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ABSTRACT 

Let G be a semisimple algebraic Qgroup. let. F be an arithmetic subgroup 
of G .  and let, T be an E-split torus in G .  We prove that if there is a 
divergent Tn-orbit in  r \ G R ,  and Q-rank G < 2, t,hen dim T < Q-rankG. 
This provides a partial answer to a question of G .  Tomanov and B. Weiss. 

1. Introduction 

Let G be a semisimple algebraic Q-group. let F be an arithmetic subgroup 

of G .  and let T be an R-split torus in G .  The Tie-orbit of a point Fxo in 
X = r \ G R  is divergent if the natural orbit. map TR ~r X: t t+ Fxot is 
proper. G. Tomanov and B. Weiss [TW. p. 3891 asked whether it is possible 
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for there to  be a divergent Ta-orbit when d imT > Q-rank G .  B. Weiss [Wl ,  
Conjecture 4.11AI conjectured t,hat the answer is negative. 

1.1. CONJECTURE: Let 

G be a semisimple algebraic group that is defined over Q, 
r be a subgroup of G R  that is commensurable with Gz, 
T be a connected Lie subgroup of an K-split torus in GR,  and 

xo E G R .  
If the T-orbit of r x o  is divergent in ~ \ G R ,  then d imT < (Shrank G.  

The conjecture easily reduces to the case where G is connected and Qsiinple. 
Furthermore, the desired conclusion is obvious if Qrank  G = 0 (because this 
implies that r \ G R  is compact), and it is easy to prove if Qrank  G = 1 (see $2). 
Our main result is that the conjecture is also true in tjhe first interesting case: 

1.2. THEOREM: Suppose G ,  r ,  T ,  and xo are as specified in Conjecture 1.1, 

and assume Q-rank G < 2. If the T-orbit of Fxo is divergent in r \ G R ,  then 
dim T < Q-rank G .  

The proof is based on the fact that if f is any continuous map from the 2- 
sphere S2 to any simplicia1 complex Ek of dimension k < 2, then there exist 
two antipodal points x and y of S2, such that, f ( x }  = f (y). 

For higher Qranks,  we prove only the upper bound dim T < 2(Qrank G )  (see 

6.1). The factor of 2 in this bound is due t,o the existence of maps f :  Sn Ã‘ s^,  
with k = [ ( I %  + 1)/21, such that no two antipodal points of 5'" have the same 

image in S k  (see 6.3). 
The first partial result on the conjecture was proved by G. Tomanov and 

B. Weiss [TW, Theorem 1.41, who showed that if Qrank  G < R-rank G ,  then 
dimT < E-rank G .  After seeing a preliminary version of our work, B. Weiss 
[W2] has recently proved tjhe conjecture in all cases. 

GEOMETRIC REFORMULATION. We remark that, by using the well-known fact 
that flats in a symmetric space of noncompact type are orbits of R-split tori in 
its isometry group [H, Proposition 6.1, p. 2091, the conjecture and our theorem 

can also be stated in the following geometric terms. 
Suppose 2 is a symmetric space, with no Euclidean (local) factors. Recall 

that a flat in 2 is a connected, totally geodesic, flat submanifold of 2.  Up to - 
isometry, X = G/I<, where I< is a compact subgroup of a connected, semisimple 
Lie group G with finite center. Then K-rank G has the following geometric 
interpretation: 
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1.3. FACT: R-rank G is the largest natural number r,  such that 2 contains a 
topologically closed, simply connected, r-dimensional flat. 

Now let X = F\X be a locally symmetric space modeled on X ,  and assume 

that X has finite volume. Then Q-rank F is a certain algebraically defined 
invariant of T [M, 59D]. It can be characterized by the following geometric 

property: 

1.4. PROPOSITION: Qrank  F is the smallest natziral number r ,  for which there 

exists collection of fi~iitely many r-dimensional fiats in X,  such that all of X is 
within a bounded distance of the union of these Bats. 

It is clear from this that the Q-rank does not change if X is replaced by 

a finite cover, and t,hat it satisfies Qrank  F < R-rank G. Furthermore, the 

algebraic definition easily implies that if Qrank  F = r ,  then some finite cover 

of X contains a topologically closed, simply connected flat of dimension r .  If 
Conjecture 1.1 is t,rue, then there are no such flat,s of larger dimension. In other 
words, Qrank should have the following geometric interpretation, analogous to 
(1.3): 

1.5. CONJECTURE: Qrank  F is the laigest natural number r, such that some 

finite cover of X contains a topologically closed, simply connected, r-dimensional 
Bat. 

More precisely, Conjecture 1.1 is equivalent to  the assertion that Qrank F is 
the largest natural number r ,  such that 2 contains a topologically closed, simply 

connected, r-dimensional flat F .  for which the composition F 2 Ã‘> X is a 
proper map. 

ACKNOWLEDGEMENTS: The authors would like to  thank Kevin Whyte for 
helpful discussions related to Proposition 2.2. D. W. M. was partially supported 

by a grant from the Nat,ional Science Foundation (DMS-0100438). 

2. Example: A proof for Qrank 1 

To illustrate the ideas in our proof of Theorem 1.2, we sketch a simple proof that 
applies when Q-rank G = 1. (A similar proof appears in [Wl ,  Proposition 4.121 .) 

Proof: Suppose G ,  F, T ,  and XQ are as specified in Conjecture 1.1. For 
convenience, let TT: GK -+ F\GR be the natural covering map. Assume that 
Qrank G = 1, that d imT = 2, and that the T-orbit of 7r(xo) is divergent in 
F\G. This will lead to a contradiction. 
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Let El =- r \ G R .  Because Q-rank G = 1, reduction theory (the theory of 
Siegel sets) implies that there exist 

a compact subset EO of F\GR, and 

0 a @representation p: G Ã‘ GLm (for some in), 

such that, for each connected component Â of GR \ x 1  (Eo), there is a nonzero 

vector v ? QnL, such that 

(2.1) if lim rgn  = oo in F \GR,  and {gÃ£ C &, then lim p(gn)v = 0. 
n+oo n+cc 

(In geometric terms, this is the fact that, because El \ Eo consists of disjoint 

"cusps," GR \ r 1  (Eo) consists of disjoint "horoballs.") 

Given e > 0, let TR be a large circle (1-sphere) in T ,  centered a t  the identity 

element. Because the T-orbit of ~ ( x Q )  is divergent,, we may assume 4 x o T R )  
is disjoint from Eo. Then, because TR w S1 is connected, the set xo% must 
be contained in a single component of Gs \ r 1 ( E o ) .  Thus, there is a vector 
v ? Qn, such that \\p(t)v\\ < ?\\v\\ for all t ? TR. 

Fix t E TR. Then tP1 also belongs to TR, so \\p(t)v\\ and llp(tP1)u~~ are both 
much smaller than llull. This is impossible (see 3.2). I 

The above proof does not apply directly when Q-rank G = 2, because, in 

this case, there are arbitrarily large compact subsets C of r \ G R ,  such that 

G R \ r l  (C) is connected. Instead of only EQ and El, we consider a more refined 
stratification EQ c El c Â£ of r \ G .  (It is provided by the structure of Siegel 
sets in @rank two.) The set E0 is compact, and, for z > 1, each component Â 
of r 1  (EZ \ EzP1) has a corresponding representation p and vector v, such that 
(2.1) holds. Thus, it suffices to find a component of either r l ( E l  \ Eo) or 

r 1 ( E 2  \ El) that contains two antipodal points of TR. Actually, we replace 
El with a slightly larger set that is open. so that we may apply the following 

property of S2: 

2.2. PROPOSITION (see 3.1): Suppose 11 > 2, and that {Vi, &}  is an open 
cover of  the n-sphere Sn that consists of only 2 sets. Then there is a connected 
component C of some K ,  such that C contains two antipodal points of 5". 

2.3. Renlark: In $5, we do not use the notation Ey c El c E2. The role 
of Eo is played by 7r(QS/t), the role of an open set containing El is played by 
r(QSa U QS13), and the role of E2 \ El is played by n(QS ) .  
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3. Preliminaries 

The classical Borsuk-Ulam Theorem implies that if f :  Sn Ã‘ tf is a contin- 
uous map, and n > k ,  then there exist two antipodal points x and y of Sn, 
such that f (x) = f (y). We use this to  prove the following stronger version of 
Proposition 2.2: 

3.1. PROPOSITION: Suppose V is an open cover of Sn, with n > 2, such that 
no point of Sn is contained in more than two of the sets in V. Then some V Â V 
contains two antipodal points of S n .  

Proof: Because Sn is compact, we may assume the open cover V is finite. Let 
{f>v}vev be a partition of unity subordinate to  V. This naturally defines a 

continuous function from Sn to the simplex 

Namely, $(a") = ( ( b v { ~ ) ) ~ ~ ~ .  Our hypothesis on V implies that no more than 
two components of @(x) are nonzero, so the image of is contained in the 

1-skeleton A t )  of Av.  Because Sn is simply connected, $ lifts to  a map 5 - 
from Sn to the universal cover A:' of A!'. The universal cover is a tree, which 
can be embedded in JR2, so the Borsuk-Ulam Theorem implies that there exist 

two ant,ipodal points x and y of Sn ,  such that 6 (x )  = $(y). Thus, there exists 

V Â V ,  such that &(x)  = dv(y)  # 0. So X ,  IJ ? V. R 

For completeness, we also provide a proof of the following simple observation. 

3.2. LEMMA: Let T be any abelian group of diagonalizable n x n real matrices. 
There is a constant e > 0, such that if 

v is any vector in JRn, and 
t is any element of T ,  

then either \\tv\\ > e\\v\\ or l[t-'uIl > ellvll. 

Proof: The elements of T can be simultaneously diagonalized. Thus, after a 
change of basis (which affects norms by only a bounded factor), we may assume 
that each standard basis vector e,  is an eigenvector for every element of T. 

Write v = ( v ~ ,  . . . , vn), and let t, be the eigenvalue of t corresponding to the 
eigenvector e,. Because any two norms differ only by a bounded factor, we may 
assume 1 1  1 1  is the sup norm on Rn ; therefore, we have ~~u~~ = v, 1 for some 3.  We 
may assume ItJ 2 1, by replacing t with t 1  if necessary. Then 
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as desired. 1 

4. Properties of Siege1 sets 

We present some basic results from reduction theory that follow easily from the 

fundamental work of A. Bore1 and Harish-Chandra [BH] (see also [B, $13-$151). 
Most of what we need is essentially contained in [L, $21, but we are working 
in G,  rather than in 2 = G/K.  We begin by setting up the standard notation. 

4.1. Notation (cf. [L, 511): Let 
0 G be a connected, almost simple Qgroup, with Qrank G = 2, 
0 G be the identity component of GR,  

I? be a finite-index subgroup of Gz n G, 
P be a minimal parabolic Qsubgroup of G,  
A be a maximal Qsplit torus of G ,  

0 A be the identity component of AR. and 

I< be a maximal compact subgroup of G. 

We may assume A c P. Then we have a Langlands decomposition P = UMA, 
where U is unipotent and M is reductive. We remark that U and A are con- 
nected, but M is not connected (because P is not connected). 

4.2. Notation (cf. [L, $11): The choice of P determines an ordering of the 
Qroots of G .  Because Q r a n k G  = 2, there are precisely two simple Q-roots 
a and /? (so the base A is {a, /?}). Then a and /? are homomorphisms from A 

to R+. 
Any element g of G can be written in the form g = pak, with p E UM, a E A, 

and k 6 K .  The element a is uniquely determined by g, so we may use this 
decomposition to extend a and ,13 to continuous functions d and /? defined on 
all of G: 

&(g) = a ( a )  if g E UMaK and a 6 A, 

4.3. Notation (cf. [L, 521): 
Fix a subset Q of G O  F1 G, such that 

Q is a set of representatives of F\(GQ n G)/(PQ n P). 

Note that Q is finite. 
For r  > 0, let AT = { a â  A 1 a (a )  > r  and/?(a) > T } .  
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For T > 0 and a precompact, open subset w of U M ,  let ST.^ = wATK.  
This is a Siege1 set in G. 
We fix T > 0 and a precompact, open subset w of UM, such that, letting 
S = SrU, we have 

Q S  is a fundamental set for F in G. 

That is, 
FQS = G, and 

{7 ? I' 1 7QS n pQS # 0} is finite, for all p ? GQ n G .  
p,q ? Q , 7 â  r, 

pS  n 7qS is not precompact 
} C G Q ~ \  G. Note that 25 

is finite. 
Fix r > 0, such that, for q ? 25, we have 

if & is bounded on S n qS, then &(S n qS) < r ,  and 
0 if /3 is bounded on S  n qS, then / 3 ( ~  n qS) < r. 

Fix any r* > r. 
Define 

St = {x E S I &(x) > r and B(x) > r}, 
Sa = { x ?  S I &(x) < r * } ,  
So = { x ?  S 1 /3(x) < r*}, and 
>?A = Sa sD. 

Not,e that {S,, &, Sg} is a11 open cover of S (whereas [L, p. 3981 defines 
{S*, Sco Sa} to be a partition of S, so not all sets are open). We have 

For p, q ? Q, let 

= {7 â r 1 pS  n 7q5 is precompact and nonempty}, 

25Eq = 17 E 1 pSo, fl 7qSa is precompact and nonempty}, 
25̂ q - a - {7 ? r 1 pSp n 7qS0 is precompact and nonempty}, 

25;s = {7 â r 1 pSa n 7qS0 is precompact and nonempty}, 

and, using an overline to denote the closure of a set, 
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Note that 'D \̂ Dgq, -D \̂ and Â¥Dg are finitme (because Q S  is a funda- 
mental set), so St is compact. And rSi is closed. 

For 0 C A, we use Po to denote the corresponding standard parabolic 
(-subgroup of G corresponding to 0. In part,icular, Pa = P and PA = G. 
There is a corresponding Langlands decomposition Pe = UQMQAQ. 

We now state two propositions from [L], that we will use repeatedly in the 

proofs of the next few lemmas. These propositions hold more generally for 
semisimple (-algebraic groups of arbitrary Q-rank. 

4.4. PROPOSITION ([L, Proposition 2.31): Let p,q ? Q and 7 ? I?, such that 
the intersection p S  fl 7qS is not precoinpact. Then p 1 7 q  ? Pe n Go where 0 
is the collection of all the roots A ? A for which \(s f? pl^fqS) is bounded. 

4.5. PROPOSITION ([L, Lemma 2.4(i)]): For all 7,7 ? and p, q ? Q ,  we have: 
(1) If pp17q ? P,  then p = q and p - l ~ q  ? (UM)rn). 
(2) Let 0 C A. If both p 1 7 q  and 1 2 1 q q  are in Po, then 

4.6. LEMMA: For all 7 ? F and p, q ? Q,  we have: 

(1) pSa n 79% is precompact, and 

(2) PSa n 7qS0 c G. 

Proof: It suffices to prove ( I ) ,  for then (2) is immediate from the definition 
of SL (and V^o}. Thus, let us suppose that pSa n 7qSp is not precompact. 
This will lead to a contradiction. 

Because d is bounded on Sa. but Sa n p 1 7 q S 0  is not precompact, we know 
that /9 is unbounded on Sa C\ p17qSf i  (and, hence, on S r\ pl^^qS). Therefore, 

Proposition 4.4 implies that 

P -S~ Pa. 

Similarly (replacing 7 with 7 '  and interchanging p with q and a with /?), 
because 7 1 p S a  n qSp = 7 1 ( p S a  n ?^So) is not precompact, we see that 

Noting that q 1 7 1 p  = ( p 1 7 q ) 1 ,  we conclude that p l - y q  ? Pa n Pp = Pa, so 
Proposition 4.5 (1) tells us that p = q and p-17q ? UM. Therefore 
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are precompact. So Sa ~ p l ^ q S ~  is precompact, which contradicts our assump- 
tion that pSa n ̂ qSg is not precompact. @ 

a 4.7. LEMMA: If"f ? I? and p ,q  G Q,  such that pS, n 7qS! $! S,t', then p = q 
and p47q ? (UM)o. 

Proof: It suffices to show that both 6 and /3 are unbounded on S n p 1 y p 5 ' ,  

for then the desired conclusion is obt,ained from Proposition 4.4 and Proposi- 

tion 4.5 (1).  Thus, let us suppose (without loss of generality) that 

6 is bounded on S n p 1  7qS. 

This will lead to  a contradiction. 

CASE 1: Assume f3 is also bounded on S n p - l ~ ~ S .  Then pS I"] 7qS = 

p(S ft p17qS)  is precompact, so, by definition, pS f l  'yqS C g. Therefore 

This  contradict,^ the hypothesis of the lemma. 

CASE 2: Assume f3 is not bounded on S n l ~ 1 7 q S .  As 6 is bounded on 

S n p 1 7 q S ,  from the definition of Sa.  we see that pS n 'yqS c pSa. Therefore 

This contradicts the hypothesis of the lemma. @ 

4.8. COROLLARY: If  x and y are two points in the same connected component 
of  TQS,. \ FS;, then there exist 7 0 , ~  6 r and q ? Q ,  such that :c 6 -yoqS*, 

y ? and q 1 7 q  6 (UM)Q. 

4.9. LEMMA: 

( 1 )  If 7 E r and p, q ? Q, such that pSa D "fqSa $! S,t', then p'^^q ? (Pa)(). 
( 2 )  For each p, q ? Q, there exists l i p ,  ? (Pa)o, such that p ^ Y q  n (Pa)o C 

hp,n(UaMa)mi. 

Proof: ( 1 )  Because pSa ri wqS (Z S;, we know from the definit,ion of a 
(and DE9) that p& n 'yqSa is not precompact. Since & is bounded on So, we 
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conclude that 6 is not bounded on Sa ~ \ p - ' ^ q S ~  (and, hence, on S p l ' yqS) .  
Then Proposition 4.4 asserts that p l - y q  E for 0 = { a }  or 0. Because 

Pa c Pa, we conclude that p l y q  Â (Pa)Q. 
(2) From Proposition 4.5 (2), we see that the coset (p- lTq)(UaMa)~ does 

not depend on the choice of 7, if we require 7 to be an element of I?, such that 

P - ' Y ~    pa)^. I 

4.10. COROLLARY: I fx  and y are twopoints in thesame connected component 

of FQSa I?$, then there exist 7 0 , 7  E I? and p, q E Q, such that x ? 7opSa, 

Y E 707qSa; and E hp.n(UaMa)~. 

5. Proof of the Main Theorem 

Let G,  I?, T and XQ be as described in the hypotheses of Theorem 1.2, and assume 

d imT > 3. (This will lead to  a contradiction.) Let {Rn} be an increasing 
sequence of positive real numbers, such that limn+oo R n  = oo. For every n,  

let T R  be the sphere in T with radius Rn (centered at the identity element). 
Because Si  is compact and the T-orbit of Fxo is divergent in F\G, we may 

assume that 

(5.1) (xoTR,, ) n ( ~ 5 3  = 0 for all 72 

and 

= {t E TR,, 1 xot E r Q s a  u rQSa}. 

From Proposition 2.2, we know that for all n there existss tn E T R , ,  and a 

connected component & of either or W,, , such that t,n and t;' both belong 

to Cn.. 

CASE 1: Assume that there are i~~fi i~i te ly many 7 1  for which Cn is a component 
of WA,. By passing t,o a subsequence, if necessary, we may assume that Cn 

is a connected component of W for all 71,. From Corollary 4.8, we see that 

for each 7 1  there exist -yorc yÃˆ ? F and qn ? Q, such that :rot7, ? 70n~nS, , 
xotn1 ? %-fnqnSt., and q h n q n  E (UM)Q. Because l i n ~ , ~ ~ I ? x ~ t , ~  - oo and 
limn+oo~xot;l = oo in r\G', by passing to a subsequence if necessary, we must 
have 

(1) either 
lim Ci(q;17&~x0tn) = oo 

nÃ‘>o 
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Since q A n q n  E ( U M ) q  is sent to  the identity element by both Ct and f3 for all 
n, we have 

(2')  either 
lim C i ( q $ d x & )  = 00 

n+w 

or 

lim & ~ " f n x ~ t ; )  = 00. 
n+00 

Let 
d V = A 0, where d = dim U ,  

p:  G ~f G L ( V )  be the dt'l exterior power of the adjoint representation 
of G on V ,  

d 
0 uu be a nonzero element of Vz in the one-dimensional subspace A u, and 

v ~ , ~  = P ( x ~ ~ ~ n q , , ) u l l  for all 7%. 

It is important to  note that \\Vu,Jl is bounded away from 0, independent of the 
choice of q,,, 'yon and 7%. (The key point is that,  for each qn, the vector p(qn)uu 
is a Qeleinent of V, so its Gz-orbit is bounded away from 0. There are only 

finitely many choices of q,,, so qn is not really an issue.) 
On the other hand, for any g E Pa. we have 

for some positive integers f l  and t2 (because the sum of the posit,ive @roots 

of G is & + f 2 / 3 ) .  Therefore, from ( 1 )  and (2 ' ) ,  we see that 

and 
-1 -1 lim p(tn)ull.n = lim p ( ( q ; 1 d ~ o t 7 L  ) )uu = 0 

n~5-00 n + m  

This contradicts Lemma 3.2. 
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CASE 2: Assume that there are infinitely many IT- for which Cn is a component 

of Wn,. By passing to a subsequence, if necessary, we may assume that Cn is a 
connected component of Wn for all n .  From Lemma 4.6(2), we see that xoCn is 
contained in either FQ& or FQSg for all 7%. Assume, without loss of generality, 
that xnCn C FQ&, for all n. From Corollary 4.10, we see that for all n t,here 
exist 7on, -yn Â F and pn ,  qn E Q, such that 

Let ua be the Lie algebra of Ua, let Va = A "  0, where da = dimua, and let 

pa: G Ã‘> GL(Va) be the (12 exterior power of the adjoint representation of G. 
We can obtain a contradiction by arguing as in Case 1, with the representa- 

tion pa in the place of p. To see this, note that: 
For a E kera, we have p a ( a l ) v l ,  = f 3 ( a ) e ~ u ,  for some positive 

integer l. Since pa(UM) c pa(UaMa) fixes uu<, , and pa(.K) is compact, 
there exist constants A, B > 0 such that 

Because linln+ooFxotn = oo and limn-KxiI'xot;l = oo in F\G, and Li is 
bounded on Sa, we must have 

(1) l i m n + o o / ^ p ~ ~ x o t n )  = 00, and 
(2) limra+oo/3(~;17~'7~~Â¥rOt;1 = oo. 

Therefore, letting u u m n  = P a ( ~ ~ 1 7 0 n p n ) ~ ~ u , ,  for all n,  we have 

(I*) = 0. 

Because hp,, ,,,,, ? Pa normalizes Ua, we have 

for some scalar cp,, ,q,, . Since (pil;/nqn)l~g,l ,^,, 6 fixes uun , and 

{cp,, , q , ,  }, being finite, is bounded away from 0, we see that 

This contradicts Lemma 3.2 and the proof of Theorem 1.2 is completed. 8 
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6. Results for higher Qrank 

The proof of Theorem 1.2 generalizes to establish the following result: 

6.1. THEOREM: Suppose G ,  I', T ,  and xo are as specified in Conjecture 1 .l, 
5 

and assume Qrank G > 1. If the T-orbit of Fxo is divergent in I'\GR, then 
dim T < 2(Qrank G) - 1. 

m 

Sketch of proof: As in [L, 51 andÂ§2] let A be the set of simple Qroots, 
construct a fundamental set QS, define tlhe finite set D,  and choose r > 0, such 
that, for q e D and a A, we have 

if & is bounded on S n qS, then &(S n qS) < r 

Fix an increasing sequence r = ro < rQ < 7-1 < r \  < . . . < rd < r*, of real 
numbers. For each subset 0 of A,  let 

and 

SQ = {X â S 1 &(x) < r#Q, Va e 0} ,  

and choose hEq such that P - ~ I ' ~  n (PelQ c h E q ( u @ ~ e ) ~  for p,q â Q. Set 
d = Qrank G ,  and, for i = 0, .  . . , d, let 

Then {Q(Eo \ Ef) ,  Q(E1 \ Ey), . . . , Q(Ed-l \ E;), QEd} is an open cover of 
r \ G ,  and E d  is precompact. 

F o r p , q e  Q and 61,02 c A, let 

D K Q 2  = {7 e I' 1 pSe, n 7qSe^ is precompact and nonempty}. 

Suppose dim T > 2d. Then we may choose a (2d - 1)-sphere TR in T ,  so large 
that !?xoTR is disjoint from Ed U S i .  Proposition 6.2 below implies that there 
exists t E TR and a component C of some EtPl \ E (with 1 5 2 < d), such 
that xot and x o t l  belong to C.  Since xoTR is disjoint from FSL, then there 
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exist 0 c A (with #Q = z - I ) ,  70,7 E F, and p, q E Q, such that xot E 7opSe, 
x o t l  Â yoy<?Se, and p 1 ? q  e ~ I : ( U Q M ~ ) ~ .  We obtain a contradiction as in 
Case 1 of $5, using ue  in the place of u. 1 

The following result is obtained from the proof of Proposition 3.1, by using 
the fact that any simplicial complex of dimension d - 1 can be embedded in 
~ 2 d - 1  

6.2. PROPOSITION: Suppose n > 2d - 1, and that {Vl, h,. . . , Vd}  is an open 
cover of the n-sphere 5" that consists of only d sets. Then there is a connected 
component C of some &, such that C contains two antipodal points of 5". 

6.3. Remark: For k > 1, it is known [S, IJ] that there exist a simplicial 
complex Sk of dimension k and a continuous map f :  S Z k l  Ã‘ S< such that no 
two antipodal points of S2 ' l  map to the same point of 1̂ . This implies that 
the constant Id  - 1 in Proposition 6.2 cannot be improved to 2d - 3. 

6.3. Remark: If Qrank G = 2, then the conclusion of Theorem 1.2 is stronger 
than that of Theorem 6.1. The improved bound in (1.2) results from the fact 
that if d = 2, then the universal cover of any (d - 1)-dimensional simplicial 
complex embeds in R2 = . (See the proof of Proposition 3.1.) When 
d > 2, there are examples of (simply connected) (d  - 1)-dimensional simplicial 
complexes that embed only in R2d-1, not R2d-2. 
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