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Abstract. The vertex set of the kth cartesian power of a directed cycle of length rn can be 
naturally identified with the abelian group For any two elements u = (u l , .  . . , uk) 
and v = (01,. . . , uk) of (z~), it is easy to see that if there is a hamiltonian path from u to u, 
then 

u\ + ~ ~ ~ + u i c = v 1  + Â ¥ . . + u k +  (modrn). 

We prove the converse, unless k = 2 and rn is odd. 

1. Introduction 

The cartesian product of any number of (undirected) cycles always contains a 
hamiltonian cycle. (See (2.2) for the definition of the cartesian product.) Work of 
Chen and Quimpo [2] implies the following stronger result, which provides a 
simple characterization of the pairs of vertices that can be joined by a hamiltonian 
path. 

Theorem 1.1 (Chen-Quimpo [2]). Let X be the cartesian product of k cycles of 
lengths ml ,  mz, . . . , mk, with k > 2 and each mi > 3.  

( 1 )  I f  some m, is odd, then X i s  hamiltonian connected. That is, for any two vertices u 
and v of X ,  there is a hamiltonian path from u to v. 

(2 )  I f  each m, is even, then X i s  hamiltonian laceable. That is, X is bipartite and, for 
any two vertices u and v of X ,  either there is a hamiltonian path from u to v, or 
there is a path of even length from u to v. 

It would be interesting to have a similar result in the directed case. The first 
step, which has been completed, is to determine which cartesian products of dir- 
ected cycles have hamiltonian cycles. Rankin [5] implicitly gave a necessary 
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and sufficient condition for the existence of a hamiltonian cycle in the cartesian 
product of two directed cycles; however, this result went unnoticed by graph 
theorists. Thirty years later, Trotter and Erdos [6] rediscovered the character- 
ization. Curran and Witte [4] showed that there is a hamiltonian cycle in the 
cartesian product of three or more nontrivial directed cycles. 

Theorem 1.2 (Rankin [5], Trotter-Erdos [6], and Curran-Witte [4]). Let X be the 
cartesian product of k directed cycles of lengths mi, m2, . . . , mk, with k > 1 and each 
mi > 2. Then there is a hamiltonian cycle in X i f  and only i f  either k # 2 or there 
exists apair of relatively prime positive integers sl and s2 with s\m\ + s2m2 = m\m-i. 

For the case k = 2, Curran [4] strengthened c he or em 1.2 to obtain a 
description of the pairs of vertices that can be joined by a hamiltonian path in 
terms of the geometric configuration of the lattice points in the plane triangle with 
vertices (mi, O ) ,  ( 0 ,  m 2 ) ,  and (0,O).  (Although the strengthened form of the case 
k = 2 was published in the joint paper [4], the coauthor wishes to acknowledge 
that this important result was a solo effort of Curran, obtained before the 
coauthor joined the project.) The result is quite technical so, instead of stating it 
here, let us mention that when k = 2, there always exist pairs of vertices that 
cannot be joined by a hamiltonian path. In fact, Curran showed, for each vertex u ,  
that no more than half of the vertices of X are the terminal vertex of some 
hamiltonian path starting at u. 

In contrast, we conjecture that there is a hamiltonian path from u to v for any 
two distinct vertices u and v if gcd(ml, m*, . . . , m^} = 1 and k > 3. This is a special 
case of the following conjecture, which has no restriction on ml , m i ,  . . . , mk. 

Notation 1.3. For vertices u and v in a (strongly connected) digraph X, let d ~ ( u ,  v )  
denote the length of the shortest directed path from u to v. 

Conjecture 1.4. Let X be the cartesian product of k directed cycles of lengths 
m1, m2,. . . ,mk, with k > 3 and each mi 2 2. For vertices u and v of X ,  there is a 
hamiltonian path from u to v i f  and only i f  

dx ( u ,  v )  == - 1 (mod gcd(mi, m2, . . . , mk)) .  (1.5) 

For X as in Conjecture 1.4, the lengths of any two directed paths from u to v are 
congruent modulo gcd(ml, m2, . . . , mk). This elementary observation implies that 
(1.5) is a necessary condition for the existence of a hamiltonian path from u to u. 
Our conjecture is that it is also sufficient. 

In this paper, we prove Conjecture 1.4 in the special case where all of the 
directed cycles have the same length. 

Theorem 3.2'. Let X be the kth cartesian power of a directed cycle of length m ,  with 
k > 3 and m > 2. For vertices u and v of X,  there is a hamiltonian path from u to v i f  
and only i f  

dx (u , v )  = - 1  (mod m ) .  
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2. Definitions and Preliminaries 

Let us begin this section with a few definitions. For background information 
about the graph theoretic terms used below, the reader is directed to [I]. For 
background information on hamiltonian cycles in Cayley digraphs, including the 
arc-forcing subgroup, see the surveys [3, 71. 

+ 
Notation 2.1. The directed cycle on m (m > 2) vertices is denoted by C m .  

Definition 2.2. The cartesian product G = GI x G2 of two digraphs GI  and G2 is the 
digraph whose vertex set is V ( G )  = V ( G l )  x V ( G 2 )  and has an arc from ( u l ,  u2)  to 
( v ,  , v2) i f  and only i f  either 

M I  = ul and there is an arc from u2 to u; in G2 

u2 = u2 and there is an arc from ul to v\ in GI  

A convenient way of drawing G I  x G; is to first place a copy of G2 at each vertex 
of Gl and then join corresponding vertices of G2 in the copies of G2 placed at 
adjacent vertices of G I .  

Notation 2.3. In the abelian group Zm, x Zm2 x . . . x Z m  let 

X l  = ( l ,O ,O , . . . ,  O ) ,  
x2 = (O, l ,O, .  . . , O ) ,  

The set S = {x l  ,x2, .  . . , xk} will denote the standard generating set of 
Zm, x Zm2 x Â Â x zmi .  

Definition 2.4. Let S generate a finite (abelian) group Y .  The Cayley digraph 
Cay(F; S )  is the digraph whose vertex set is V ( G )  = Y and has an arc from g to g + s 
whenever g E F and s E S\{O}. ( W e  delete 0 from S to avoid having loops in the 
digraph.) 

+ 
We may write Cay(&, , ,  x Zm2 x . . . x Z m k ) ,  omitting S from the notation, when 

the standard generating set is to be used. 

Notation 2.5. A path P in a digraph can be specified by giving an ordered list 
V Q ,  01,. . . , v,, of the vertices encountered. 

In a Cayley digraph S ( Y ;  S ) ,  it is usually more convenient to specify the path 
P : V Q ,  v l ,  . . . , u,, by giving the initial vertex V Q  and an ordered list (a\, a;, . . . ,an) of 
elements of S that label the arcs in P as vi = VQ + a1 + . . . + a,. 

k We will also use the notation ( a 1 ,  a2, . . . , an)  to indicate the concatena- 
3 tion of k copies of the sequence ( a 1 ,  02,. . . , a,,). Thus, for example, (a2,  b )  = 

a ,  a ,  b ,  a ,  a ,  b ,  a ,  a ,  b ) .  
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The following observation is well known (and easy to prove). 

Proposition 2.6. rZ Z,,,, x Zm2 x . . . x Zmk (mi 2 2 )  and S is the standard 
generating set, then C a y ( r ;  S )  is isomorphic to the cartesian product of k directed 
cycles of lengths ml ,  m2, . . . , mk;that is, 

Thus, in order to understand cartesian products of directed cycles, it suffices to 
understand certain Cayley digraphs. This change of perspective provides an 
algebraic setting that makes some constructions more transparent. As Cayley 
digraphs are vertex-transitive, there is usually no harm in assuming that a ham- 
iltonian path starts at the identity element. In Cay ( Z m )  , there is a hamiltonian -( 
path from v to w if and only if there is a hamiltonian path from 0 = ( 0 , 0 ,  . . . , 0 )  to 
w - v; thus throughout the rest of this paper, we will consider only that hamil- 
tonian paths start at  0 .  

The following subgroup of ( z ~ ) ~ ,  called the "arc-forcing subgroup," is a basic 
tool in the study of hamiltonian paths. 

Definition 2.7. For the standard generating set S of ( Z J ,  let S- = {-s \ s 6 S }  
and let 

H = ( S  + S - )  

= { ( v l ,  . . . ,  vk) 6 ( Z m )  1 vl + - - - + v k  = O(mod m ) } .  

Then H is called the arc-forcing subgroup. 

Remark 2.8. Let us recall some basic facts. 

0 For any sl ,s2,x 6 S ,  we have 

where S - x = { s  - x 1 s ? S } .  Therefore S - x is a generating set for H 
k 

For v = ( 0 1 ,  v2, . . . , vie) 6 (Zm) , we have v 6 H - x1 if and only if vl + v2+ 
+ vk = - lm.  

If there is a hamiltonian path from 0 to v in , then v 6 H - X I  

0 Z(H; s - x i )  E S ( ( Z ~ ) ~ - ' } .  

3. Hamiltonian Paths 

Notation 3.1. Throughout this section: 

0 m and k are positive integers with m, k >_ 2, 
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0 S is the standard generating set of (Zm)*,  say S = {x i ,  x2,. . . , x i } ,  and 
0 H = ( S  + S )  is the arc-forcing subgroup. 

In this section, we will prove our main result 

for every v 6 H - xl ,  there is a hamiltonian path 

+ 
Since ~ ( H ; s  -xi) ~i Cayy ( ( z ~ ) ~ ' ) ,  it is easy to see that Cay(H;S  - x l )  

contains a hamiltonian cycle C .  If v is any element of H that is an even distance 
from 0 along C ,  then the following proposition shows that there is a hamil- 

tonian path from 0 to v - xl in . This observation is the main tool in 

our proof of Theorem 3.2. 
+ 

Proposition 3.3. Let v 6 H.If cycle C in Cay(H;S  - x\l 
suchthat dc(O, v) is even, then hamiltonian path from 0 to 

V - X I .  - 
Proof. Let C : co, c , ,  . . . , cmk-! be a hamiltonian cycle in Cay(H;  S - X I )  with 
co = cmt-i = 0,  and define 

For convenience, let a = ( 1 , O )  and b = ( 1 , l )  in Im  x &-I.  Then, for any 
v = ( i ,  j )  6 Zm x Zmk-1, we have 

and 

as cj+l - c, E S - X I .  So contains arcs from 4 ( u )  to (f)(v + a )  and 

d ( v  + b) .  Therefore, (f) x Zmk-i ; {a ,  b } )  as a spanning subdigraph 

. Now, for 0 5 n < & I / ! ,  the path 

+ 
is a hamiltonian path P from 0 to ( - l , 2 n )  in Cay(Zm x Zmk-i; { a , b } ) .  
So (f)(P) is a hamiltonian path from $(0)  = 0 to ( ^ ( - l , 2 n )  = c2,, - x i  in 

The following corollary establishes Theorem 3.2. in the case where m is even. 

Corollary 3.4. I f  for every v 6 H - X I ,  there is a hamiltonian 
path from 0 to v 
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Proof. Let v = (vl, v;, . . . , vk). Since u E H -xi, we have that v1 + v2 + . . + 
vk = - l (m). Since m is even, it must be the case that v, is odd for some i; without 
loss of generality, say vl is odd. We may assume this without loss of generality as 
S -xi is a genera t ing5 for H and v E H - x i  for each i(1 5 i 5 k). Let C be a 
hamiltonian cycle in Cay(H; S - XI). 

For e E {O, l}, let 

He = {h  E H 1 hi = e (mod 2)}. 

+ 
Then Ho and HI form a bipartition of Cay(^/; S - XI). Therefore, since 0 E Ho, we 
know that dc(0, h)  is even for every h E Ho. Also, since u + x, E H and the first 
coordinate of v +xi is even, we know that v +xi E Ho. Hence dc(O, v + X I )  is even, 

and thus by Proposition 3.3, there is a hamiltonian path in 
(v + xl) - XI = V. 

Observe that Corollary 3.4 applies for all k, whenever m is even. In contrast, 
the following remark shows that if k = 2 and m is odd, then only (m + 1)/2 of the 
m elements of H - xl are the terminal endpoint of a hamiltonian path that starts 
at 0. 

Remark 3.5. Assume k = 2 and m is odd. Let v E H - XI, and write v = ( v ~ ,  v2) 

with 0 < v l ,  v; < m. Then vl + v; = m - 1, which is even. Hence vl and v; have the 
of Curran [4] shows that there is a hamiltonian path from 0 

only if vl is even. Thus, if m is odd, then the assumption 

We now wish to apply Proposition 3.3 in the case that m is odd. We begin by 
showing that we can find the appropriate hamiltonian cycle. 

Lemma 3.6. Assume that m is odd and that n is a multiple of m. Let v E Zm x Z,, 
where v = ( i ,  j) with 0 <  ̂ i < m and 0 j < n, and let r be the remainder of 
i + jupon division by m.  I f  either 

(1) j + r is even, or 
(2) both j and r are nonzero, or 
(3) j is even and nonzero, 

* 
then there is a hamiltonian cycle C in Cay(Zm x Z,,) such that dc(0, v) is even. 

Proof. As usual, let xl = (1,O) and x2 = (0, l) .  

(1) If j + r is even, let C be the hamiltonian cycle ( x y l  ,dn. Then, since 

we have that 

dc(O, v) = jm + r = j + r == 0 (mod 2). 

Hence dc (0, v) is even. 
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(2) If j + r is odd, and both j and r are nonzero, let C be the hamiltonian cycle 
(xfl")". Then, since 

we have that 

dc(O, v) = (J - 1)m + 1 + (r - 1) = (J - 1) + r = 0 (mod 2). 

Hence dc(0, v)  is even. 

(3) Suppose j is even and nonzero. If j + r is even, then (1) applies. If not, then r 
must be odd, so r # 0. Therefore (2) applies. 

Proposition 3.7. If2 is odd and n 2 2, then, for each v E (Zm)", there is a hamil- 
tonian cycle C in Cay((Zm)")such that dc(0, v) is even. 

Proof. The proof is by induction on n. 

Base Case. Assume that n = 2. Write v = ixl + jx2 for some i and j with 
0 < i, j < m - 1. Let r be the remainder of i + j upon division by m. We may 
assume that i + r and j + r are both odd, for otherwise the desired conclusion 
follows from Lemma 3.6(1) (perhaps after interchanging i and j). This implies 
that i and j have the same parity, so i + j is even. The desired conclusion is 
obvious if v = 0, so we may assume that not both of i and j are 0; by sym- 
metry, we may assume j # 0. Now i +  j # 0 and, because i +  j is even, we 
know i + j # m; therefore r # 0. Thus, the desired conclusion follows from 
Lemma 3.6(2). 

Induction Step. Let n 2 3. Assume for every vertex w of 
is a hamiltonian cycle C such that dc(O, w) is even. Write v = (u l  

assume v # 0, for otherwise the desired conclusion is obvious. By symmetry, 
we may assume that vn # 0. Let w By induction, there is a hamil- 
tonian cycle Co : co, cl,  . . . , crn,,-i in with co = crnn-i = 0, such that 
dc,,(O, w) is even. Let C( = w. Define 

Then, for any u = (i, j )  6 Zm x Zma-1, we have 

as c,+l - c, is an element of the standard generating set for ( s - ~ ) " ' .  So ---+ 
Cay((Zm)") %tains arcs from $(u) to $(u + (1,O)) and $(u + &I)). Therefore, 

embeds Cay(& x Zmn-i) as a spanning subdigraph of Cay((Zm)"), with 
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4(0) = 0 and +(vl  l) = v. Because ! i s . e n  and nonzero, Lemma 3.6(3) implies 
that there is a hamiltonian cycle C in Cay (ZmsZmn- I ) ,  such that dc(0, ( u l l  e)) is 
even. Then $(C) is a hamiltonian cycle in Cay((Zm)") such that dflc)(Olv) is 
even. 

Combining the results of Propositions 3.3 and 3.7 together with Corollary 3.4, 
we now give the proof of our main result. 

Proof of Theorem 3.2. If m is even, then the desired c o ~ l u s i o n  follows by 
Corollary 3.4. Thus, we may assume that m is odd. Since Cay(H;S -x i )  is iso- 

, Proposition 3.7 implies that there is a hamiltonian 

such that dc(O, v + x,) is even. The desired conclusion 
now follows from Proposition 3. 

Unfortunately, our methods do not seem to be sufficient to prove the general 
case of Conjecture 1.4. For example, Lemma 3.6 does not seem to be useful unless 
mi is a divisor of (m1m2.. .mk)/mi, for some i. 
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