proposition 3.1 is a best non-orientable embedding. 

(5.2') Theorem. Let m,  n, and k be powers of 2, with 256 < k2 < m <. nk, and let 
I' be the metacyclic group given by the following generators and relations: 

(x, y 1 xm = yn = e, y-lxy = xk+'). 

Then the Cayley graph G = Cay (I'; x^y y^) satisfies-27(G) - 7(G) > ./lo. 
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2. Preliminaries: group theory and Cayley graphs 

Definition. A group F is metacyclic if F has a normal subgroup N such that the 
subgroup N is cyclic, and the quotient group T/N is also cyclic. 
(2.1) Remark. (see 14, 51.8, pp. 9-10]). Any finite, metacyclic group has a presenta- 
tion of the form 

k (x, y 1 xm = e, yn = xT, y-lxy = x ), 
for some natural numbers m, n, r ,  k such that An = 1 (mod m) ,  kr = r (mod m), 
and gcd(k, m) = 1. Conversely, for any such natural numbers, the given presentation 
defines a metacyclic group of order mn. 
Definition. For any subset A of a group F, we use (A) to denote the subgroup of F 
generated by A. We say that A is a generating set for F if (A) = F, and that A is 
symmetric if, for every x E A, we have x 1  ? A. 
Definition. Suppose A is a symmetric generating set for a group F, and that A does 
not contain the identity element e of F. Then the Cayley graph Cay (F; A) is a graph 
defined as follows. The vertices of Cay (F; A) are the elements of F; for each g 6 F 
and each x 6 A, there is an edge joining g and gx. 
Definition. A symmetric generating set A for a finite group I? is irredundant if 
(A \ {x, x l } )  is a proper subgroup of F, for every x E A. We say that the Cayley 
graph Cay (F; A) is irredundant if A is an irredundant symmetric generating set. 
Definition. 15, p. 1731. The Frattznz subgroup $(F) of a finite group F is the inter- 
section of all the maximal subgroups of F. 

One can show (see 15, Theorem 5.1.1(i)]) that an element x of F belongs to  
$(I?) if and only if x belongs to no irredundant symmetric generating set for I?. The 
following lemma is another way of saying essentially the same thing. 

(2.2) Lemma. [5, Theorem 5.1.1(i)]. Let Cay (F; A) be - an - irredundant Cayley graph 
of a finite group I?, and let F = F/$(F). Then Cay (I?; A) is an irredundant Cayley 
graph of F, where A is the image of A under the natural homomorphism F + T. 1 

(2.3) Lemma. 15, Theorem 5.1.31. If F is a finite p-group, then @(F) = (FP, [F, r]), 
where FP = (xp 1 x E F).  I 

(2.4) Lemma. Let F and A be finite groups, and assume gcd(IF1, IAI) = 1. Then 
$ ( F x  A) = $(T) x $(A). 

Proof. Since IF1 and IAI are relatively prime, every subgroup of F x A is of the form 
A x B, where A is a subgroup of F and B is a subgroup of A. Therefore, maximal 
subgroups of F x A are those of the form M x A or F x N ,  where M is a maximal 
subgroup of r and N is a maximal subgroup of A. The conclusion follows. I 

We need only one direction (+) of the following proposition, but we prove the 
converse because it provides an amusing characterization of 2-groups. A similar 
result appears in 110, Theorem 2.21. 

- -- 

(2.5) Proposition. A finite group I? is a 2-group if and only if every irredundant 
Cayley graph on F is bipartite. 
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Proof. (+) Suppose Cay (I?; A) is an irredundant Cayley graph of I?, where Ir[ is a 
power of 2. Let F = I?/$(r). Lemma 2.3 implies that F is an elementary abelian 2- - - 
group (i.e., a group of the form Z 2  x Â Â x Z2), and Lemma 2.2 asserts that Cay (I?; A) - - 
is an irredundant Cayley graph of I?. We conclude that Cay (I?; A) is isomorphic - - 
to the n-cube graph Qn = K2 x Â Â x K2, for some n;  in particular, Cay (I?; A) - - 
is bipartite. Since Cay (T; A) is a homomorphic image of Cay (I?; A),  this implies 
Cay (I?; A) is also bipartite. 
(e) Because no irredundant Cayley graph on I? has a cycle of odd length, we 

know that no irredundant symmetric generating set for r contains an element of 
odd order. Therefore, every odd-order element x of r belongs to @(I?). This implies 
that r/$(J?) is a 2-group. In particular, this means that I?/$(I?) is nilpotent. It 
follows that I? itself is nilpotent [5, Theorem 6.1.6(ii), p. 2191. Thus we may write 
I? = P x Q, where P is a 2-group and Q has odd order. Because every odd-order 
element of I? belongs to  $(I?), we must have Q C $(I?). Lemma 2.4 asserts that 
@(F) = @(P)  x @(Q), so this implies that Q c @(Q). Therefore Q is trivial, so 
I? = P is a 2-group, as desired. I 
(2.6) Lemma. Let p be a prime number, let k and n be powers of p, and let 
I? = Z j ,  x Z n .  If (a, b) = I?, then, in any relation of length less than min(k, n), 
the number of occurrences of a equals the number of occurrences of a ,  and the 
number of occurrences of b equals the number of occurrences of b-I. 

Proof. If not, then asbt = 0, where 0 < s < min(k,n) (or 0 < t < min(k,n)). 
Hence as Â (b ) ,  so IF : (&)I < s < min(k, n) .  This implies the order of b is greater 
than max(k, n), which is impossible because no element of T has order greater than 
max(k, n). I 
(2.7) Lemma. Suppose I?-[ and fi are finite metacylic groups, and that 

gcd(Irl1, IF21) = 1. 
Then rl x F2 is also metacyclic. 

Proof. Let Ni be a cyclic, normal subgroup of such that r i /Ni  is cyclic, and let 
N = Nl x N2. Then N is the direct product of two cyclic groups of relatively prime 
order, so N is cyclic. The quotient group (TI x T̂ }/N E (r1/Nl) x (T2/N2) is also a 
direct product of two cyclic groups of relatively prime order; hence it is also cyclic. 1 

Remark. If mi, ni, r,,k, are the parameters for I?, -- (i -~ = 1 , 2 ) ,  asdescribed in Re- 
mark 2.1, then the parameters m ,  n,  r ,  k for I?l x F2 can be determined by the fol- 
lowing conditions: m = mlm2, n = n^ny,, k = k, (mod mi),  r = rln2 (mod mi) . . .  
and r = r2n1 (mod m2). 

- - 

3. Non-orientable embeddings of metacyclic Cayley graphs 

(3.1) Proposition. Let G = Cay (I?; x^l ,  y^l) be a 4-valent Cayley graph of a finite 
group I?, and assume ( x ) a r .  If G is bipartite, then G has an octagonal non-orientable 
embedding. In particular, ^(T) < 2 + lI?l/2. 

Proof. We describe the embedding in terms of Stahl's generalized embedding 
schemes [9]. For convenience, we note that each arc in G can naturally be labeled x, 
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x ,  y, or y l .  In terms of the arc labels, it is easy to define the rotation system P: 
the local rotation Pu at u is the cyclic permutation (x, y, x i ,  y l ) .  

The definition of A, the voltage map, is based on a bipartition V(G) = A U B 
of G. It suffices to define A on the arcs labeled x or y, because the value of A on any 
arc is the same as its value on the reverse of the arc. The values of A are 0 and 1. 
For all x-arcs, A is 0. For y-arcs, A is 0 on y-arcs that originate in A (and terminate 
in B) ;  and A is 1 on y-arcs that originate in B (and terminate in A). 

It is easy to verify that the embedding is octagonal (each region is bounded by 
a walk of the form x y x l y y ^ x l y x y l ) ,  and that the embedding is non-orientable 
(a closed walk of the form y x l y l z T  is not A-trivial). I 

For interested readers, Figure 1 shows an embedded voltage graph for the em- 
bedding of Proposition 3.1. (See [7] for information on voltage graphs and on how 
to interpret the diagram.) 

Fig.1. A 2-vertex embedded voltage graph for the embedding of Proposition 3.1. The rotation 
is counterclockwise at the hollow vertex and clockwise at the solid vertex 

(3.2) Proposition. Suppose T is a nontrivial, finite group with the following two 
properties: 
a) no irredundant generating set for T contains an element of order 2 or an element 

of order 3; and 
b) no 4-valent Cayley graph of I? has girth less than 8. 

Then (̂I?) 2 1 + lrl/4 and ?(I?) 2 2 + lrl/2. 
Proof. Let G = Cay (I?; A) be an irredundant Cayley graph of F, of girth g and 
valence d. Property (a) implies that A contains no elements of order 3, so g 2 4. If 
d > 6, this implies d[l - (2/g)] 2 3, in which case (1.1) and (1.2) yield the desired 
inequalities. If d = 4, we conclude from Property (b) that g 2 8; we again have 
d[l - (2/g)l 2 3. 

Property (a) implies that A contains no elements of order 2, so d is even. Thus, 
the only case not covered by the previous paragraph is when d = 2. But this case 
cannot occur: a group with a 2-valent Cayley graph must either contain elements of 
order 2 or be cyclic (the generating set must either be of the form {a, b} where a and b 
have order 2 or be of the form {x, x } ,  in which case x must generate the group.) 
Property (a) rules out the existence of elements of order 2, and Property (b) implies 
that r is not abelian (for otherwise there would be a cycle a b a l b l  of length 4), so 
r cannot be cyclic. E 
(3.3) Theorem. Let T be a finite group that has a bipartite, 4-valent Cayley graph 
Cay (I?; xkl,  yil) such that ( x ) a r .  If I? satisfies Properties (a) and (b) of Proposi- 
tion 3.2, then W) = 2 + lrl/2. 

Proof. Proposition 3.1 asserts one direction of inequality; Proposition 3.2 asserts the 
other. I 



4. Some metacyclic groups 

We show how to construct some metacyclic groups that satisfy the hypotheses 
of Theorem 3.3. We will first (4.1) show how to construct examples whose order is a 
power of 2; we will then (4.2) show how to get examples that are not 2-groups. The 
work relies on basic properties of the Frattini subgroup, @(F) (see $2). 

The groups we construct are fairly large. For example, the smallest of the groups 
described in Theorem 4.1 has order 512. By Theorem 3.3, its non-orientable genus 
is 258, so its orientable genus is at least 129. 

(4.1) Theorem. Let m, n, and k be natural numbers, with 6 <k + 3 <: m <: n + k. 
Then the metacyclic group 

with its standard Cayley graph G = Cay (I?; x*', '̂) satisfies the hypotheses of 
Theorem 3.3, and every 4-valent Cayley graph of F is bipartite. 

Proof. Proposition 2.5 asserts that every irredundant Cayley graphof any 2-group 
is bipartite, so every 4-valent Cayley graph of F is bipartite. Let F = r / [F ,F]  E 

z 2k x z 2"; and let r + F: g i ~ > -  jj be the natural homomorphism. 
a) Since IF1 (a power of 2) is not divisible by 3, there are no elements of order 3 

in F. Suppose t E F is an element of order 2. Now F E z 2 k  x z2n, and k ,  n > 1, 

so every element of order <: 2 in T is a square; in particular, % E T .  Hence 
t E (r2, [I', I?]) = $(I?), so t cannot belong to an irredundant generating set for F. 

b) Suppose some 4-valent Cayley graph Cay (I?; a'', b") has girth less than 8. 
Each arc of the Cayley graph can naturally be labeled a ,  a ' ,  b, or b l ;  in any cycle 
of length less than min(2,2")  (in particular, in any cycle of length less than 8),  
Lemma 2.6 implies that the number of occurrences of arcs labeled a must equal the 
number of occurrences of arcs labeled a ,  and the number of occurrences of arcs 
labeled b must equal the number of occurrences of arcs labeled b .  So a cycle 
of length 4 would have to come from the relation a l b l a b  = e; but a l b l a b  # e 
(because F is not commutative), so we conclude there is no cycle of length 4. Consider 
the possibility of a cycle of length 6. Without loss of generality, we may assume 
a and a-I each occur twice as arc-labels in the cycle, and b and b 1  each occur just 
once as arc-labels. Then it is easy to see that (allowing for interchange of a and a w l  
and interchange of b and b l )  a cycle of length 6 would have to  come from the relation 

a-la-lb-'aab = e; this would imply a2 ^(I?). Since Z(T) = ( x 2 m k , y 2 m k )  and 

because m - k > 1, this would imply ?i2 ? T ;  hence a E F .  This would imply 
a E @(I?), a contradiction. I 
(4.2) Corollary. Let T be any of the groups described in Theorem 4.1, and let A be 
any metacyclic group of odd order, such that no irredundant generating set for A 
contains an element of order 3 (e.g., this condition is satisfied if \A1 is not divisible 
by 3). Then F x A is a metacyclic group satisfying the hypotheses of Theorem 3.3. 
Therefore, y(F x A) = 2 +  \T x A\/2. 

Proof. Because F is a 2-group and A has odd order, Lemma 2.7 implies that F x A 
is metacyclic. 
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a) The elements of order 2 in r x A are precisely the elements of order 2 in r, and 
the elements of order 3 in F x A are precisely the elements of order 3 in A. Hence, 
Lemma 2.4 implies 

$(I? x A) 3 $(I?) U $(A) D {elements of order 2 or 3}. 
-- - 

b) Any 4-valent Cayley graph on I' x A has some 4-valent Cayley graph on F as 
a homomorphic image. Since 4-valent Cayley graphs on F are known to be bipartite 
and have girth 2 8, it follows that every 4-valent Cayley graph on F x A is bipartite 
and has girth >_ 8. I 

5. Lower bound on the orientable genus 

(5.1) Proposition. Suppose G = Cay (F; xkl,  y") is a 4-valent - -- Cayley graphxf a 
finite group F, such that (x)aF,  and assume G has the following properties: 
a) G is bipartite and has girth 8; and 
b) every cycle of length 8 in G is of the form x y x y l x l y x l y ~ l  (perhaps after 

taking the inverse and/or a cyclic permutation of the relator). 
Then 7(G) 2 1 + lJ?]/4 + n/20,  where n = \T/(x)l. 

Proof. Consider an orientable 2-cell embedding of G on some surface of genus 7.  Let 
U be the collection of all the ordered pairs of the form (F, a ) ,  where F is a 2-cell of 
the embedding, a is an edge of F, and the face F is not an octagon. 
Step 1. For any cycle C of the form xm, the collection U contains at least two pairs 
(F, a)  in which a belongs to C.  First of all, suppose there is some vertex v of C 
at which the y-edge into v and the y-edge out of v both lie on the same side of C,  
as shown in Figure 2. Then the boundary of some face F contains both the x-edge 
into v and the x-edge out of v; thus the boundary of F has two consecutive X- 
edges. By assumption (b), we see that F is not an octagon. Because F contains two 
different edges of C ,  this yields the desired conclusion. We henceforth assume that, 
at each vertex of C ,  the y-edge into the vertex and the y-edge out of the vertex are 
on opposite sides of C .  

Fig. 2. A vertex at which both y-edges are on the same side of the x-cycle C 



Consider x-edges a and 0, as shown in Figure 3, on a typical octagon in the 
embedding. One can see that there is a y-edge to the left after a on the boundary of 
the octagon, and there is a y-edge to the right after 0.  (Alternatively, there could be 
a y l -edge  to the left after a and a y l - edge  to the right after 0.) Because a and f3 
are separated by y x y ,  which is a power of x, we know that a and 6 lie on the 
same x-cycle, say C. Thus, we have seen that, as we traverse C,  we will encounter 
a vertex v at which there is a y-edge leaving to the left, but at the next vertex, w, 
the y-edge leaves to the right, as shown in Figure 4. (Recall that the embedding 
is orientable.) Then the boundary of one of the faces containing the edge vw must 
contain the sequence y x y l ,  and the boundary of the other face must contain 
the sequence yxy. On the other hand, in the relator x y x y l x l y x l y ~ l  every 
occurrence of x is surrounded by y on one side and y 1  on the other. Hence, neither 
of the faces containing vw is an octagon, which yields the desired conclusion. 

Fig. 3. A typical octagon 

Step 2. W e  have \<D\ >_ 4n. There are precisely n cycles of the form xm, and these 
are all disjoint, so it follows from Step 1 that 0 contains at least 2n pairs (F, a )  in 
which a is an x-edge. From assumption (b), we know that each octagon contains 
an equal number of x-edges and y-edges, so we conclude that 0 must also contain 
at least I n  pairs (F, a) in which a is a y-edge. Thus, as desired, 0 must contain at 
least 4n pairs all together. 
Step 3. W e  have 7 1 + lrl/4 + n/20. Because G is bipartite, any non-octagonal 
face must have at least 10 sides. For each k, let f k  be the number of k-gonal faces of 
the embedding. Then 10flo + 12f12 +.  . . = 101, so flo + f12 +.  . . < 101/10. Because 
there are 2lr[  edges in G, we must have 

4lrl = 8 .  f8 + 10 /lo + 12 f12 -k . . . = 8f8 + 101, 
so f8 = lr1/2 - 101/8. Therefore 
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F i g .  4 .  A part of an x-cycle 

By using the Euler formula together with the fact that G has exactly Fl vertices 
and 2 IF 1 edges, we have 

The desired conclusion now follows from Step 2. I 
(5.2) Theorem. Let m, n, and k be natural numbers, with 8 <:2k < m < n + k, and 
let I' be the metacyclic group given by the following generators and relations: 

(x, y 1 x2m = y2n = e, y l x y  = x 2k+l ). 

Then the Cayley graph G = Cay (I'; x*', y") satisfies the hypotheses of Theo- 
rem 3.3 and the hypotheses of Proposition 5.1. Hence 27(G) - 'y(G) > 2"/10. 

Proof. (a) Theorem 4.1 asserts that F satisfies the hypotheses of Theorem 3.3. In 
particular, G is bipartite and has irth 8. 

(b) To check that x Y x y 1 x ~ x 1 y 1  is the only 8-relator, we can consider 
each possible 8-relator and reduce it to the canonical form xayb by using the relation 
y^x = x2k"^y-1. If a $ 0 (mod 2m) or b $ 0 (mod 2"), then the word under 
consideration is not a relator. Note first that, by Lemma 2.6, we need only consider 
8-relators in which x and x 1  occur the same number of times, and y and y 1  occur 
the same number of times. For convenience, let q = 1 + 2 ,  so y l x r  = x q r y l .  

It is easy to see that (up to a cyclic permutation and inverses) the only possible 
8-relator containing three y's (and hence also three y l ' s )  is x 1 y 3 x y 3 .  Because 
,-1 -3 3 ^ x-l+q 3 Y XY and -1 + q3 = -1 + (1 + 2k)3 = 3 .  2^ + 3 . 2 ^  + 2^ $ 
0 (mod 2m), we see that x 1 y 3 x y 3  is not a relator. Similarly, the only possible 
%relator containing three x's is x 3 y 1 x 3 y  = x3+3q.  Because -3 + 3q = 3 2k $ 
0 (mod 2m), this is not a relator either. 



Consider now an %relator containing two consecutive y's or two consecutive 
y s .  We may assume the relator has two consecutive y's, by inverting if nec- 
essary. If the relator also has two consecutive y-"s, then the only possibility is 

x - ~  Y -2 X Y - X  - -2+2q2, but -2 + 2q2 = 2'+2 + 22'+1 $ 0  (mod 2m). So there can- 
not be two consecutive y 1  's, which means the relator is of the form x a y 1 x b y 1 x c y 2 ,  
where a + b + c = 0, a1 + \b\ + c l  = 4, and each of a ,  b, c is k1 or Â±2 We have 

a = xa+qb+qZc. Because q = 1 + 2'Â¥ and a + b + c = 0, we have X Y  X Y  X Y  

a + qb + q2c = 2'(b + 2c) + 22'c. Because 2' < 22k < 2m and each of b and c 
is +1 or +2, it is not hard to  see that 2'(b + 2c) + 22kc cannot be congruent to 0 
modulo 2m. Hence we do not have a relator. 

Consider, finally, an %relator with no consecutive y's and no consecutive y l ' s .  
Then there are no consecutive x's or x l ' s  either; the relator must be of the 
form x a y l x b y l x c y x d y  or x a y l x b y x c y l  x y, where a + b + c + d  = 0 and 
each of a ,  b, c, d is &I. (Either y-l and y don't alternate, or they do.) We have 

2 a Y - 1  x y  b -1 c x y x y - x  d _ a+q(b+d)+q c = x2k(b+d+2c)+22kc -+ so this is not a rela- 

tor. We have xay-lxbyxcy-lxdy = xa+c+q(b+d) = x2k(b+d). If this is a relator, we 
must have b = -dl and then a = -c, because a + b + c + d = 0. Thus any 8-relator 
must be of the form x a y l x b y x a y l x b y ,  with a ,  b = k1. If a = -b, then a cyclic 
permutation of this relator is of the desired form x y x y l x l y x l  y l ;  if a = b, then 
a cyclic permutation of the inverse is of the desired form. I 

Example. Let F be any of the groups described in Theorem 5.2; let u = xy and 
v = y. It is easy to see that u and v generate F,  and that they satisfy the relation 

-1 2 -1 -1 -1 -1 -1 2 -1 -1 -1 - u v u v = xyxyy y x y y x y - x y x y l x l y x l y l  = e. 

Thus, nonstandard generating sets for F can lead to the relators eliminated in part (b) 
of the proof of Theorem 5.2. We do not know whether it is possible to  build an 
orientable, octagonal embedding for some other Cayley graph on F by using these 
other 8-relators. Hence, we are unable to extend Theorem 5.2 to an interesting lower 
bound on the orientable genus of the group F rather than just a lower bound on the 
orientable genus of the Cayley graph Cay (F; x+l , y*'). 
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