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CAN LATTICES I N  SL(n,R) ACT 
O N  THE CIRCLE? 
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1. Overview 

The following theorem is a simple example ofthe Zimmer program's principle 
that large groups should not be able to act on small manifolds. (For a descrip- 
tion of the Zimmer program, see D. Fisher's survey article [Fis] elsewhere in 
this volume.) Unless stated otherwise, we assume actions are continuous, but 
we require no additional regularity. 

T H  EO R E M 1.1 . (w I TTE) Let F be a finite-index subgroup of SL (n,  Z), with 
n 2 3. Then I' has no faithful action on the circle s'. 

R E M A R K  1.2. 

1) The proof of this theorem is not at all difficult, and will be given in Sec- 
tion 3, after the result is translated to a more algebraic form in Section 2. 

The proof illustrates the use of calculations with unipotent elements, 
which is a standard technique in the theory of arithmetic groups. 

2) The assumption that n 2 3 is essential. Indeed, some finite-index sub- 
group of SL (2, Z) is a free group, which has countless actions on the 
circle (some faithful and some not). 

A group F as in Theorem 1.1 is a lattice in SL (n,  R). It is an open question 
whether the theorem generalizes to the other lattices: 

C O N J E C T U R E  1.3. LetF bealatticeinSL(n,R), w i t h n 2 3 .  Thenrhasno  
faithful action on sl. 

Note that if this conjecture is true, then every action of F on s1 or R has 
a nontrivial kernel. Since the kernel is a normal subgroup, and the Margulis 
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normal subgroup theorem tells us that lattices in SL (n, K) are "almost simple" 
(if n >. 3); it follows that the kernel is a finite-index subgroup of r. Therefore, 
every r-orbit is finite. Such reasoning shows that the conjecture can be restated 
as follows: 

CONJECTURE 1.3'. Let r be a lattice in SL (n,K), with n 2 3. Whenever F acts 
on sl, every orbit is finite. 

There is considerable evidence for the above conjectures, including the 
following important theorem: 

THEOREM 1.4. (GHYS,  B U R G E R - M O N O D )  If F is any lattice in SL(n,R), 
n > 3, then every action of r on S1 has at least one finite orbit. 

R E  M A R K  1.5. The proof of 6. Ghys utilizes amenability (or the Furstenberg 
boundary); see Sections 6 and 7. The proof of M. Burger and N. Monod is 
based on a vanishing theorem for bounded cohomology; see Section 8. 

The above conjectures are about continuous actions, but they can be 
weakened by considering only differentiable actions. It will be explained in Sec- 
tion 4 that combining the Ghys-Burger-Monod theorem with the well-known 
Reeb-Thurston stability theorem establishes these weaker conjectures: 

C O R O L L A R Y  1.6. (GHYS,  BURGER-MONOD)  If F isanylatticeinSL(n,I), 
with n 2 3, then: 

1) r has no faithful C' action on s', and 
2) whenever r acts on S' by C' diffeomorphisms, every orbit is finite. 

For n 2 3, it is well known that every lattice in SL (n, R) has Kazhdan's 
property (T) (see Definition 5.2), and the following result shows that if we 
strengthen the differentiability hypothesis slightly, then the conclusion is true 
for all groups that have that property. This is a very broad class of groups 
(including many groups that are not even linear), so one would expect a much 
stronger result to hold for the special case oflattices in SL (n, R). Thus, this the- 
orem constitutes good evidence for Conjecture 1.3. The proofwill be presented 
in Section 5; it is both elegant and elementary. 

TH EO R E M 1.7. (N AVAS) If r is any infinite, discrete group with Kazhdan's 
property ( T ) ,  then r has no faithful C2 action on the circle. 



Bounded generation provides another approach to proving Theorem 1.1 
and some other cases of Conjecture 1.3. This strategy is explained in Section 9. 

In spite of the above results, Conjecture 1.3 remains completely open for 
cocompact lattices: 

PROBLEM 1.8. Find a cocompact lattice F in SL (n, R), for some n, such that 
no finite-index subgroup of F has a faithful action on s'. 

R E M A R K 1.9. A final section of the paper (110) briefly discusses the general- 
ization of Conjecture 1.3 to lattices in other semisimple Lie groups and two 
other topics: lattices that do act on the circle, and actions on trees. 

NOTES FOR p . The survey of fi. Ghys [Gh3] and the forthcoming book of 
A. Navas [Na2] are excellent introductions to the study of group actions on the 
circle. Versions of Conjecture 1.3 were discussed in conversation as early as 
1990, but the first published appearance may be in [Gh2, p. 2001. 

Expositions of the Margulis normal subgroup theorem can be found in 
[Ma2, chap. 41 and [Zi2, chap. 81. 

Regarding the equivalence of Conjectures 1.3 and 1.3', see [Uom, thm. 11 
for a proof that if every F-orbit on a connected manifold is finite, then the 
kernel of the action has finite index. 

AC K N OWL E D G M E N TS : Preparation of this paper was partially supported by 
research grants from the Natural Sciences and Engineering Research Coun- 
cil of Canada and the U. S. National Science Foundation. I am grateful to 
M. Burger, E. Ghys, N. Monod, A. Navas, and an anonymous referee, for 
helpful comments on a preliminary version of the manuscript. 

2. Algebraic Reformulation of  the Conjecture 

In this section, we explain that Conjecture 1.3 can be reformulated in a purely 
algebraic form (see Proposition 2.8). The proof has two main parts: having an 
action on s1 is almost the same as having an action on R, and having an action 
on R is essentially the same as being left orderable. 

D E F I N IT I o N 2.1 . r is left orderabk if there is a left-invariant total order on r . 
More precisely, there is an order relation -< on F, such that 

1) -< is a total order (that is, for all a, b 6 r, either a ^< b or a > b, or a = b); 
and 
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2) -< is invariant under multiplication on the left (that is, for all a, b, c 6 r ,  
if a < b, then ca -< cb). 

EX E R C  I s E 2.2. Show r is left orderable if and only if there exists a subset P 
of r ,  such that 

1) r = P u {e}  u P"' (disjoint union), where P-' = { a-' 1 a E P }; and 
2) P is closed under multiplication (that is, ab e P, for all a, b P). 

Thus, being left orderable is a property of the internal algebraic structure 
o f r .  

[Hint: A subset P as above is the "positive cone" of an order -<. Given P,  define a -< b if 

b l a  6 P. Given -<, define P = { a  6 I? 1 a > e l . ]  

R E M A R K  2.3. The group r is said to be right orderable if there is a right- 
invariant total order on I?. The following exercise shows that the choice 
between "left orderable" and "right orderable" is entirely a matter of personal 
preference. 

EX E RCI  s E 2.4. Show that r is left orderable i fand only ijT is right orderable. 

[Hint: Define x -Ã y i f x l  -< y l .  Alternatively, the conclusion can be derived from 

Exercise 2.2 and its analogue for right-orderable groups. ] 

With this terminology, we can state the following algebraic conjecture, 
which will be seen to be equivalent to Conjecture 1.3. 

C O N J E C T U R E  2.5. Let r be a lattice i n  S L  ( n , R ) ,  with n 2 3. Then r is not left 
orderable. 

As a tool for showing that Conjecture 2.5 is equivalent to Conjecture 1.3, 
let us give a geometric interpretation of being left orderable. 

L E  M M A  2.6. A countable group r is le f t  orderable if and only if there is a n  
orientation-preserving, faithful action of F on K. 

Proof. (+) For a, b e I?, define 

a - < b  if a(O)<b(O). 
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It is easy to see that -< is transitive and antisymmetric, so it defines a partial 
order on r . 

For any c r ,  the function x i-r c(x )  is a strictly increasing function 
on R (because the action is orientation preserving). Hence, if a(0) < b(O), 
then c(a(0)) < c(b(0)). Therefore, -< is left-invariant (as required in Definition 
2.1(2)). 

However, the relation -< may not be a total order, because it could happen 
that a(0) = b(o), even though a # b. It is not difficult to modify the definition 
to deal with this technical point (see Exercise 2.7). 

(>) We leave this as an exercise for the reader.' D 

EX E R C I s E 2.7. Complete theproofofLemma 2.6(^=), by defining a left-invariant 
total order on . 

[Hint: Make a list q h q i , .  . . ofthe rational numbers and define a -< b if a(qn) < b(qn), 

where n is minimal with a(qn) # b(qn). ] 

P R O  POS ITI o N 2.8. Conjecture 1.3 and 2.5 are equivalent. 

Proof. We show there exists a counterexample to Conjecture 1.3 if and only if 
there exists a counterexample to Conjecture 2.5. 

( )  Suppose F is a counterexample to Conjecture 2.5, so F is left orderable. 
Then Lemma 2.6 tells us that F has a faithful action on R. This implies that r 
acts faithfully on the one-point compactification of R, which is homeomorphic 
to sl. So r is a counterexample to Conjecture 1.3. 

( )  Suppose F is a counterexample to Conjecture 1.3, so F has a faithful 
action on s l .  From the Ghys-Burger-Monod theorem (1.4), we know that the 
action has a finite orbit. Therefore, some subgroup rf  of finite index in r has 
a fixed point p. Then F f  acts faithfully on the complement s1 -\ {p}, which is 
homeomorphic to K. Let V" be the subgroup of I" consisting of the elements 
that act by orientation-preserving homeomorphisms (so Pf is either I?', or a 
subgroup of index 2 in r'). Then Lemma 2.6 tells us that F f f  is left orderable. 
Furthermore, F" is a lattice in SL (n, R) (because it has finite index in r ) .  
Therefore, r" is a counterexample to Conjecture 2.5. 0 

1. Hint: If the order relation (F, -< ) is dense (that is, if a -< b =+ 3c 6 F, a -< c -< b),  
then i t  is order-isomorphic to (Q, < ). The action of F on (F,< ) by left multiplication 

extends to a continuous action o f  r on the Dedekind completion, which is homeomorphic 

to R. 
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W A R N  I N G 2.9. The proof does not show that the assertions of the two con- 
jectures are equivalent for each individual lattice r. Rather, if one of the 
conjectures is valid for all lattices r, then the other conjecture is also valid 
for all r. More precisely, if one of the conjectures is valid for every finite-index 
subgroup of r, then the other conjecture is also valid for r. 

R E M A R K  2.1 0. In order to prove that Conjecture 2.5 implies Conjecture 1.3, 
we appealed to Theorem 1.4, which is quite deep. A stronger algebraic con- 
jecture (that no central extension of r is left orderable) can easily be shown to 
imply Conjecture 1.3: 

E X E R C I S E  2.11. A central extension of r is a group A, such that A / Z  2 F, 

for some subgroup Z of the center of A. Show that if F has an orientation- 
preserving, faithful action on sl, then some central extension of r is left 
orderable. 

[Hint: Because R is the universal cover of S1, every homeomorphism of  S1 lifts to a 

homeomorphism of  R, and the lift is unique modulo an element of the fundamental 

group Z. Let A be the subgroup o f  Homeo+ (R) consisting of all ofthe possible lifts of all 

of the elements o f  r, and show that A is a central extension that is left orderable. ] 

N OT E s F o R $2. The material in this section is well known. See [KM] for a 
treatment of the algebraic theory of left-ordered groups. Informative discus- 
sions of orderings, actions on the line, and related topics appear in [Gh3, $6.51 
and [Na2, 52.2.3-2.2.61. 

3. SL(n, Z) Has no Faithful Action on the Circle 

In this section, we prove Theorem 1.1 by exploiting the interaction between 
some obvious nilpotent subgroups of r. The crucial ingredients are Lemma 
3.6 and the fact that the theorem can be restated in the following algebraic 
form (cf. Proposition 2.8). 

TH EO R E M 3.1 . (W I TT E) IfT is a finite-index subgroup of SL (n,  Z), with n 3 3, 
then r is not le f t  orderable. 

R E M A R K  3.2. It is easy to see that the group SL (n,  Z) itselfis not left orderable, 
because it has elements of finite order. But there are subgroups of finite index 
that do not have any elements of finite order, and we will show that they, too, 
are not left orderable. 
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D E F I N I TI  o N 3.3. Suppose -< is a left-invariant order relation on r . For ele- 
ments a and b of r ,  we say a is infinitely smaller than b (denoted a << b) if 
either ak <; b for all k e Z or ak -< bpl for all k e Z.  Notice that the relation << 
is transitive. 

N OTATI o N 3.4. The commutator a ^  b l a b  of elements a and b of a group r 
is denoted [a, b]. It is straightforward to check that a commutes with b if and 
only if [a, b] = e (the identity element of T ) .  

L E M M A  3.5. Let a and b be elements of r. I f  [a, b] commutes with both a and b, 
then [bk, am] = [a, b]-^ for all k ,  m e Z. 

Proof. Exercise (or see [Gor, Lems. 2.2.2(i) and 2.2.4(iii), pp. 19-20]). 

L E M M A 3.6. (A u LT, R H E M T u L LA) Suppose a, b, z are nonidentity elements of 
a left-ordered group H, with [a, b] = zk for some nonzero k Z, and [a, z ]  = 

[b, z ]  = e. Then either z << a or z << b. 

Proof. Assume, for simplicity, that a,  b, z >_ e and k > 0. (All other cases can 
be reduced to this one by replacing some or all of a, b, z with their inverses, 
and/or interchanging a with b.) 

We may assume z a, so a -< zP for some p z+. Similarly, we may 
assume b -< zq for some q Z+. Then (using the left-invariance of -<) we have 

e -< a-lzp, e -< bK1zq, 

Hence, for all m e. l̂ , we have 

e -< (b-lz~)m(a-lzP)mbmam 

= b-"la-mbmamz(P+3)m 

= [bm, am]z@+q)m 

= z-km2z(P+q)m 

_ - z-km2+tp+q)m 

- - negative 

<; e. 

This is a contradiction. 

(z  commutes with a and b) 

( [a ,  b] = zk and see (lemma 3.5)) 

(if m is sufficiently large) 
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proof of Theorem 3.1. Suppose is left orderable. (This will lead to a contradic- 
tion.) Because subgroups of left-orderable groups are left orderable, we may 
assume n = 3; that is, r has finite index in SL (3,  Z). Hence, there is some 
k e Z+ such that the six matrices 

all belong to r. A straightforward check shows that [a;,a;+l] = e and 
ai+l] = (ai)^ for i = 1,. . . ,6, with subscripts read modulo 6. Thus, 

Lemma 3.6 asserts 

3.8 either a; << a;-1 or a; << 

In particular, we must have either a1 << a5 or a\ << 02 .  Assume for definite- 
ness that a1 << 0 2 .  (The other case is very similar.) For each i, Lemma 3.6 
implies that if a;-1 << a;, then a; << a;+l. Since a1 << 02, we conclude by 
induction that 

Thus a1 << 01, a contradiction. 

For the reader acquainted with root systems, let us give a more conceptual 
presentation of the proof of Theorem 3.1. 

Alternate Version of the  Proof a/Theorem 3.1. The root system of SL (3, Z) is of 
type A2, pictured in Figure 1. For i = 1,. . . , 6 ,  let Ui be the root space of F 

corresponding to the root a,. (Note that Ui % Z is cyclic. In the notation of the 
above proof, the element a; belongs to U;.) Define 

a; << a, if there exists u e q, such that Ui -< u 

(that is, v - -  u, for all v e U;). 
It is obvious, from Figure 1, that a,_\+ a;+! = a; ,  and that a;  + ai+l is not 

a root, so 

e # [Ui-1, Ui+ll c Ui and [Ui, Ui+l] = e. 



Fig. 1. The root system of SL (3, Z) (type A;). 

Hence, Lemma 3.6 implies that either a; << a;-1 or a; << ai+i. Arguing as in 
the above proof, we conclude that 

Thus a1 << ai,  a contradiction. 13 

N OTES FOR $3. Theorem 3.1 is due to D. Witte [Wit]. (An exposition of 
the proof also appears in [Gh3, thm. 7.21.) Lemma 3.6 is a special case of a 
theorem of J. C. Ault [Aid] and A. H. Rhemtulla [Rhe]: if A is any nontrivial, 
finitely generated, left-ordered nilpotent group, then there is some a 6 A, such 
that [A, A] -< a. 

An elementary proof that SL (n, 2) has no nontrivial actions on the circle 
can be found in [BV], but the argument uses the existence of elements of finite 
order, so it does not apply to finite-index subgroups of SL (n, 2). 

4. The Reeb-Thurston Stability Theorem 

The Ghys-Burger-Monod theorem (1.4) tells us that if r is a lattice in G = 
SL (3, R), then any action of r on s1 has a finite orbit; in other words, some 
finite-index subgroup r1 of r has a fixed point. In order to deduce Corollary 1.6 
from this it suffices to show that if the action is by (orientation-preserving) 
c1 diffeomorphisms, then r' acts trivially. This triviality of r" is immediate 
from the following result: 

P R O P O S I T I O N  4.1. (REEB-THURSTON STABIL ITY  THEOREM) Suppose 

A is afinitely generated subgroup of~i f f  1 (s'),  
A has a fixed point, and 
the abelianization A/[A, A] is finite. 

Then A = {e} is trivial. 



A differentiable action on S' that has a fixed point can be transformed into 
a differentiable action on the unit interval [O, 11 (cf. pf. of Proposition 2.8(+)). 

Thus, Proposition 4.1 can be reformulated as follows: 

PROPOSITION 4.1'. (REEB-THURSTON STABILITY THEOREM) Suppose 

I = [O, 11 is the unit interval, 
A is a finitely generated subgroup q f ~ i f f i  (I), and 
the abelianization A/[A, A] is finite. 

Then A = {e} is trivial. 

Proof in  a special case. Define a : A Ã‘ R'^ by a(X) = k'(0). From the Chain 
Rule, we see that a is a (multiplicative) homomorphism. Because A/[A, A] 
is finite and R+ is abelian, this implies that a(A) is finite. However, R+ 

has no nontrivial, finite subgroups, so this implies that o-(A) is trivial; 
therefore 

Y(0) = 1, for all i. e A. 

For simplicity, let us assume, henceforth, that each element of A is real 
analytic, rather than merely c'. (We remark that there is no need to assume 
A is finitely generated in the real-analytic case. The proof for c1 actions is 
similar, but requires some additional effort, and does use the hypothesis that 
A is finitely generated.) Thus; each element /̂ . of A can be expressed as a power 
series in a neighborhood of 0: 

(There is no constant term, because k(0) = 0; the coefficient of x is 1, because 
X'(0) = 1.) 

Now suppose A is nontrivial. (This will lead to a contradiction.) Then there 
exist n and A, such that 

We may assume n is minimal; hence 

HX\ = x + a*,,,xn + ai,,+1xn  ̂ + . . . for all i. A. 

Then, for i., y E A ,  we have 
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x + a;l y , n ~ n  + O(xn+') = (ky) (x )  

Thus the map r : A Ã‘Ã R, defined by r(A) = a;,,n, is an additive homomor- 
phism. Because A / [ A ,  A]  is finite, but R has no nontrivial finite subgroups, 
this implies that r (A)  is trivial; therefore = 0 for every A A. This 
contradicts Equation (4.2). 

R E M A R K  4.3 O N  T H E  G E N E R A L  CASE SupposeAisnontrivia1.Thenthere 
is no harm in assuming that A acts nontrivially on every neighborhood of 0. 

Hence, letting A. be a finite generating set for A, we may choose A0 e A0 and 
a sequence xn Ã‘Ã 04', such that, for all re, we have A o ( ~ n )  # xn and 

By passing to a subsequence of \Xn}, we may assume 

exists for all e AQ. Because V ( 0 )  = 1 and A is c', it can be shown that 
r ( ky )  = T ( A )  + r ( y ) .  Therefore T : A Ã‘> R is a (nontrivial) homomorphism. 
This is a contradiction. 

R E  M A R K  4.4. (z I M M E R) Here is the outline of a nice proof of Proposi- 
tion 4.1r, under the additional assumption that A has Kazhdan's property (T). 

1) It suffices to show that the fixed points of r form a dense subset of I; 
thus, we may assume that 0 and 1 are the only points that are fixed 
by r. 

2) We have yr(0) = 1 for all y F. 



3) Define a unitary representation of r on L ( I )  by 

4) For any y E V and any 8 > 0, iff is the characteristic function of a 
sufficiently small neighborhood of 0, then [[J^ - f\\ < 5 I1fII. Hence, this 
unitary representation has almost-invariant vectors. 

5) Because A has Kazhdan's property (T), this implies there are fixed 
vectors: there exists f E L2(I) \ {O}, such that f7 = f for all y e V. 

6)  Every point in the essential support off is a fixed point of r. 
7) This is a contradiction. 

N OT E s F o R $4. Proposition 4.1 was proved by W. Thurston [Thu] in a more 
general form that also applies to actions on manifolds of higher dimension. 
(It generalizes a theorem of G. Reeb.) 

See [RS] or [Sch] for details of the proof sketched in Remark 4.3. 
The proof outlined in Remark 4.4 is due to R. J. Zimmer; details appear in 

[WZ, $5, pp. 108-1091. 

5. Smooth Actions of Kazhdan Croups on the Circle 

In this section, we prove Theorem 1.7. First, let us recall one of the many 
equivalent definitions of Kazhdan's property (T). 

NOTATI o N 5.1 . For any real Hilbert space 'H. we use Isom ('H) to denote the 
isometry group of 'H. (We remark that each isometry of 'H is the composition 
of a translation with a norm-preserving linear transformation.) 

D E F I N ITI o N 5.2. We say that a discrete group r has Kazhdan's property ( T) 
if, for every homomorphism p: V -+ Isom ('H), where H is a real Hilbert 
space, there exists v E 'H, such that p(g)v = v, for every g E r. 

In short, to say that r has Kazhdan's property (T) means that every isomet- 
ric action of r on any Hilbert space has a fixed point. The importance of this 
notion for our purposes stems from the following result, whose proof we 
omit. 

TH EO R E M 5.3. (KAZ H DAN) Ifn 2 3, then every lattice in SL (n, R) has Kazh- 
dan's property (T). 



EX E R C I s E 5.4. Show that if r is an infinite group with Kazhdan's property (T), 
then F is not abelian. 

[Hint: Every group with Kazhdan's property (T) is finitely generated, and every finitely 

generated abelian group is either finite or has a quotient isomorphic to Z. ] 

We now turn to the proof of Theorem 1.7. To simplify notation, we may 
think of s1 as [-7712, n/2]. In particular, for any diffeomorphism of s1 and 
any x e sl ,  the derivative g'(x) is a well-defined real number. 

DEFINITION 5.5. 

Let 7 (S1 x S1) be the vector space of measurable functions on S1 x S1 
(with two functions being identified if they are equal almost everywhere). 
Define an action of  iff^ (S1) on F (S1 x sl) by 

for F F(S1 x s') andg e  iff^ (S1). 

Let ][Fl12 = (/,I ~ ( Ã §  y)" dÃ dy)lI2 be the L2-norm of F; note that 

\\Fl12 = 00 if F $ L ~ ( s ~  x S1). 

Note that 

Fgh = ( ~ g ) ~  and llFg[[2 = llFl12 for F e F(S' x S1) andg, h e  iff^ (S1). 

NOTATION 5.6. 

Choose a positive functionf on sl, such that 

-f has a 11% singularity at the point 0 of S1, and 
-f is Cm everywhere else; 

that is, identifying S1with [-TI/I, n/2],we have 

For example, one may takeffx) = [ cot x 1. 
Now define 

@(x,y) =f(x-y) on s1 x s l .  

Because of the 11% singularity off, it is easy to see that @ if. L2(S1 x S1). 

For any g   iff (S1), the following calculation shows that the singularity 
of tt̂  cancels the singularity of @. 
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L E M M A 5.8. The difference <E>g - <E> i s  a bounded function on s1 x sl, for any 
g e  iff^ (sl). 

Proof. From Equation (5.7), we see that there is no harm in working with 
the function Qo(x, y) = l/lx - yl, instead of Q. Also, in order to reduce the 
number of absolute-value signs, let us assume g' 2 0 everywhere. 

3t E (x, y), by 
Mean Value thm. 

iffeomorphism 
=+ g' is never 0 'Sd 

Now, we wish to show that the numerator is bounded by a constant multiple 
of the denominator. 

\g'(x)gl(y) - g'(tI2 I 

5 gl(x) Ig1(y) - gl(t) I + gl(t) \g' (x) - g'[t) \ (Triangle inequality) 

g' , g" continuous, 
so bounded 

We will also use the following classical fact: 



Fig. 2. A rectangle Rn (shaded) in s1 x s'. 

LE M M A  5.9. (H o LD E R ,  1901) Every nonabelian group of homeomorphisms 
ofsl contains at least one nonidentity element that has a fixed point. 

Proof of Theorem 1.7. Suppose F is a discrete group with Kazhdan's prop- 
erty (T), and we have a faithful c2 action of F on the circle s'. From Lemma 5.8, 
we see that 

5.10 (<& + L2(s' x sl))g = <& + L2(s1 x sl) for all g e  iff^ (sl). 
Thus, F acts (by isometrics) on the affine Hilbert space <I> + L2(S1 x S1). 
Because F has Kazhdan's property, we conclude that F has a fixed point F 
in <& + L2(S1 x sl):  

Fg = F for allg ? F. 

Because <& if. L~(S '  x sl) and F - <E> L2(s1 x s'), it is obvious that F $ 
L2(s1 x sl). 

Now, define a measure p on s1 x s1 by p. = F~ dx dy. Then 

1) p is a F-invariant measure on S1 x S1 (because F is F-invariant); and 
2) if R = (al, b l )  x (a2, b2) is a rectangle in s1 x sl ,  then, from the 1/x 

singularity of @ along the diagonal, we see that 

co if R intersects the diagonal; 

finite if R is away from the diagonal. 

For example, in Figure 2, the rectangle (a, b) x (b, c) has infinite measure 
because it touches the diagonal at (b, b), but the shaded rectangle Rk has 
finite measure, because it does not touch the diagonal. 

Because F is not abelian, Lemma 5.9 tells us we may choose g e F, such 
that g has a fixed point. Then, by passing to a triple cover of S1, we obtain an 
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action of (a finite extension of) in which g has at least three fixed points: 

g(a)=a ,  g(b)=b, g(c)=c. 

BY ~erhaps replacing a and b with different fixed points, we may assume, for 

x e (a, b), that 

For each k Z, define 

~k = (a,gk(x)) x (b, c) 

(see Figure 2). Then 

g(Rk) = Rk+l, 

Therefore 

However, the rectangle (a, b) x (b, c) touches the diagonal at the point (b, b), 
so it has infinite measure. This is a contradiction. 

R E M A R K  5 .I 1. In the proof of Theorem 1.7, the assumption that the elements 
of r are c2 was used only to establish Equation (5.10). For this, it is not 
necessary to show that $6 - <E> is bounded (as in Lemma 5.8), but only that 
W - <3E> L~(s '  x sl).  The calculations in the proof of Lemma 5.8 show that 
this holds under the weaker hypothesis that g e c ~ / ~ + ~ ,  for any > 0. In 
fact, A. Navas observed that by using recent results that group with Kazhdan's 
property (T) also have fixed points in certain V spaces with p # 2, it can be 
shown that c2 can be replaced with c3I2 in the statement ofTheorem 1.7. 
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This leads to the following well-known question: 

P R O B L E M  5.1 2. Can a n  infinite (discrete) group with Kazhdan's property (T) 
have a faithful c0 action on S' ? 

NOTES F O R  $5. Theorem 1.7 was first proved in [Nal], but the idea to use 
Lemma 5.8 came from earlier work of A. Pressley and G. Segal [PSI, and 
A. Reznikov [Rez, chap. 21. Proofs also appear in [BHV, $2.91 and [Na2, $5.21. 

The condition in Definition 5.2 was introduced by J.-P. Serre, and it is not 
at all obvious that it is equivalent to the original definition of property (T) 
that was given by D. Kazhdan. For a discussion of this, and much more, the 
standard reference on Kazhdan's property (T) is [BHV]. 

See [Gh3, thm. 6.101 or fNa2, $2.2.41 for a proof of Lemma 5.9. 
Implications of Kazhdan's property (T) for fixed points of actions on If 

spaces (and other Banach spaces) are discussed in [BFGM]. 

6. Ghys's Proof That Actions Have a Finite Orbit 

In this section, we present Ghys's proof of Theorem 1.4, modulo some facts 
that will be proved in Section 7. To get started, let us show that it suffices to 
find a r-invariant measure on the circle. 

D E F I N IT I o N 6.1 . A measure p on a measure space X is a probability measure 
if p(X) = 1. 

r is a discrete group, such that the abelianization T/[r, r ]  is finite, 
r acts on  s1 by orientation-preserving homeomorphisms, and 
there is a V-invariant probability measure p on s', 

then r has at least one finite orbit on  S1. 

Proof. We consider two cases. 

Case 1. Assume p has at least one atom p. Let 

be the orbit of p. Because p is r-invariant, we have p(gp) = p@). for every 
g e r . Therefore 

WP) = WP) ^@I. 
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Since p  is a probability measure, we know that p(Pp) < oo, so we conclude 
that r p  is a finite set. That is, the orbit of p is finite. 

Case 2. Assume p  has no atoms. To simplify the proof, let us assume that the 
support of p  is all of sl .  (In other words, every nonempty open subset of s1 
has positive measure.) For x ,  y  E s', define 

where [x ,  y ]  is a path from x  to y,  and, for a given x  and y ,  we choose the path 
[x ,  y ]  to minimize p ( [ x ,  y ] ) .  It is easy to see that d is a metric on sl .  Up to 
isometry, there is a unique metric on s l ,  so we may assume that d is the usual 
arc-length metric. 

Because p  is r-invariant, we know that d is r-invariant, so F acts by rota- 
tions of the circle. There is no harm in assuming that the action is faithful, so 
we conclude that r is abelian. But every abelian quotient of r is finite, so we 
conclude that r is finite. Hence, every orbit is finite. 

EX E RC I s E 6.4. Complete the proof of Lemma theorem 6.2, by eliminating 
the assumption that the support of p  is all of s1 in Case 2. 

[Hint: Modify the above proofto show that every orbit in the support of  p. is finite. ] 

To simplify the notation, we assume henceforth that n = 3. 

NOTATION 6.5. Let 

G = SL (3,R), 

r be a lattice in G, and 

* p = [ -  : 
We remark that P  is a minimal parabolic subgroup of G. 

Ghys's proof is based on the following key fact that will be established in 
$7A by using the fact that the group P  is "amenable" 

N OTATI o N 6.6. Prob (X) denotes the set of all Radon probability measures 
on X (where X is any compact, Hausdorff space). This is a closed, convex 
subset of the unit ball in C(X)*, with the weak* topology, so Prob (X) has a 
natural topology that makes it a compact Hausdorff space. 



PROPOSITION 6.7. (FURSTENBERG)  IfF actscontinuousty on any compact 
metric space X ,  then there is a F-equivariant, Borel measurable map iff : G/P Ã‘ 

Prob ( X ) .  

If iff were invariant, rather than equivariant, the following fundamental 
theorem would immediately imply that iff is constant (a.e.). (This theorem 
will be proved in <7B.) 

THEOREM 6.8. (MOORE ERGODICITY THEOREM) I f H  isany closed, non- 
compact subgroup ofG, then the action of F on G / H  is ergodic: by definition, this 
means that every V'-invariant, measurablejunction on G / H  is constant (a.e.;. 

The homogeneous space G/P plays a major role in Ghys's proof, because 
of its appearance in Proposition 6.7. We will now present a geometric inter- 
pretation of this space that is very helpful. 

Recall that a flag in IR3 consists of a pair (1, n) ,  where 

? is a 1-dimensional vector subspace of iR3 (a line), and 
n is a 2-dimensional vector subspace of R~ (a plane) that contains I. 

The group G = SL (3 ,  R) acts transitively on the set of flags, and P is the 
stabilizer of the standard flag 

Fo = (&,no), where lo = (*, 0,O) and no = (*, *, 0). 
Therefore: 

PRO POS ITI o N 6.9. G/P can be identified with the space F of allflags, by identi- 
jving gP with the flag gFo. 

Proof o f  Theorem 1.4. Suppose V' acts by homeomorphisms on the circle S1. 
From Proposition 6.7, we know there is a F-equivariant, measurable map 

iff : G / P  + Prob (S1). 

It will suffice to show that iff is constant (a.e.), for then 

the essential range of iff consists of a single point u. E Prob (S1), and 
the essential range of iff is F-invariant, because iff is F-equivariant. 

So /A is F-invariant, and then Lemma 6.2 implies F has a finite orbit on sl.  
There are two basic cases to consider: either the measure ifrix) consists 

entirely of atoms, or iff&) has no atoms. (Recall that an atom of a measure fi is 
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a point p, such that d p } )  # 0.) It is also possible that ^(x) consists partly of 
atoms, and partly of nonatoms, but Corollary 7.5 below tells us that we need 
only consider the two extreme cases. 

Case 1 .  Assume +(x) has no atoms, for a.e. x e G/P. 

Let Probo (sl) = { p E Prob (sl) 1 p has no atoms }. 
By assumption, we know iff : G/P Ã‘ Probe (s'), so we may define 

Then iff 2, like iff, is measurable and r-equivariant. 
Define d: (Probe (s'))~ -+ R by 

where] ranges over all intervals (that is, over all connected subsets of s l) .  
Since F acts by homeomorphisms, and any homeomorphism of s1 maps 
intervals to intervals, it is easy to see that d is F-invariant. 

We claim that 

6.10 d is continuous, 

with respect to the usual weak* topology that Probe (sl) inherits from being 
a subset of Prob (sl). To see this, we note that if p e Robo (sl) and 6 > 0, 
then, because p has no atoms, we may partition s1 into finitely many intervals 
Jl, . . . , Ik ,  such that ̂ (Ii) < :for all i. By approximating the characteristic func- 
tions of these intervals from above and below, we may construct continuous 
functionsfi, . . . ,Afe and some S > 0, such that, for v e Prob (sl), 

c 
if lv(fi) - p( f-)\ < 8 for every i, then v(h) - p(Ji) 1 < - for every i. 

n 

Then, for any intervalj in sl, we have lv(]) - p(J)i < 26, so d(v, p) < 2 ~ .  This 
completes the proof of (6.10). 

Because iff2 is measurable and d is continuous, we know that the com- 
position do @ is measurable. In addition, because iff is r-equivariant and 
d is r-invariant, we also know that d o iff1 is r-invariant. (Note: we are saying 
invariant, not just equivariant.) From the Moore ergodicity theorem (6 .9 ,  we 
know that r is ergodic on ( G / P ) ~  (see Corollary 7.6), so we conclude that d o iff2 
is constant (a.e.); say 

d(iff2(x, y ) )  = c, for a.e. x, y G/P. 
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We wish to show that c = 0,  for then it is dear that iff(x) = iff(y) for a.e. x, y e 

G/P, so iff is constant (a.e.). 
It is obvious that d(iff2(x, x)) = 0 for every x e G/P. If iff were constant 

everywhere, rather than merely almost everywhere, then it would follow imme- 
diately that c = 0. Unfortunately, the diagonal {(x, x)} is a set of measure 0 in 
( G / P ) ~ ,  so a little bit of additional argument is required. 

By Lusin's theorem, iff is continuous on a set K of positive measure. Since 
the composition of continuous functions is continuous, we conclude that d o 

ifr2 is continuous on K x K. So, by continuity, it is constant on all of K x K, 
not merely almost all. Since d(iff2(x, x)) = 0, this implies d(iff2(x, y)) = 0 for 
all x, y <= K. Since K is a set of positive measure, this implies c = 0, as desired. 

Case 2. Assume iff(x) consists entirely of atoms, for a.e. x G/P. To simplify the 
notation, without losing the main ideas, let us assume that iff(x) consists of a 
single atom, for every x E G/P, Thus, we may think of iff as a r-equivariant, 
measurable map 

i f f :  G/P + sl.  

Surprisingly, even with the simplifying assumption, the argument here seems 
to be more difficult than in Case 1. The idea is to obtain a contradiction from 
the r-equivariance of iff,  by contrasting two fundamental observations: 

Homeo+ (S1) is not triply transitive on s': if x, y, and z are distinct, 
then no orientation-preserving homeomorphism of s1 can map the triple 
( x ,  y,z) to (y, x, +they have opposite orientations under the circular 
order on sl. 
The action of GL (2, R) on the projective line R P ~  = R U {oo} by linear- 
fractional transformations 

ax+b 
g(x) = 3 if- [z] 

is triply transitive: if (xl, yl,zl) and (x2, y2. z2) are two ordered triples 
of distinct elements of K U {oo}, then there is some g e GL (2, R) with 

g(x1) = ~ 2 ,  g(yi) = y2, andg(z1) = 22. 

To illustrate, let us give an easy proof that is not quite correct; the actual 
proof is a modified version of this. Define 

i ff3:  ( G / P ) ~  -  ̂( s ' ) ~  by @(x,y,z) = (iff(%), iff@), iff(z)). 
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Then zfr3 is r-equivariant, so 

X+ = { (x, y, z) ( G / P ) ~  1 ($(x), $ (y ) ,  $(z)) is positively oriented I 

is a F-invariant, measurable subset of ( G / P ) ~ .  Let us assume that r is ergodic 
on (G/P)~ .  (Unfortunately, this assumption is false, so it is where the proof 
breaks down.) e hen X+ must be (almost) all of (G /P)~ ;  thus, ($(x), $(y), $(z)) 
is positively oriented, for (almost) every x, y, z G G/P. But this is nonsense: 
either ($ (x), $ (y), $ (2)) or ($ (y), $ (x), $ (2)) is negatively oriented, so there 
are many negatively oriented triples. 

To salvage the above faulty proof, we replace ( G / P ) ~  with a subset X, on 
which r does act ergodically. Let 

X = { ( ~ 1 . ~ 2 . x 3 )  E (G/P13 xiQ = x ~ Q = x ~ Q ,  
xi, x2, x3 distinct 1 

Note that X is a submanifold of (G /P)~ .  (If this is not obvious, it follows from 
the fact, proven below, that X is a single G-orbit in (G/P)~. )  

Assume, for the moment, that r is ergodic on X (with respect to any (hence, 
every) Lebesgue measure on the manifold X). Then the above proof, with X in 
the place of (G /P)~ ,  implies that 

is a set of measure 0. Then it is not difficult to see that $ is constant on X (a.e.). 
Hence $ is right Q-invariant (a.e.): for each q G Q, we have $(xqP) = $(xP) 
for a.e. x G G/P. 

By a similar argument, we see that i}r is right Q'-invariant (a.e.), where 

Because Q and Q', taken together, generate all of G, it then follows that $ is 
right G-invariant (a.e.). Hence, $ is constant (a.e.), as desired. 

All that remains is to show that r is ergodic on X. By the Moore ergodicity 
theorem (6.8), we need only show that 

1) G is transitive on X, and 
2) the stabilizer of some element of X is not compact. 
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These facts are perhaps easiest to establish from a geometric perspective. 
The (parabolic) subgroup Q is the stabilizer of the plane TCQ = (*, *, 0). 

Hence, QFo is the set of all flags (Â£ IT) with 7r = no. Therefore, under the 
identification of G/P with F, we have 

1) Let us show that G is transitive on X. Given 

it suffices to show that there exists g E G, such that 

6.12 ~ ( ( ~ I , J T ) .  ( Â £ 2  ~ t ) .  ( Â £ 3  JT}) = ((l;. ITf). ( i i ,  JT'), (Â£3 ITf)). 

Because G is transitive on the set of 2-dimensional subspaces, we may assume 

IT = 7 1  = 73-0 = JR2. 

Then, because GL (2, R) is triply transitive on RP', there exists T e GL (2,R), 
such that 

Letting 

O O m  

yields Equation (6.12). 
2) Let us show that the stabilizer of some element of X is not compact. Let 

A =  
0 0 1/a2 

Then A is a closed, noncompact subgroup of G. Furthermore, every element 
of A acts as a scalar on no, so every element of A fixes every 1-dimensional 
vector subspace of no. Thus, if 

((^, IT), (Â£2 IT), (^, r ) )  e X 

with IT = 710, then A is contained in the stabilizer of this element of X, so the 
stabilizer is not compact. 



N O T E S  F O R  $6. Ghys's proof first appeared in [Gh2]. See [Gh3,57.3] for an 
exposition. 

7. Additional Ingredients of Ghys's Proof 

7A. Amenability and an Equivariant Map 

A group is amenable if its action on every compact, convex set has a fixed 
point. More precisely: 

D E F I N I T  I o N 7.1 . A Lie group G is amenable if, for every continuous action 
of G by linear operators on a locally convex topological vector space V ,  and 
every nonempty, compact, convex G-invariant subset C of V ,  the group G has 
a fixed point in C. 

1) If T is any continuous linear operator on v and v is any element of v such 
that {Tnv} is bounded, then every accumulation point of the sequence 

is a fixed point for T .  This implies that cyclic groups are amenable. 
2)A generalization of this argument shows that all abelian groups are 

amenable; this statement is a version of the classical Kakutani-Markov 
fixed-point theorem. 

3) It is not difficult to see that if N is a normal subgroup of G such that N 
and GIN are both amenable, then G is amenable. 

4) Combining the preceding two observations implies that solvable groups 
are amenable. 

5) In particular, the group P of Notation 6.5 is amenable. 

Proof of Proposition 6.7. Since Prob (X) is a compact, convex set, a version of 
the Banach-Alaoglu theorem tells us that Lw(G; Prob (X)) is compact and 
convex in a natural weak* topology. Let 

LP(G; Prob (X)) = { + ? Lm(G; Prob (X)) 1 + is F-equivariant (a.e.) } . 

This is a dosed subset of Lm(G; Prob (X)), so it is compact. It is also convex 
and nonempty. To say + is r-equivariant (a.e.) means, for each y e r, that 
+(yx) = y . +(x) for a.e. x <= G; so G acts on LF(G; Prob (X)) by translation 
on the right. Hence, the subgroup P acts on LP(G; Prob (X)). 
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Since P is amenable (see Example 7.2(5)), it must have a fixed point @o 
in the compact, convex set LF(G; Prob (X)). Then $0 is invariant (a.e.) under 
translation on the right by elements of P, so it factors through (a.e.) to a well- 
definedmap @ : G/ P Ã Prob (X). Because $0 is r-equivariant, it is immediate 
that @ is r-equivariant. 

78. Moore Ergodicity Theorem 

We will obtain the Moore ergodicity theorem (6.8) as an easy consequence of 
the following result in representation theory: 

G = SL(n,I), 
TI is a unitary representation of G on a Hilbert space T-L, such that no non- 
zero vector is fixed by TI (G); and 
{g} is a sequence of elements of G, such that llg,ll Ã‘> ca, 

Proof. By passing to a subsequence, we may assume TI (6) converges weakly 
to some operator E; that is, 

:TI(@)^> I @) -+ (E0 I @) forevery 0, @ 

We wish to show ker E = T-L. 
Let 

U = { U E G I ~ , U ~ : ~ + ~ }  

and 

For u E U, we have 
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so Ez(u) = E. Therefore, letting T-lu be the space of U-invariant vectors in T-l, 
we have 

(T-l ")' c ker E. 

We have 

so the same argument, with E* in the place of E and g r l  in the place of 6 ,  
J 

shows that 

(H^ )' c ker E* 

Assume, for simplicity, that each g, is a positive-definite diagonal matrix: 

(It is not difficult to eliminate this hypothesis, by using the Cartan decomposi- 
tion G = KAK, but that is not necessary for Ghys's proof.) Then the subgroup 
generated by {n(g,)} is commutative. Because n is unitary, this means that 
n (gj) commutes with both n(gk) and n(gk)* = 7r (gil) for every j and k. There- 
fore, the limit E commutes with its adjoint (that is, E is normal): we have 
E*E = EE*. Hence 

so ker E = ker E*. 
Thus, 

ker E = ker E + ker E* 

By passing to a subsequence, and then permuting the basis vectors of IR3, 
we may assume 

aj ^ bj ^ cj. 



Since ~ ~ g j ~ ~  Ã‘> oo, we have 

lim max 
j ~ ~ 3 0  

For definiteness, let us assume 

lim sup - < 00 

j-co bj 

so 

4 and lim - = oo, 
j+m Cj  

(Other cases are similar.) Then it is easy to see that ( U, U )  = G, which means 
x(u?u-} = ̂ G^Q , so 

as desired. D 

Proof of Theorem 6.8. Suppose there is a F-invariant, measurable function on 
G/H that is not constant (a.e.). Then: 

3 measurable function on r \G /H that is not constant (a.e.), 

so 3 measurable function on H\G/ F that is not constant (a.e.), 

so 3 H-invariant, measurable functionf on G/ F that is not constant (a.e.). 

There is no harm in assuming thatf is bounded. Since F is a lattice in G, 
we know G/ F has finite measure, so this implies f e I^(G/ q. Letting JC 

be the natural unitary representation of G on L ~ ( G /  r), we know that J is , 

JC (H)-invariant. 
Let L ~ ( G /  T)o be the orthogonal complement of the constant functions. 

Sincef is nonconstant, its projectionf in J i 2 ( ~ /  I')o is nonzero. By norrnal- 
izing, we may assume 11/11 = 1. Since the orthogonal projection commutes 
with every unitary operator that preserves the space of constant functions, we 
know thatf, like f ,  is z(H)-invariant. So 

( z ( h j I f ] / ) = ( f \ f } = l ,  foral lkjeH. 

On the other hand, since H is closed and noncompact, we may choose a 
sequence {h,} ofelements of H, such that llhjj[ -+ oo. Then, since no nonzero 
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vector in L ~ ( G /  r)o is fixed by n(G), Theorem 7.3 tells us that 

This is a contradiction. 

R E  M A R K  7.4. The assumption that His not compact is necessary in the Moore 
ergodicity theorem (6.8): it is not difficult to see that if H is a compact subgroup 
of G = SL (3, R) and r is any lattice in G, then r is not ergodic on G/H. 

co R o L LA R Y  7.5. In the situation of Proposition 6.7, one may assume that either: 

for a.e. x G/P, the measure $o(x) has no atoms, or 
for a.e. x E G/P, the measure qo(x) consists entirely of atoms. 

Proof. For each x e G/P, write ffr (x) = $noatom(x)+ +atom (x), where $noatom (x) 
has no atoms, and   atom(^) consists entirely of atoms. Since boatom 
and $atom(x) are uniquely determined by $, it is not difficult to see that they, 
like ffr, are measurable and r-equivariant. One or the other must be nonzero 
on a set of positive measure, and then the ergodicity of T on G/P implies that 
this function is nonzero almost everywhere, so it can be normalized to define 
a (r-equivariant, measurable) map into Prob (sl). 0 

COROLLARY 7.6. In the situation of Notation 6.5, F is ergodic on (G/P)~ .  

Proof. Two flags FI = (el, $1) and F2 = (&, x2) are in general position if!.^ $ x2 
and if, $ 7t\. It is not difficult to see that G is transitive on the set F$ of pairs 
of flags in general position, and that the complement of J"$ has measure 0 

in 9. Therefore, ( G / P ) ~  may be identified (a.e.) with G/H, where H is the 
stabilizer of some pair of flags in general position; we may take 

Since H is not compact, the Moore Ergodicity theorem (6.8) tells us that r is 
ergodic on G/ H = (G/P)~ .  0 

NOTES FOR 57. Proposition 6.7 is due to Furstenberg [Fur]. It is a basic 
result in the theory of lattices, so proofs can be found in numerous references, 
including [Gh3, prop. 7.111 and [Zi2, prop. 4.3.9, p. 811. 
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The monograph [Pie] is a standard reference on amenability. See [Zi2, $4.11 
for a brief treatment. 

Theorem 6.8 is due to C. C. Moore [Moo]. The stronger Theorem 7.3 is due 
to R. Howe and C. C. Moore [HM, thrn. 5.11 and (independently) R. J. Zimmer 
[Zil, Thm. 5.21. The elementary proof we give here was found by R. Ellis and 
M. Nerurkar [EN]. 

8. Bounded Cohomology and the Burger-Monod Proof 

8A. Bounded Cohomology and Actions on the Circle 

Suppose a discrete group r acts by orientation-preserving homeomorphisms 
on 5' = R/Z. Since R is the universal cover of s', each element y of I' can 
be lifted to a homeomorphism 7 of EX. The lift 7 is not unique, but it is well 
defined if we require that 7(0) [O, 1). 

DEFINITION 8.1. For yl, y2 E r, the homeomorphisms yT2 and%% are 
lifts of the same element yl y2 of r, so there exists z = z(y1, y2) e Z, such 
that 

The map z: r x F -> Z is called the Euler cocycle of the action of r on s'. 

It is easy to see that 

z is a bounded function (in fact, z(F x c {O, I}), and 

z(Yi7 Y2) +z(Y1~2, Y3) = z(y1, ~ 2 ~ 3 )  + 2:(n, y3), so z is an Eilenberg- 
MacLane 2-cocyle. 

Therefore, the Euler cocycle determines a bounded cohomology class: 

1) A bounded k-cochain is a bounded function c :  rk -+ Z. 

2)The bounded cochains form a chain complex with respect to the 
differential 

defined by 



The cohomology of this complex is the bounded cohomology of r. 
3) The Euler class of the action of T is the cohomology class [z] a?, Z) 

determined by the Euler cocycle. 

R E  M A R K 8.3. The Euler cocycle z depends on the choice of the covering map 
from R to s l ,  but it is not difficult to see that the Euler class [z] is well defined. 
Indeed, it is an invariant of the (orientation-preserving) homeomorphism class 
of the action. 

The connection with Theorem 1.4 is provided by the following fundamental 
observation: 

P R O  POS [TI o N 8.4. (G H Y S) The action o f  r on s1 has afixedpoint i fand only 
if its Euler class is 0 i n  H2,̂ ; Z). 

Proof. (4 We may assume the fixed point is the image of 0 under the cover- 
ing map R Ã‘> sl.  Then y(0) = 0 for every y r, so it is clear that z(yi, y2) 
= 0 for all yl and y2. 

( )  Assume z = &(p, where (p : F Ã‘> Z is bounded. Ifwe set 'y = f - (p(y), 
then the map y Ã‘ y" is a homomorphism; F is a lift of r to a group of 
homeomorphisms of R. 

: Since 3 0 )  [o, I), and (p is bounded, it is clear that the F-orbit of 0 is 
bounded. Since the orbit is obviously a F-invariant set, its supremum is 
also r-invariant; in other words, the supremum is a fixed point for F in R. 1 The image of this fixed point under the covering map is a fixed point for F 

1 ins1. 13 

The definition of Htdd(c  Z) can be generalized to allow any coefficient 
module in the place of Z. For real coefficients, we have the following important 
fact: 

co R O  L L A R Y  8.5. JfHtdd(!'; R) = 0 and the abelianization of r is finite, then 
every action of r on s1 has a finite orbit. 



Proof. The short exact sequence 

of coefficient groups leads to a long exact sequence of bounded cohomology 
groups. A part of this sequence is 

ffidd(r; ~ 1 2 )  -  ̂$dd(r; 2) -" "Ld(c R). 

The right end of this sequence is 0 by assumption. If we assume, for sim- 
plicity, that the abelianization of F is trivial (rather than merely finite), then 
the left end is also 0. Hence, the middle term must be 0. Then Proposi- 
tion 8.4 implies that every (orientation-preserving) action of F on S' has a fc-ed 
point. 

Without the simplifying assumption, one can obtain the weaker conclusion 
that the commutator subgroup [F, F] has a fixed point. Since, by hypothesis, 
r / [ r ,  F] is finite, this implies that the action of F has a finite orbit. U 

We now need two observations: 

1) Forgetting that a bounded k-cocycle is bounded yields a natural map from 
bounded cohomology to ordinary cohomology: 

: ~br; R) -+ Hk(r; R). 

2) The cohomology of lattices in SL (n, R) has been studied extensively; in 
particular, it is known that 

8.7 ff2(F; R) = 0 if T is any lattice in SL (n, R), with n 2 6. 

Therefore, under the assumption that n 2 6, the conclusion of Theorem 1.4 
can be obtained by combining Corollary 8.5 with the following result. 

THEOREM 8.8. (BURGER-MONOD) I f  risanylatticeinSL(n,R),withn :> 3, 

then the comparison map in Equation (8.6) is injectivefor k = 2. 

COROLLARY 8.9. (BURGER-MONOD) If F is any lattice in SL(n,R), with 
n > 3, then Hidd(F; R) = 0. 

R E M A R K  8.10. See Remark 10.7 (3) for a brief mention of how to obtain 
Theorem 1.4 from Theorem 8.8, without needing to know that H~(F;!) 
vanishes. 



85. Outline of the Burger-Monod Proof of Injectivity 

M. Burger and N. Monod developed an extensive and powerful theory for the 
study of bounded cohomology, but we will discuss only the parts that are used 
in the proof of Theorem8.8, and even these will only be sketched. 

A S  s u M PT I o N 8.1 1 . In the remainder of this section: 

G =  SL(n,R),withn> 3,and 
r is a lattice in G. 

To avoid a serious technical complication, we will assume that G/ r is compact. 

Outline of the Proof of Theorem 8.8. We employ relations between the coho- 
mology of r and the cohomology of G. (The bounded cohomology of G is 
introduced in Definition 8.16 below. When working with G, we always use 
continuous cochains.) 

We will see that there is a natural map ibdd: H : ~ ~ ( ~ ; R )  -+ H : ~ ~  

(G; L ~ ( G /  r )) .  
It is a classical fact that if G/ r is compact, then there is a natural map 
i: ~ ~ ( r ;  R) + H ~ ( G ;  L ~ ( G /  r )) .  
We have comparison maps zp and TG from bounded cohomology to 
ordinary cohomology. 

Letting k = 2 yields the following commutative diagram: 

5bdd ~&&m) - ̂(G; L ~ ( G /  r ) )  

Ĝ 

i 
H~ (r; R) Ã‘Ã‘ H~ (G; ' L ~ ( G /  r ) )  

I 

We will show that iMd and TG are both injective (see Corollary 8.17 and The- 
1 

orem 8.18). The commutativity of the diagram then implies that ~r is also 
I 

injective. 

[ 

1 I N J  ECT I v I TY o F ibdd Cohomology, whether bounded or not, can be described 
i 

either in terms of inhomogeneous cocycles, or in terms of homogeneous co- 
cycles. The Elder cocycle arose in Definition 8.1 as an inhomogeneous cocycle, 
but the injectivity of im is easier to explain in homogeneous terms. The 
following definition is written with real coefficients, because we no longer 
have any need for Z-coefficients in our discussion. 



1) A homogeneous bounded k-cochain on r is a bounded function i : rk+l + 
K, such that 

for all y ,  YO, yl,  . . . , yk F. 
2)  The homogeneous bounded cochains form a chain complex with respect 

to the differential 

defined by 

k+1 
8i(yo, y i ,  . . . , y , ~ )  = ( - . . ,Ei,. . . , yk+i), 

i=O 

where 2 denotes that y; is omitted. 

For any bounded k-cochain c, there is a corresponding homogeneous bounded 
k-cochain i, defined by 

Thus, the cohomology ofthe complex {&(r; R)} is the bounded cohomology 
o f r .  

1) P is the group of upper-triangular matrices in G = SL (n, R) (cf. Nota- 
tion 6.5). 

2) ZL$((G/P)~;  K/ is the vector space of allf ? L ~ ( ( G / P ) ~ ;  R), such that 

a) f is alternating; that is, 

for every permutation o- of { I ,  2,3}, 
b) f is r-invariant; that is, for every y e r we have 

for a.e. x i ,  XT., x3, and 
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c)  f is a cocycle; that is, for a.e. XQ, XI, x2, x3, we have 

R E M A R K  8.1 4. If r were ergodic on ( G / P ) ~ ,  then the following theorem 
would immediately imply that ~&, ( r ;  R) = 0. This is because any r-invariant 
function on ( G / P ) ~  would have to be constant, so could not be alternating 
(unless it were identically 0). 

THEOREM 8.15. (BURGER-MONOD) H , & ( ~ ; Y  Z L ~ G / P ) ~ ; @ .  

Proof. For each homogeneous bounded k-cocycle i : rk+l + R, we will show 
how to construct a corresponding 2 Z ~ $ ( ( G / P ) ~ + ~ ; R ) ~ .  The map i I+ 2 
intertwines the differentials, so it induces a map from J-^i.i(r;R) to the 
cohomology of the chain complex 

and, although we will not prove it, this map is an isomorphism on cohomology. 
Since r is ergodic on ( G / P ) ~  (see Corollary 7.6), every F-invariant func- 

tion on ( G / P ) ~  is constant, so 0 is the only such function that is alternating. 
Hence, there are no coboundaries in Z L ~ ( ( G / P ) ~ ;  R ) ~ .  This establishes the 
conclusion of the theorem.., 

To complete the proof, we now describe the construction of 2. For simpli- 
city, let us assume k = 2, so i : r3 -+ R is a homogeneous bounded 2-cocycle. 
Also assume that i has been normalized (by subtracting a constant) so that 
L(e, e, e) = 0. Then, by making use of the cocycle identity 

one can show that L? is alternating. Therefore, i can be extended to 

by choosing a fundamental domain F for r in G and making 2 constant on 

YIJP" x Y ~ F  x ysJP", for all yl, y2, y3 e r. 
Now, because P is amenable (see Example 7.2(5)), there is a left-invariant 

mean u, on Lm(P). Using p to average on each left coset of P yields a map 
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Then a map 

7z3:  L^(G3) + Lm((G/p)- ' )  

can be constructed by, roughly speaking, setting 7z3 = J J L  eg) J J L  <S P. Let 2 = 

-3 p (c) - L ~ ( ( G / P ) ~ ; R ) .  

DEFINITION 8.16. 

1)The  notion of a homogeneous bounded k-cochain on G is defined by 
replacing F with G in Definition 8.12 and requiring i to be continuous. 

2) The cohomology of the complex CL (G; R )  is Hbdd (G; R ) ,  the (continuous) 

bounded cohomology of G. 

COROLLARY 8.17. (BURGER-MONOD)  Thereisanaturalinjection 

Proof. For any i E Z L ~ ( ( G / P ) ~ ;  R)' and x e (G /P)3 ,  we can define 

The map x t+ Cx is G-equivariant, so it is an element of Z L ~ ( ( G / P ) ~ ;  L2(G/ r))G. 
Therefore, we have an injection 

Theorem 8.15 identifies the domain of this injection with Hbdd(r;  R), and the 
same argument identifies the target with Hbdd(G; L2(G/ r)). 

THEOREM 8.18. (BURGER-MONOD) Thecomparison map 

TG : H ~ G ;  L ~ ( G /  r ) )  + H ~ ( G ;  L ~ ( G /  r ) )  

is injective. 

I N j ECTI v ITY o F TG. The Hilbert space L2(G/ r )  decomposes as the direct 
sum of the constant functions C and the space L ~ G /  r )  of functions with 
integral 0. The theorem is proved for the two summands individually (see 
Proposition 8.19 and Theorem 8.21). In both cases, we will argue with 
inhomogeneous cochains. 



PROPOSITION 8.19. Thecomparisonmap 

is injective. 

Proof. Let c be an inhomogeneous cocycle that represents a class in the kernel 
of the comparison map. This implies that 

c :  G x G Ã‘ C is a bounded, continuous function; and 
there a a continuous function p : G ~r C, such that 5p = c. 

It suffices to show p is bounded, for then c is the coboundary of a bounded 
cochain (namely, p), so [c] = 0 in bounded cohomology. 

Note that, for all g, h e G, we have 

Now assume, for concreteness, that G = SL (3, R), and let 

We will show that p is bounded on U12 ,  and a similar argument shows that 
p is bounded on each ofthe other elementary unipotent subgroups Uii. Then 
the desired conclusion that q is bounded on all of G is obtained by combining 
these bounds with Equation (8.20) and the elementary observation that for 
some N N, there exist i l ,  . . . , I N  and j l ,  . . . , j N ,  such that 

To complete the proof, we now show that q is bounded on U I z .  To see this, 
note that for 

we have 

lim a k u a k  = e for all u e Ui2 .  
k+m 
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Therefore, for u Ui2 and k N, repeated application of Equation (8.20) 
yields 

TH EO R E M 8.21 . (B u RG E R- M o N o D )  The comparison map 

is injective. 

Proof. Let c be an inhomogeneous cocycle that represents a class in the kernel 
of the comparison map, so c = 89 for some continuous q~ : G -+ L ~ ( G /  r). It 
suffices to show that (p is bounded. 

Note that, letting it be the representation of G on F), we have, for all 

g,h e G, 

8-22 11 <p(gh) - ~ ( g )  - ~ ( g )  (p[h)\ = l&'(g7 h)l = Ic(g, h) 11 5 llclloo~ 

Let us assume G = SL (5, R). (The same argument works for all n > 5, but 
some modifications are needed when n is small.) Much as in the proof of 
Proposition 8.19, it suffices to show that (p is bounded on 

Let 
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For all u e UlP2 and h H, we have 

5 2~~cl~o0. (by Equation (8.22)) 

Hence, for any functionf on H whose integral is 1, we have 

To complete the proof, we need to make a good choice of the functionf. 
There are no G-invariant vectors in Lo(G/ r), so the Moore ergodicity theorem 
(6.8) implies there are no H-invariant vectors (see the proof on page 184). Since 
H = SL (3, R) has Kazhdan's property (T), we conclude that H has no almost- 
invariant vectors. Hence, it is not difficult to see that there is a continuous 
function f on H, such that 

f has compact support, 
JH f d p ~  = 1 (where p ~  is the Haar measure on H), and 

lln(f)ll < 1. 

Then Id -n(f) is invertible, so Equation (8.23) implies 11 q(u) 11 is bounded 

(independent of a), as desired. 

NOTES F O R  $8. See fMo21 for a recent introduction to bounded cohomol- 
ogy. Although our presentation of bounded cohomology takes a very naive 
approach, the work of Ghys and Burger-Monod is much more functorial. 

Proposition 8.4 is due to fi. Ghys [Ghl]. In fact, he proved that the Euler 
class determines the action up to semiconjugacy. 

The Burger-Monod theory ofbounded cohomology (including theorems 8.8 
and 1.4) was developed in [BMl, BM2]. An exposition appears in [Moll. The 
improvement mentioned in Remark 8.10 appears in the paper of M. Burger 
[Bur] in this volume. 

The cohomology vanishing result in Equation (8.7) is a special case of [Bo2, 
thm. 4.4(ii)]. 
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9. Nonorderability from Bounded Orbits and Bounded Generation I 
Recall that Theorem 1.1 can be stated in any one of the following three 
equivalent forms (cf. Proposition 2.8 and Lemma 2.6): 1 

1) If n 2 3, then no finite-index subgroup of SL (n, 2) has a faithful action 
on 5'. 

2) If n > 3, then no finite-index subgroup of SL (n, 2) has an orientation- 
preserving faithful action on R. 

3) If n 2 3, then no finite-index subgroup of SL (n, Z) is left orderable. 

A short, elementary proof of this theorem was given in Section 3, but we I 

will now describe a different approach that has the potential to work in a more 
general situation. It has two main ingredients: 

bounded orbits of unipotent elementary matrices (Proposition 9.2), and 
bounded generation by unipotent elementary matrices (Theorem 9.5). 

To keep things simple, let us assume n = 3. 

D E F I N I T  I o N 9.1 . A matrix u in SL (3, R) is a unipotent elementary matrix if 

U I J  = u.22 = u 3 , ~  = 1 (i.e., u has all 1's on the main diagonal), and 
u has only one nonzero entry off the main diagonal. 

(In other words, a unipotent elementary matrix is one ofthe matrices 01,  . . . , a6 
of Equation (3.7), for some k 6 R.) 

P R O  POS I T I  o N 9.2. Suppose a finite-index subgoup Y o f  S L  (3, Z) has an 
orientation-preserving faithful action on I .  

Ifu is any unipotent elementary matrix in r, then the u-orbit of each point in R 
is a bounded set. 

Proof. It suffices to show that the u-orbit of 0 is bounded above. 
Define a left-invariant total order -< on F, as in Lemma 2.6(<=), so 

By permuting the standard basis vectors, we may assume 
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Then Lemma 3.6 implies there is some a F, such that u << a (see Equa- 
tion (3.8) with i = 2); that is, uk -< a for all k E Z. From the definition of -<, 

this means that 

d ( 0 )  < a(0) for all k <= Z. 

So the u-orbit of 0 is bounded above (by a(0)). a 

It is a standard fact of undergraduate linear algebra that any invertible 
matrix is a product of elementary matrices. (This is a restatement of the fact 

that every invertible matrix can be reduced to the identity by elementary row 
operations.) Furthermore, it is not difficult to see that if the invertible matrix 
has determinant 1, then: 

the elementary matrices can be assumed to be unipotent, and 
there is a bound on the number of elementary matrices that is needed. 

E X E  R C I  s E 9.3. Show that every matrix in SL (3, R) is a product of < 10 

unipotent elementary matrices. 

It is a much deeper fact that the boundedness remains true when the field R 

is replaced with the ring Z: 

T H E O R E M  9.4. (CARTER-KELLER)  Every element of SL(3,Z) is aproduct of 
< 50 unipotent elementary matrices in SL (3, Z). 

There is also a bound for any finite-index subgroup r, but the bound may 
depend on F, and the unipotent elementary matrices may not generate quite 
all o f r :  

T H E O R E M  9.5. ( C A R T E R - K E L L E R - P A I G E )  If F is a finite-index subgroup o f  
SL (3, Z), then there is a number N, and a finite-index subgroup r' of F, such that 
every element of r1 is a product o f  < N unipotent elementary matrices in F1. 

Combining Proposition 9.2 and Theorem 9.5 yields the following conclu- 
sion: 

I C O R O L L A R Y  9.6. If F is a finite-index subgroup of SL (3,Z), then every 
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Proof: It suffices to show that the orbit r . 0 is bounded above, for then the 
supremum of this orbit is a fixed point. 

For simplicity, let us ignore the difference between F' and F inTheorem 9.5, 

so there is a sequence gl, gz, . . . , g~ of unipotent elementary matrices in F, 
such that 

r = ( g ~ )  . . . (g2) (g1). 

We will show, for k = 1,2,. . . , M, that 

((gk) . . (g2) (g*)) .0 is bounded above. 

To this end, let x be the supremum of ((gfe-1) . . - (gz) (g~) )  .0, and assume, 
by induction, that x < oo. Then x e R, so Proposition 9.2 tells us that (gk) . x 

is bounded above by some y e R. Then all of ((a,) . . . (g2) (gl)) 0 is bounded 
above by y ,  as desired. 

Proof of Theorem 1.1 .  Suppose r has a nontrivial, orientation-preserving action 
on R. The set of fixed points is closed, so its complement is a disjoint union 
of open intervals; let I be one of those intervals. 

Note that the interval I is r-invariant (because the endpoints I are fixed 
points), so F acts on I (by orientation-preserving horneomorphisms). Then, 
since the open interval I is homeomorphic to R, Corollary 9.6 tells us that F 
has a fixed point in I .  This contradicts the fact that, by definition, I is contained 
in the complement of the fixed point set. 

R E M A R K  9.7. It is hoped that the approach described in this section will 
(soon?) yield a proof of Conjecture 1.3 in the case where the lattice F is not 
cocompact. 

More precisely, let r be a lattice in G = SL (3, R), such that G/ F is not 
compact, and suppose we have an orientation-preserving action of F on R. 
Then: 

1) A matrix u in SL (3, R) is unipotent if it is conjugate to an element of 

2) Proposition 9.2 can be generalized to show that if u is any unipotent 
matrix in F, then the u-orbit of each point in R is a bounded set. 
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3) It is well known that some finite-index subgroup F' of is generated 
by unipotent matrices, and it is conjectured that Theorem 9.5 general- 
izes: every element of r' should be the product of a bounded number of 
unipotent matrices in F'. 

If the conjecture in (3) can be proved, then the above argument shows that r 
has no nontrivial, orientation-preserving action on R. 

NOTE s FO R $9. This combination of bounded orbits and bounded gen- 
eration was used in [LMl, LM2] to prove that some lattices cannot act 
on l. 

Theorem 9.4 is due to D. Carter and G. Keller [CKl]; an elementary proof 
is given in [CK2]. Theorem 9.5 is due to D. Carter, G. Keller, and E. Paige 
[CKP, Mor]. 

See the remarks leading up to theorem 10.5 for more discussion along the 
lines of Remark 9.7. 

10. Complements 

10A. Actions of Lattices in Other Semisimple Lie Croups 

Conjecture 1.3 refers only to lattices in SL ( n ,  R). We can replace SL ( n ,  R) 
with any other (connected, linear) simple Lie group G whose real rank is at 
least 2, but some care is needed in stating a precise conjecture for groups that 
are semisimple, rather than simple. First of all, it should be assumed that the 
lattice F is irreducible (i.e., that no finite-index subgroup of F is a direct product 
Fl x F2 of two infinite subgroups). But additional care is needed if SL (2, R) 
is one of the simple factors of G: 

E X A M P L E  10.1. LetG = SL(2,R) x SL(2,R),soGisasemisimpleLiegroup, 
and R-rank G 2 2. Since SL (2, R) acts on R U {co} Z S1 (by linear-fractional 
transformations), the group G also acts on S1, via projection to the first factor. 
It is then easy to see that any lattice F in G has an action on S1 (by linear- 
fractional transformations) in which every orbit is infinite. Furthermore, the 
action is faithful if r is torsion free and irreducible. 

co N J E CTU R E  10.2. Let r be a n  irreducible lattice i n  a connected, semisimple 
Lie group G with finite center, such that R-rank G ;> 2. Then 

1) r has no nontrivial, orientation-preserving action on  R; and 
2) F is not left orderable. 
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Furthermore, if no simple factor o f G  is locally isomorphic to SL (2, R), then 

3) F has no faithful action on s l ,  and 
4) whenever F acts on sl,  every orbit is finite. 

R E  M A R K 1 0.3. The conjecture has been verified in some cases: 

1) Theorem 1.1 verifies the conjecture in the special case where F is a finite- 
index subgroup of SL ( n ,  Z), with n > 3. Avery similar argument applies 
when F is a finite-index subgroup of Sp ( I n ,  Z), with n > 2. 

2) From the examples in (I), it follows that the conclusions of the conjecture 
hold whenever Q-rank r > 2. 

3) L. Lifschitz and D. W Morris verified the conjecture in the special case 
where 

a) some simple factor of G is locally isomorphic to either SL (2, R) or 
SL (2, C), and 

b) G/ r is not compact. 

It seems likely that the method of Section 9 will be able to prove the following 
cases of the conjecture: 

CON J ECTU R E  10.4. I f  F is any noncocompact lattice i n  either SL (3, R) or 
SL (3, C), then F has no nontrivial, orientation-preserving action on R. 

If so, then we would have a proof of all of the noncocompact cases: 

THEOREM 10.5. (CHERNOUSOV-LIFSCHITZ-MORRIS) AssumeConjecture10.4 
is true. I f G  and r are as in  Conjecture 10.2 and G /  F is not compact, then the 
conclusions of Conjecture 10.2 are true. 

Other evidence for Conjecture 10.2 is provided by the Ghys-Burger-Monod 
theorem (1.4), which remains valid in this setting: 

THEOREM 10.6. (GHYS, BURGER-MONOD) I f G  and F are as i n  Conjec- 
ture 10.2, and no simplefactor o f G  is locally isomorphic to SL (2, R), then 

1) Every action of r on s1 has at least one finite orbit. 
2) F has nofaithjul c1 action on the circle sl.  
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1)The lattices that appear in Conjecture 10.2 are examples of arithmetic 
groups, and the conjecture could be extended to the class of S-arithmetic 
groups. The Ghys-Burger-Monod theorem has been generalized to this 
setting [WZ, Cor. 6.111, and the appropriate analogue of Conjecture 10.2 
has been proved in the special case of S-arithmetic groups that are neither 
arithmetic nor cocompact [LMl]. 

2) The Burger-Monod proof of Theorem 10.6 applies to some cases where 
r is a lattice in a product group G = GI x G2 that is not assumed to be a 
Lie group. A generalization of this result on lattices in products has been 
proved by U. Bader, A. Furman, and A. Shaker [BFS]. 

3)The Burger-Monod injectivity theorem (cf. 8.8) does not immediately 
imply the conclusion of Theorem 10.6 in cases where H2(r;R) # 0. 
However, elsewhere in this volume, M. Burger [Bur] uses the injectiv- 
ity to obtain a general theorem that includes both Theorem 8.8 and the 
results on lattices in products mentioned in the preceding paragraph. 
The rough idea is that if we have a r-action on sl,  such that the real 
Euler class of the action is in the image of H~,,(G; R), then a certain 
quotient of the r-action must extend to a nontrivial, continuous action 
of G on the circle. 

R E M A R K  10.8. Our discussion deals only with actions of lattices on the 1- 

dimensional manifolds s1 and R, but it is conjectured that large lattices also 
have no faithful actions on manifolds ofother small dimensions. (For example, 
if n > m + 2, then no lattice in SL (n, R) should have a faithful Cm action on 
any compact m-manifold.) Some discussion of this can be found in D. Fisher's 
survey paper [Fis] in this volume, or in Robert J. Zimmer's CBMS lectures 

IZML 

NOTES FOR $lOA. A weaker version of Conjecture 10.2 was suggested by 
D.Witte in 1990 (unpublished), but the definitive statement that deals 
correctly with SL (2, R) factors is due to fi. Ghys [Gh2, p. 2001. 

Parts (1) and (2) of Remark 10.3 are due to D. Witte [Wit]. See [LMl] or 
[LM2] for Part (3). 

Theorem 10.5 is implicit in [LM2, $81. The proof depends crucially on the 
main result of [CLM]. 

Theorem 10.6 is due to E. Ghys [Gh2] and (in slightly less general- 
ity) M. Burger and N. Monod [BMl, BM21. Ghys's proof takes a geometric 
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approach that relies on a case-by-case analysis of the possible Lie groups G; a 
modified (more algebraic) version of the proof that eliminates the case-by-case 
analysis was found by D. Witte and R. J. Zimmer [WZ]. 

10B. Some Lattices That Do Act on the Circle 

The following two conjectures suggest that the conclusions of Conjecture 10.2 
fail for lattices in SO (1, n). Thus, the assumption that R-rank G 2 2 cannot be 
omitted, although it may be possible to weaken it. 

CONJECTURE 10.9. (w. THURSTON) I f  V is any lattice in SO (l,n),  then 
there is 

a finite-index subgroup V' of V, and 
a surjective homomorphism i f )  : I" + Z. 

Because Z obviously has a Cm action on the circle with no finite orbits, this 
implies the following conjecture: 

co N J ECTU R E  10.1 0. I f  F is any lattice in SO (1, n), then some finite-index 
subgroup of r has a Cm action on S1  that has no finite orbits. 

These conjectures have been proved almost completely, under the addi- 
tional assumption that r is arithmetic. 

THEOREM 10.11. (LI,  M ILLSON,  RACHUNATHAN,  V E N K A T A R A M A N A )  Sup- 
pose V is a lattice in SO (1, n). If 

r is arithmetic, and 

n $ {l ,  3,71, 

then the conclusions of Conjectures 10.9 and 10.10 hold. 

R E M A R K  10.12. 

1)There exist lattices in SO (1,3) that act faithfully on S1. (In fact, any 
torsion-free, cocompact lattice in SO (1,3) with infinite abelianization 
is left orderable.) It would be very interesting to know whether there 
exist such lattices in SO (1, n) for n > 4, or in other groups of real rank 1. 

2) The conclusions of Conjectures 10.9 and 10.10 hold for the nonarithme- 
tic lattices constructed by M. Gromov and I. Piatetski-ShapirofGP]. Thus, 
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a counterexample to these conjectures would have to be constructed by 
some other method. 

R E M A  R K 10.1 3. Generalizing Example 10.1, it is clear that if T is a torsion- 
free, irreducible lattice in G and G has a simple factor that is locally isomorphic 
to SL (2, R), then T has a faithful action on S' by linear-fractional transforma- 
tions. Conversely, under the additional assumption that R-rank G >, 2, Fk Ghys 
[Gh2, thm. 1.21 proved that every action of T on s1 either has a finite orbit or 
is semiconjugate to such an action by linear-fractional transformations. 

NOTES FOR $10B. Conjecture 10.9 is attributed to W. Thurston (see [Bol, 

P. 881). 
Theorem 10.11 combines work of several authors [Mil, Li, LiM, RV]. See 

[Rag] for a survey. 
See [Gh3, '$7.41 for a discussion of some lattices in SO (1,3) that act on the 

circle. The general fact stated in Remark 10.12(1) is a theorem of S. Boyer, 
D. Rolfsen, and B. Wiest [BRW]. 

Remark 10.12(2) is due to A. Lubotzky [Lub]. 

TOC. Actions on Trees 

The real line and the circle are the only connected 1-manifolds, but there are 
many other 1-dimensional simplicial complexes. For short, a contractible, 1- 

dimensional simplicial complex is called a tree, and focusing our attention on 
the groups that act on trees leads to an interesting theory (the Bass-Serre theory 
of group actions on trees). 

R E M A R K 1 0.1 4. Suppose, as usual, that T is a lattice in a (connected, linear) 
semisimple Lie group G. Then it is easy to construct a faithful action of T on 
some tree, even if we assume that the tree is locally finite. To do this, 

1) Let r = No 3 Nl 3 . . . be a chain of finite-index, normal subgroups 
of T ,  such that ("I,, Nk = {e}. 

2) Let the 0-skeleton To be the disjoint union of all T I N k .  

3) Let the 1-skeleton TI  have a 1-simplex (or "edge") joining y Nk and yNk+', 

forevery y E r and k = 0,1,. . .. 

Then T has a natural action on To by left translations, and this extends to an 
action on T (by isometrics). 



The following theorem states that under mild hypotheses, every action of 
r on a tree has a finite orbit. This can be thought of as an analogue of 
Theorem 1.4 for actions on trees. 

r is as in Conjecture 10.2, or r has Kazhdan's property (T), 
T is a tree that is not homeomorphic to R, and 
r acts on T by homeomorphisms, 

then r has at least one finite orbit on T. 

1) More precisely, the finite orbit in the conclusion of Theorem 10.15 can 
be taken to consist of either a single vertex or two vertices of the tree. 

2) In the Bass-Serre theory, it is usually assumed that the action is by 
isometrics. In this case: 

a) there is no need to assume that T is not homeomorphic to R, and 
b) the finite orbit can be taken to be a fixed point (and this fixed point 

is either a vertex or the midpoint of some edge). 

R E M A R  K 10.1 7. A fundamental conclusion of the Bass-Serre theory is that 
there is a finite orbit in every action of a countable group A on every tree 
(except possibly R) if and only if 

1) A is finitely generated, 
2) A/[A, A] is finite, and 
3) A cannot be written in any nontrivial way as a free product with 

amalgamation A *c B. 

In the situation of Theorem 10.15, it is well known that F is finitely generated, 
and that r/[r, r] is finite. Thus, in algebraic terms, Theorem 10.15 is the 
assertion that r is not a free product with amalgamation. 

NOTES FOR $1 OC. J.-P. Serre's elegant book [Se2] is the standard introduction 
to the Bass-Serre theory of actions on trees. 

In the special case where r = SL (3, Z), Theorem 10.15 is due to J.-P. Serre 
[Sell. (See [Se2, thm. 16, p. 671 for an exposition.) The generalization to other 
lattices of higher rank is due to G. A. Margulis [Mal, thm. 21. The case of 
groups with Kazhdan's property (T) is due to R. Alperin [Alp] and Y. Watatani 



pat ] ,  independently. (Proofs can also be found in [BHV, p.31 and [Ma2, 
thm. 3.3.9 and 13.3.10].) 

See [Se2, thm. 15, p. 581 for a proof of Remark 10.17. 
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