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some connected, circulant digraphs are not Hamiltonian. In general, no good 
characterization of the Harniltonian circulant digraphs is known. For those of 
outdegree two, however, R. A. Rankin found a simple arithmetic criterion that 
determines which are Hamiltonian. To state this result, we introduce a bit of 
notation. (In this article, circulant digraphs are represented as Cayley digraphs on 
cyclic groups .) 

Definition 1.1. For any natural number n ,  we use Zn to denote the additive cyclic 
group of integers modulo n. For any set A of integers, let Cay(Zn; A) be the 
digraph whose vertex set is Zn, and in which there is an arc from u to u + a (mod 
n), for every u E & and every a E A. A digraph is circulant if it is (isomorphic 
to) Cay(Zn; A), for some choice of n and A. 

Note that Cay(&; A) is regular, and its outdegree is equal to the cardinality of 
the generating set A. It is easy to see that Cay(Zn; A) is connected if and only if 
gcd(al, a2, . . . , am,  n )  = 1, where A = {al, a2, .  . . , am}. 

Theorem 1.1 (Ranlun [5,  Thm. 41). A connected, circulant digraph Cay (Zn, a ,  b) 
of outdegree two has a Hamiltonian circuit if and only if there are nonnegative 
integers s and t,  such that s + t = gcd(sa + tb, n )  = gcd(a - b, n) .  

In contrast, little is known about the Hamiltonicity of circulant digraphs of out- 
degree three (or more). The following theorem provides an interesting class of 
examples that are Hamiltonian. 

Theorem 1.2 (Curran-Witte [4, Thm. 9.11). Suppose that Cay(Zn; A) is con- 
nected, and has outdegree at least three. If 

whenever a ,  b l ,  b2, . . . bm E A and a $ {bl, b2,  . . . , bm}, then Cay(Zn; A) has a 
Hamiltonian circuit. 

One non-Hamiltonian example, Cay(Z12; 3 ,4 ,6 ) ,  was found by D. Witte [6, p. 
3011. In this article, we construct infinitely many non-Harniltonian, connected, 
circulant digraphs of outdegree three (without loops or multiple arcs). (Figure 
1 lists examples with less than 48 vertices. For brevity, the table does not list 
Cay(Zn; xu, xb, xc) if it includes Cay(Zn, a ,  b, c), and gcd(x, n )  = 1.) In all our 
examples, n is even, and the examples come in two families: either the generating 
set A contains the element n / 2  of order two in Zn (see Theorem 1.3), or two of the 
elements of A differ by n/2  (see Theorem 1.4). 

Theorem 1.3 (see Theorem 3.1). For k > 1, the circulant digraph Cay(Zi2k; 
6A;, 6A; + 2,6k + 3) has no Hamiltonian circuit. 

If gcd(x, n )  = 1, then Cay@^; xu, xb, xc) is isomorphic to Cay(Zn; a ,  b, c), so 
this theorem can be restated in the following more general form. 

Corollary 1.1. If gcd(a - b, 12k) = 1, and either 2a - 3b = 6k (mod 12k) or 
3a - 2b = 6k (mod 12k), then 6A;, a ,  b) has no Hamiltonian circuit. 

Theorem 1.4 (see Theorem 4.1). The circulant digraph Cay(Z^: a ,  b,  b + k) has 
no Hamiltonian circuit if and only if gcd(a, b, k )  =/= 1, or 
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FIGURE 1.  Non-Hamiltonian, connected, circulant digraphs of outdegree 3 with less than 
48 vertices. 

gcd(a - b , k )  = 1; and 
0 gcd(a, 2k )  # 1; and 
0 gcd(b, k )  # 1; and 
0 either a or k is odd; and 
0 a is even, or both of b and k are even. 

It is natural to ask whether there are any other non-Hamiltonian examples. In 
this vein, an exhaustive computer search reported that every non-Hamiltonian, con- 
nected, circulant digraph of outdegree three with no more than 100 vertices is de- 
scribed by either Corollary 1.1 or Theorem 1.4. (If this computer calculation is cor- 
rect, then Corollary 5.1 implies that, if there exists a connected, non-Hamiltonian, 
circulant digraph with outdegree four (or more), then it must have more than 100 
vertices.) Perhaps the first question to ask is whether the converse of Corollary 1.1 
is true: if Cay(&%; n, a ,  b) has no Hamiltonian circuit, must it be the case that n is 
divisible by 6 ,  gcd(a - b, 2n )  = 1, and either 2a - 36 or 3a - 2b is = n (mod 2n)? 
More fundamental, but also, presumably, more difficult, is to determine whether 
there are any examples with an odd number of vertices, or of outdegree > 4. 

Our results do not provide any counterexamples to the following conjecture. 

Conjecture 1.1 (Curran-Witte [4, p. 741). Suppose that Cay(Zn; A) is connected, 
and has outdegree at least three. If, for every proper subset A' of A, the subdigraph 
Cay(Zn; A') is not connected, then Cay(Zn; A) has a Hamiltonian circuit. 

As mentioned above, circulant digraphs are Cayley digraphs on cyclic groups. 
Thus, this article is related to the literature on Hamiltonian circuits in Cayley di- 
graphs [I ,  3,6] .  Indeed, Ranlun's Theorem (1.1) was proved for 2-generated Cayley 
digraphs on any abelian group, not just on cyclic groups (and even some Cayley 
digraphs on nonabelian groups). Similarly, Theorem 1.2 and Conjecture 1.1 are 
only special cases of statements for all abelian groups. 

A basic lemma and some definitions are presented in Section 2. The proofs of 
Theorems 3.1 and 4.1 are given in Sections 3 and 4, respectively. A small result on 
the Hamiltonicity of circulants of outdegree four or more appears in Section 5. 
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2. PARITY LEMMA 

Definition 2.1. Given a digraph G ,  let C = C ( G )  be the set of all spanning subdi- 
graphs of G with indegree 1 and outdegree 1 at each vertex. (Thus, each component 
of a digraph in C is a circuit.) 

Lemma 2.1. Given a digraph G, suppose that H and H' belong to C. Let u l ,  u2, 
and u3 be three vertices of H ,  and let vi be the vertex that follows ui in H .  Assume 
that H' has the same arcs as H ,  except: 

0 instead of the arcs from u~ to v l ,  from UT, to u2, and from u3 to u3, 
0 there are arcs from u l  to vz, from u2 to us, and from u3 to v l .  

Then the number of components of H has the same parity as the number of com- 
ponents of H'. , 

Proof. Let a be the permutation of {I ,  2, 3} defined by: uy/^ is the vertex 
that is encountered when H first reenters { u l  , u2, u 3 }  after ui.  Thus, if a is the 
identity permutation, then u l  , u2, u3 lie on three different components of H .  On 
the other hand, if a is a 2-cycle, then two of u l  , u2, u3 are on the same component, 
but the third is on a different component. Similarly, if a is a 3-cycle, then all three 
of these vertices are on the same component. Thus, the parity of the number of 
components of H that intersect { u l ,  u2, u 3 }  is precisely the opposite of the parity 
of the permutation a. 

There is a similar permutation a' for H'. From the definition of H', we see that 
a' is simply the product of a with the 3-cycle (1, 2, 3), so a' has the same parity 
as 0, because 3-cycles are even permutations. Thus, the parity of the number of 
components of H that intersect { u l  , u2, u 3 }  is the same as the parity of the number 
of components of H' that intersect { u l ,  ua, u3} .  Because the components that do 
not intersect { u l ,  u2, u3} are exactly the same in H as in H', this implies that the 
number of components in H has the same parity as the number of components 
in H'. 1 

Definition 2.2. Let G = Cay(Zn;  A),  and suppose H G C. For any u E Zn and 
a E A, we say that u travels by a in H if the arc from u to u + a is in H .  

3. GENERATOR OF ORDER TWO 

Theorem 3.1. If a is divisible by 6, then Cay(Zaa; a ,  a  + 2, a  + 3)  has no Hamil- 
tonian circuit. 

Proof. Suppose that there is a Harniltonian circuit Ho; let r be the number of 
vertices that travel by a,  let s be the number of vertices that travel by a + 2, and let 
t be the number of vertices that travel by a + 3. Since a and a + 2 are both even, 
we have gcd(a, a  + 2,2a)  # 1, so t # 0. Also, since a is divisible by 3, we have 
gcd(a + 3,2a)  # 1, so t # 2a. Therefore, 0 < t < 2a. 
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We must have r + s + t = 2a, and ra  + s(a  + 2)  + t ( a  + 3)  must be divisible 
by 2a. Therefore, we have 

and 

s = ( a  + 3 ) ( r  + s + t )  - (ra  + s(a  + 2)  + t ( a  + 3 ) )  - 3r = -3r (mod 2a). 

Now r < a,  because the Hamiltonian circuit can never have two consecutive a-arcs. 
Therefore, because 0 < t < 2a, the congruence t = 2r implies that 

Therefore, we have 2s + 3t = t + 2s + I t  = 2(r + s + 1) = 2(2a) = 4a. 
For each i â Zga, let 

We claim that 

for each i, the subdigraph of Ho induced by Bi has exactly two arcs. 

Consider the walk w in Cay(Za; 2,3)  that results from reducing Ho modulo a,  
and removing the loops. This walk may be lifted to a path W in Cay(Z; 2 ,3 )  that 
begins at 0 and ends at 4a. Thus, for each j ,  with 0 < j  < 4a, there is exactly one 
arc UJ Ã VJ of W with UJ < j  and VJ > j. Because j < VJ â {UJ + 2, UJ + 3},  
we have UJ > j  - 2, so the arc UJ Ã‘ VJ starts in the set {j - 2 , j  - 1, j }  and 
ends outside this set. The corresponding arc UJ Ã‘ Vj of H starts in BjP2 and ends 
outside BjP2. Because BjP2 = Bi iff j  - 2 = i (mod a),  we conclude that the 
Hamiltonian circuit Ho has exactly 4 arcs that start in Bi and end outside Bi. The 
claim follows. 

Let V be the collection of all spanning subdigraphs H of Cay(Zaa; a ,  a+2, a+3), 
such that 

(1) every vertex of H has indegree 1 and outdegree 1 (that is, H E C); 
(2 )  H has an odd number of components; 
(3) we have t = 2r, where t = t~ is the number of vertices that travel by a + 3 

in H ,  and r = r y  is the number that travel by a;  and 
(4) for each i, the subdigraph of H induced by Bi has exactly two arcs. 

We know V is nonempty, because the Hamiltonian circuit Ho belongs to V. 
Let H be a digraph in V, such that r is minimal. 
We claim that some vertex travels by a in H .  For, otherwise, we have r = r~ = 

0 ,  which implies t = 2r = 0 ,  so every vertex of H must travel by a + 2. Therefore, 
the number of components of H is precisely gcd(a + 2,2a).  Because a is even 
(indeed, it is divisible by 6), this implies that H has an even number of components, 
which contradicts the definition of V. 
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Case 1. For some i ,  the two consecutive vertices i and i + 1 both travel b y  a  in 
H. By vertex-transitivity, there is no harm in assuming = a  + 1. Since the two 
arcs ( a  + 1) Ã‘> 1 and ( a  + 2) Ã‘> 2 must be the only arcs within the blocks Bo and 
B1, we see that 0 ,  a ,  and 1 must all travel by a  + 3. For the same reason, the vertex 
2 cannot travel by a. However, the vertex 2 cannot travel by a  + 2, lest the vertex 
a  + 4 have indegree two; so the vertex 2 must travel by a  + 3. Then the vertex 3 
must also travel by a  + 3, lest either a  + 3 or a  + 5 have indegree two. Continuing 
this argument, we see that 4, 5 ,  6, . . . must all travel by a  + 3. So every vertex 
travels by a  + 3, which contradicts the assumption that i travels by a. 
Case 2. For every i ,  i f  the vertex i travels b y  a ,  then the vertex i - 2 also travels by 
a .  Some vertex travels by a,  so, by vertex-transitivity, there is no harm in assuming 
that 0 travels by a. Hence, by repeated application of the hypothesis, we see that 
the vertex 2 j  travels by a,  for every j .  In particular, the vertices 0 , 2 ,  a ,  and a  + 2  
all travel by a. This contradicts the fact that the subdigraph of H induced by the 
block Bo has only two arcs. 
Case 3. The general case. Some vertex travels by a,  so, by vertex-transitivity, 
there is no harm in assuming that 3 travels by a. From Case 2, we may assume that 
1 does not travel by a. However, the vertex 1 also does not travel by a  + 2, lest the 
vertex a  + 3 have indegree two; thus, the vertex 1 must travel by a  + 3. 

Now, from Case 1, we may assume that the vertex 2 does not travel by a. How- 
ever, it also does not travel by a  + 2, lest the vertex a + 4 have indegree two; hence, 
the vertex 2 must travel by a  + 3. 

Now, we construct another spanning subdigraph H' in which the vertices 1, 2, 
and 3 all travel by a  + 2: H' has the same arcs as H ,  except: 

instead of the arcs from 1 to a  + 4, from 2 to a  + 5, and from 3 to a  + 3, 
there are arcs from 1 to a  + 3, from 2 to a  + 4, and from 3 to a  + 5. 

1 Note tha t t l=  t - 2 a n d r l =  r - 1, sot '  = t - 2 = 27- - 2 = 2 r .  
From Lemma 2.1, we know that the number of components of H has the same 

parity as the number of components of H'. That is, the number of components of 
H' is odd. We conclude that H' 23. But, because r' = r - 1, this contradicts the 
minimality of H. rn 

4. GENERATORS WHOSE DIFFERENCE IS THE 
ELEMENT OF ORDER TWO 

Definition 4.1. Let G = a ,  b, b  + k ) .  Let Â = Â£(G be the set of all 
spanning subdigraphs of G with indegree 1 and outdegree 1 at each vertex, such 
that, in each coset of the subgroup {O, k } ,  exactly one vertex travels by a,  and the 
other by b  or b  + k .  (Note that Â is a subset of the class C introduced in Section 2.) 

Notation 4.1. For any subset A of a group r, we use (A) to denote the subgroup 
of r generated by A. For A c Zn, note that Cay(Z^,; A) is connected if and only 
if (A) = Zn. 
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Definition 4.2. Let G = Cay(&; a ,  b, b + k), and assume G is connected. We 
construct an element Ho of &. Let d = 2k/ gcd(a, 2k) be the order of the ele- 
ment a in the cyclic group Zak; the construction of our example depends on the 
parity of d. 
Case 1. d is odd. In this case, k $! (a) .  Every vertex v in Zak can be uniquely 
written in the form xva  + yvb + zvk with 0 < xu < d, 0 < yv < k/d, and 
0 < zv < 2. Let Ho be the spanning subdigraph in which a vertex v E Z2/; 

8 travels by a if zv = 0; 
8 travels by b if zv = 1 and &+;, = 1; and 
8 travels by b + k otherwise. 

(By construction, the vertices v that satisfy zv = 0 are both entered and exited via 
an a-arc in Ho; the other vertices are neither entered nor exited via an a-arc.) 
Case 2. d is even. In this case, k E (a) ,  so every vertex v in & can be uniquely 
written in the form xva + yvb with 0 < xu < d and 0 < yv < 2k/d. Let Ho be the 
spanning subdigraph in which a vertex v E ZSk 

8 travels by a if xu < d/2; 
8 travels by b + k if xu > d/2 and 1 < xv+b 5 d/2; and 
8 travels by b otherwise. 

(By construction, the vertices v that satisfy 1 < xu < d/2 are precisely those that 
are entered via an a-arc in Ho.) 

Lemma 4.1. Let G = Cay(Z2k; a ,  b, b + k}, assume G is connected, and let Ho 
be the element of & constructed in Definition 4.2. Then Ho has an odd number of 
components if and only if either 

both of a and k are even; or 
8 a is odd, and either b or A- is odd. 

Proof. Let d = 2k/ gcd(a, 2k) be the order of the element a in the cyclic group 
Zak; the proof depends on the parity of d. 
Case 1. d is odd. Because ad is a multiple of 2k, we see, in this case, that a must 
be even. Thus, we wish to show that the parity of the number of components of Ho 
is the opposite of the parity of k. 

For i E {O, I}, let Gi = {v E li-ikzv = i}, so each of Go and GI  has exactly k 
vertices. From the definition of Ho, we see that each component of Ho is contained 
in either Go or GI.  Each component in Go is a circuit of length d (all a-arcs), so 
the number of components in Go is k/d. Because d is odd, this has the same parity 
as k, so we wish to show that GI contains an odd number of components of Ho. 

The number of components contained in GI is equal to the order of the quotient 
group Z2k/ (b,  k) . Because (a,  b, k}  = Zgk, we know that a generates this quotient 
group. Then, because a has odd order, we conclude that the quotient group also 
has odd order, as desired. 
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Case 2. d is even. Let xa  + yb be a vertex that travels by a in Ho. Then 
v = ( d / 2 ) a  + yb is in the same component (by following a sequence of a-arcs). 
Furthermore, if y < ( 2 k / d )  - 1, then we see that xu+* = d /2 ,  so v travels by 
b + k ;  this means that (y + l ) b  = v + b + k is also in the same component. By 
induction on y, this implies that all the a-arcs of Ho are in the same component, 
and this component contains some (b + A;)-arcs. Thus, the a-arcs are essentially 
irrelevant in counting components of Ho: there is a natural one-to-one correspon- 
dence between the components of Ho and the components of Cay(&; b). Thus, 
the number of components is equal to the order of the quotient group Zk /  (b)  . This 
quotient group has odd order if and only if either b or k is odd. Therefore, Ho has 
an odd number of components if and only if either b or k is odd. 

Thus, we have the desired conclusion if a is odd, so we may now assume a is 
even. Since 2k /  gcd(2k, a )  = d is even, this implies that k is also even. So we 
wish to show that Ho has an odd number of components. Because Cay(Z2k; a ,  b, k }  
is connected, it cannot be the case that a ,  b, and k are all even, so we conclude that 
b is odd. From the conclusion of the preceding paragraph, we see that Ho has an 
odd number of components, as desired. I 

The following result is a consequence of the proof of Lemma 2.1. 

Lemma 4.2. Let G = Cay(Z2k; a ,  b, b  + k ) ,  assume that H <E Â£ and suppose 
that u is a vertex of H that travels by a ,  such that u, u + k ,  and u + a + k are on 
three different components of H .  Then there is an element HI of 6, with exactly the 
same arcs as H ,  except the arcs leaving u and u + k ,  and the arc entering u + a + k ,  
such that u,  u + k ,  and u + a + k are all on the same component of HI. 

Theorem 4.1. The circulant digraph Cay(Z2k; a ,  b, b  + k )  has a Harniltonian cir- 
cuit if and only if gcd(a,  b, k )  = 1, and either 

gcd(a - b , k )  # 1; or 
0 gcd(a ,2k)  = 1;or  
0 gcd(b, k )  = 1; or 
0 both of a and k are even; or 
0 a is odd, and either b or k is odd. 

Proof. (+) Because Hamiltonian digraphs are connected, we know that 
gcd(a,b,  k}  = 1. We may assume gcd(a - b , k )  = l , g c d ( a , 2 k )  # 1, and 
r,cd(b, k)̂ 1. 

Choose a Hamiltonian circuit; let r  be the number of vertices that travel by 
a ,  and let s  be the number of vertices that travel by b or b + k .  We must have 
r  + s  = 2k,  and r a  + sb must be divisible by k .  Therefore, we conclude that 
r ( a  - b) is divisible by k .  Since gcd(a - b, k )  = 1, this implies r is divisible by 
k .  Because 0 5 r < 2k ,  this implies r  E {O, k ,  2k}.  Because gcd(a, 2k )  # 1, 
we know ( a )  # Zak, so we cannot have r  = 2k ;  because gcd(b, k )  # 1, we know 
(b, k )  # Zgk, so we cannot have r = 0. Therefore, we must have r = k .  So exactly 
half of the vertices travel by a ,  and the other half travel by b or b + k .  
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Let us show that every Hamiltonian circuit belongs to &. That is, in each coset 
of the subgroup { O ,  k } ,  exactly one vertex travels by a ,  and the other by b or 
b + k .  If not, then, from the conclusion of the preceding paragraph, there must be 
some coset i + {O, k }  in which both vertices travel by a.  Therefore, both vertices 
of i + a + {O, k }  are entered via a ,  which means that neither of the vertices in 
z + a - b + {O, k }  travels by b or b + k ,  so they both must travel by a.  Repeating 
the argument, we see that both of the vertices in i + j ( a  - b) + {O, k }  travel by 
a ,  for all j .  Because gcd(a - b, k )  = 1, every vertex in the digraph is of the form 
z + j ( a  - b) or i + j ( a  - b) + k ,  so we see that every vertex travels by a.  This 
contradicts the conclusion of the preceding paragraph. 

Recall the digraph Ho of Definition 4.2. It suffices to show, for every H â &, that 
the number of components of H has the same parity as the number of components of 
Ho. For then, because the preceding paragraph implies that & contains a hamiltonian 
circuit, we conclude that Ho has an odd number of components. Then Lemma 4.1 
provides the desired conclusion. 

Let ui be some vertex that travels by a in H ,  and let vl = ul + a.  Let u2 = 

U I  + k ,  and let v2 E u2 + { b ,  b + k }  be the vertex that follows u2 in H .  Finally, let 
v3 = vl + k ,  and let u3 E Â£ - {b,  b + k }  be the vertex that precedes v3 in H .  We 
construct an element H' of Â in which it is u2 that travels by a ,  instead of u i :  H' 
has the same arcs as H ,  except: 

0 instead of the arcs from ul  to v l ,  from u2 to v2, and from u3 to 113, 

0 there are arcs from u-\ to v2, from u2 to v3, and from us to v l .  

Lemma 2.1 implies that the number of components of H has the same parity as the 
number of components of HI. 

Because H and Ho both have the property that, in each coset of {O, k } ,  exactly 
one vertex travels by a ,  and the other by b or b + k ,  we may transform H into Ho, 
by performing a sequence of transformations of the form H i ~ >  H'. Thus, we may 
transform H into Ho, without changing the parity of the number of components, 
as desired. 
(e) Because gcd(a, b, k )  = 1, we know that ( a ,  b, k )  = Gk. 

Case 1. We have gcd(a, 2 k )  = 1. In this case, we have ( a )  = Z g k ,  so there is an 
obvious Hamiltonian circuit in the Cayley digraph (all a-arcs). 
Case 2. We have gcd(b, k )  = 1. In this case, either ( 6 )  = Zak or (b  + k )  = Z 2 k ,  

so there is again an obvious Hamiltonian circuit. 
Case 3. We have gcd(a - b, k )  =/= 1. In this case, we have ( a  - b, k )  =/= Z 2 k .  There 
are many digraphs in C in which 

0 every vertex not in ( a  - b, k )  travels by either b or b + k ;  and 
for each vertex v E ( a  - b, k ) ,  one of v and v + k travels by a ,  and the other 
travels by either b or b + k .  

Among all such digraphs, let H be one in which the number of components is 
minimal. 
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We claim that H is a Hamiltonian circuit. If not, then H has more than one 
component. Because (a ,  b, k )  = G k ,  we know that b generates the quotient group 
Z2k/ (a  - b, k ) ,  so every component of H intersects ( a  - b, k ) ,  and, hence, either 

there is some vertex u in (a  - b, k )  such that u and u + k  are in different 
components of H ;  or 
for all v E (a - b ,  k } ,  the vertices v and v + k are in the same component of 
H ,  but there is some vertex u in ( a  - b, k )  such that u and u + (a  - b) are in 
different components of H .  

In either case, let ul be the one of u and u + k  that travels by a. 
Let v~ = u l  + a. Let u2 = ul  + k ,  and let v2 E u2 + { b ,  b + k }  be the vertex 

that follows us in H. Finally, let v3 = vl + k ,  and let u3 E v3 - {b, b + k} be the 
vertex that precedes v3 in H .  The choice of ul  implies that U I ,  u2, and u3 do not 
all belong to the same component of H. 

Let wl and w2 be the vertices that precede ul  and u2, respectively, on H .  (So 
W l  = W2 + k.) 

Let o- be the permutation of { 1, 2, 3} defined in the proof of Lemma 2.1. If o- is 
an even permutation, let Hl = H ;  if o- is an odd permutation, let HI be the element 
of C that has the same arcs as H ,  except: 

0 instead of the arcs from wl to u l ,  and from w2 to 1x9, 
0 there are arcs from wl to 112, and from 102 to u l .  

In either case, the permutation 0-1 for Hl is even. Thus, o-1 is either trivial or a 
3-cycle. If it is a 3-cycle, then u l ,  u2, and u3 are all contained in a single component 
of Hi,  so Hi has less components than H ,  which contradicts the minimality of H .  
Thus, 0-1 is trivial. 

Let H' be the element of C that has the same arcs as Hi,  except: 

0 instead of the arcs from ul  to v l ,  from uy to v2, and from us to v3, 
there are arcs from u-\ to v2, from uz to v3, and from u3 to v l .  

Because o-1 is trivial, we see that the permutation a' for H is the 3-cycle (1, 2, 
3). Hence, ui ,  u2, and 113 are all contained in a single component of H', so H has 
fewer components than H ,  which contradicts the minimality of H .  
Case 4. Either both of a and k  are even; or a is odd, and either b or k is odd. 
In this case, Lemma 4.1 asserts that the digraph Ho of Definition 4.2 has an odd 
number of components. We construct a Harniltonian circuit by amalgamating all 
of these components into one component. We start with the component containing 
0, and use Lemma 4.2 to add the other components to it two at a time. 

Note that the assumption of the present case, together with the fact that 
gcd(a, b, k )  = 1, implies that gcd(b, k )  is odd. Furthermore, we may assume 
that gcdfb, k )  4- 1, for, otherwise, Case 2 applies. Thus, gcd(b, k )  2 3. 

Let d = 2 k /  gcd(a, 2 k )  be the order of the element a in the cyclic group Zgk ;  
the proof depends on the parity of d. 
Subcase 4.1. d is odd. Note that two vertices u and v are in the same component 
of Ho if and only if either 
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zu = zw = 0  and yu = yu, or 
zu = & = 1  and xu = x w  (mod gcd(b,  k ) ) .  

Lemma 4.2 implies that there is an element HA of &, such that 0 ,  k ,  and a  + k  are 
all in the same component of Hb. (The other components of HA are components 
of Ho.) 

Then Lemma 4.2 implies that there is an element Hi = (HA)' of &, such that 
a  + b, a  + b  + k ,  and 2a + b  + k  are all in the same component of H I .  (The other 
components of HI are components of Ho.) 

With this as the base case of an inductive construction, we construct, for 1  5 
i < k / ( 2 d ) ,  an element Hi of &, such that 

v \ Z v  = 0  and 0  <yv 5 2i- l }U{v \Zv  = 1  and xu  E 0 , 1 ,  or 2(mod gcd(b,  k ) ) }  

is a component of Hi, and all other components of Hi are components of H y .  
Namely, Hi has exactly the same arcs as Hi-\, except: 

0 instead of the arcs 

( 2 i - 2 ) b  + a + ( 2 i - 2 ) b  
( 2 i - 2 ) b + k - +  ( 2 2 - l ) b + k  

a +  ( 2 2 - 3 ) b  +k-+ a + ( 2 i - 2 ) b  + k  
( 2 i - l ) b  + a + ( 2 i - l ) b  
( 2 i - l ) b  + k +  v  

a +  ( 2 i - 2 ) b  + k +  a + ( 2 i - l ) b  + k  

(where v  = ( 2 i ) b  + k  if i < k / ( 2 d ) ,  and v  E { (22)  b, (2 i )b  + k }  if i = 

k/(2d)\ 
there are arcs 

Let K l  = Hklradl.  With this as the base case of an inductive construction, we 
construct, for 1  < i 5 (gcd(b ,  k )  - 1 ) / 2 ,  an element Ki of &, such that 

{ v  = O} U { v ~ y  = 1  and x u  = 0 , 1 ,  . . . , or 2i(mod gcd(b,  k ) ) }  

is a component of Ki,  and all other components of Ki are components of Ho. 
Namely, Lemma 4.2 implies that there is an element Ki = K k 1  of &, such that 
( 2 i  - l ) a ,  ( 2 i  - l ) a  + k ,  and ( 2 i ) a  + k  are all in the same component of Ki.  

Then, for i = (gcd(b,  k )  - 1 ) / 2 ,  we see that a single component of Ki contains 
every vertex, so Ki is a Hamiltonian circuit. 
Subcase 4.2. d  is even. Note that one component of Ho is 

v x W  < d / 2 }  U  { v x v  E O(mod gcd(b,  k ) ) } .  
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Two vertices u and v  that are not in this component are in the same component of 
Ho if and only if xu = xu (mod gcd(b, k ) ) .  

We may assume 2 k / d  > 1 ,  for otherwise Case 1 applies. With Ho as the base 
case of an inductive construction, we construct, for 0  < i < (gcd(b,  k )  - 1 ) / 2 ,  an 
element Hi of &, such that 

{ v  x u  < d / 2 }  U {vxv = 0 , 1 ,  . . . , or 2i(mod gcd(b, k ) ) }  

is a component of Hi,  and all other components of Hi are components of Ho. 
Namely, Lemma 4.2 implies that there is an element Hi = Hl_i of if,  such that 
(2 i  - l ) a ,  ( 2 i  - l ) a  + k ,  and ( 2 i ) a  + k  are all in the same component of Hi. 

Then, for i = (gcd(b,  k )  - 1 ) / 2 ,  we see that a single component of Hi contains 
every vertex, so Hi is a Hamiltonian circuit. I 

5. OUTDEGREE AT LEAST FOUR 

Proposition 5.1. Suppose that Cay(Zn; A) has outdegree four or more, and as- 
sume that there is a proper subset A' of A ,  such that Cay&; A') is connected and 
has outdegree three. If every non-Hamiltonian, connected, circulant digraph that 
has outdegree three and exactly n vertices is described by either Corollary 1.1 or 
Theorem 1.4, then Cay(&; A) has a Hamiltonian circuit. 

Proof. Suppose the contrary. Then the spanning subdigraph Cay&; A') also 
has no Hamiltonian circuit. Therefore, by assumption, there are two cases to 
consider. 
Case 1. Cay(Zn; A') is described by Corollary 1.1. We have n = 12k ,  and 
there is no harm in assuming that Cay(&; A') is described by Theorem 1.3, so 
A' = { 6 k ,  a ,  b} ,  where a  = 6 k  + 2  and b  = 6 k  + 3. Let c be an element of A that 
is not in A'. Because 6 k  4, { a ,  b, c } ,  we know that Cay(&; a ,  b, c )  is not described 
by Corollary 1.1, so it must be described by Theorem 1.4. Thus, we must have 
c  E { a  + 6 k ,  b  + 6 k } .  Because both of a and 6 k  are even, we see from Theorem 
4.1 that Cay(Zi2k; a ,  b, b  + 6 k )  has a Hamiltonian circuit. Therefore, it must be 
the case that c = a  + 6 k  == 2 (mod 12k) ,  so { 2 , 6 k ,  6 k  + 2 , 6 k  + 3 }  C A .  Let H be 
the spanning subdigraph of Cay@^; A) in which every vertex travels by 2, except: 

the vertex 2 travels by 6 k ;  
the vertex 6 k  travels by 6 k  + 2;  and 
the vertices 0 and 6 k  + 1  travel by 6 k  + 3. 

Then H is a hamiltonian circuit. 
Case 2. Cay(&; A') is described by Theorem 1.4. Writing n = 2k,  we have 
A' = { a ,  b, b  + k } ;  let c  be an element of A that is not in A'. By interchanging b  
and b  + k  if necessary, we may assume Cay(Zn; a ,  b) is connected. Then we may 
assume that Cay(Zn; a, b, c )  is described by Theorem 1.4, for otherwise Case 1 
applies. Therefore, c  E { a  + k ,  b  + k } ,  so, because c 4, A', we must have c  = a  + 
k .  Any Euler circuit in Cay(&.; a ,  b) passes through each vertex exactly twice; any 
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such circuit may be lifted to a Hamiltonian circuit in Cay(Zak; a ,  a + k ,  b, b + k ) ,  
which is a spanning subdigraph of Cay(Zn; A). I 

Corollary 5.1. Suppose that Cay(Zn; A) is connected, and has outdegree four or 
more, and assume n < 420. If every non-Hamiltonian, connected, circulant digraph 
that has outdegree three and exactly n vertices is described by either Corollary 1.1 
or Theorem 1.4, then Cay(Zn; A) has a Hamiltonian circuit. 

Proof. From the proposition, we may assume there is no 3-element subset 
{ a ,  b, c}  of A with gcd(a, b, c, n) = 1. This implies that n has at least four distinct 
prime factors. Then, since n < 420 = 22 3 . 5 . 7, we know that n is square 
free. Therefore, because n < 2310 = 2 3 5 7 11, this implies that n is the 
product of four distinct primes. Hence, there are four elements { a ,  b, c ,  d }  of A with 
gcd(a, b, c ,  d ,  n)  = 1, so we may assume that A has exactly four elements. These 
conditions imply that the hypotheses of Theorem 1.2 are satisfied, so Cay(Zn; A) 
has a Hamiltonian circuit. I 

Remark. The proof of Corollary 5.1 is much simpler (namely, the first two sen- 
tences suffice) if n < 2 - 3 - 5 - 7 = 210. 
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