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Abstract. For i = 1,2, let Fi be a lattice in a simply connected, solvable Lie group Gi, and let 
Xi be a connected Lie subgroup of G,. The double cosets FgXi  provide a foliation F, of the 
homogeneous space Fi\Gi. Let f be a continuous map from Fl\Gl to r2\Gi whose restriction 
to each leaf of F\ is a covering map onto a leaf of F2 .  If we assume that T\ has a dense leaf, 
and make certain technical assumptions on the lattices Fl and F2, then we show that f must be 
a composition of maps of two basic types: a homeomorphism of Fl \GI that takes each leaf of 
f i  to itself, and a map that results from twisting an affine map by a homomorphism into a 
compact group. We also prove a similar result for many cases where GI and G2 are neither 
solvable nor semisimple. 
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1. Introduction 

Let Fl be a lattice in a simply connected, solvable Lie group GI.  Any connected Lie 
subgroup Xi of GI acts by translations on the homogeneous space r 1 \ G l ;  the orbits 
of this action are the leaves of a foliation F\ of r 1 \ G I .  We call this the foliation of 
r l \ G 1  by cosets of XI.  Now suppose Ty, is a lattice in some other simply connected, ' solvable Lie group G2, and that X2 is a connected Lie subgroup of G2, with corres- 
ponding foliation 3 2  of r2\G2. It is natural to ask whether fi is topologically 
equivalent to fi, or, more generally, whether there is a continuous map f from 
r l \ G l  to r2 \G2  whose restriction to each leaf of 3 1  is a covering map onto a leaf 
of 3 2 .  If so, it is of interest to know all the possible maps/. 

Under the assumption that some leaf of F\ is dense, and technical assumptions on 
the lattices Fl and T2, we show that every possiblefis a composition of maps of the 
basic types described in Example 1.1 below. (Remarks 2.1 and 2.2 show that there 
are always finite covers of r l \ G l  and r2\G2 that satisfy the technical assumptions 
on the lattices.) The reader may note that the composition of maps of the types 
described in 1.1B and 1.1C is an affine map; the composition of types 1.1B and 
l.lCf is a doubly crossed affine map (cf. [9, Definition. 7.31). 
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EXAMPLE 1.1. 

(A) If 3 1  = 32, let f be a homeomorphism of Tl\Gl that maps each leaf of 3 1  to 
itself. 

(B) If r l \ G l  = r2\G2, and X1 = r1X2r is conjugate to Xi, let f be a translation: 
f (rig) = r1gr-l. 

(C) If there is a continuous group homomorphism k:Gl Ã‘ G2 such that 
k(Tl) c r 2 ,  and the restriction k\v of k to XI is an homeomorphism onto , 
XT, let/: Fl\Gl Ã‘ r2\G2 be the map induced by k: /(Fig) = Tik(g). 

(C1) A map/: r'i \GI Ã‘ r2\G2 of type C can usually be modified as follows. Embed 
G2 as a closed subgroup of some solvable Lie group G\. For i = 1,2, let Ti be a 
compact, abelian subgroup of G\, and let Oi: Gl Ã‘> Ti be a homomorphism, 
such that &(Ti) = e. Define 4: GI Ã‘ G\ by 4(g) = k(g) . &(g) . S2(g). Under 
appropriate hypotheses (see 2.3), <^(XI) is a subgroup of G\ (even though #J 

is usually not a group homomorphism), and the restriction of 4 to each coset 
of XI is a homeomorphism onto a coset of <^(Xi). 

Let G\ be any connected Lie subgroup of G; that contains <^(GI), and let F\ 
be a lattice in G'-,. Then the cosets of the subgroup +(Xi) provide a foliation 3; 
of Ti\Gi. Assume r2 c r;, so 4 induces a well-defined map f2: Tl\Gl Ã‘ F>G'-, 
defined by fy,(rlg) = Q ( g ) .  The restriction o f h  to each leaf of 31 is a covering 
map onto a leaf of e. 

One could add more homomorphisms 03, SA, etc., but Theorem 1.4 shows 
that this is not necessary. 

(C") Instead of assuming that (>,(I-) = e, the construction described in C1 can still be 
carried out if we make the weaker assumption that Sl(y)(52(y) = e, for all y e F. 

The precise statement of our result requires the definition of the almost-Zariski 
closure of a subgroup. 

DEFINITION 1.2 ([9, Definition 3.21). A subgroup A of GLn(R) is almost Zariski 
closed if there is a Zariski closed subgroup B of GLn(R), such that BO c A c B, 
where BO is the identity component of B in the topology of GLn(R) as a C* mani- 
fold (not the Zariski topology). There is little difference between being Zariski closed 
and almost Zariski closed, because BO always has finite index in B. 

DEFINITION 1.3 ([9, Definition 3.61). Let A be a subgroup of GLn(R). The almost- 
Zariski closure 2 of A is the unique smallest almost-Zariski closed subgroup that 
contains A. In particular, if A is a subgroup of a Lie group G, we use AdoA to 
denote the almost-Zariski closure of AdoA in GL(Q), where Q is the Lie algebra of G. 

MAIN THEOREM 1.4. Let Xl and X2 be connected Lie subgroups of simply con- 
nected, solvable Lie groups G1 and G2, respectively. For i = 1,2, let T, be a lattice in -- 
G,. Assume that Adol Fl = Ad GI, and that Adg, I" is connected, for every subgroup J? 
of Y2. Assume, furthermore, that the foliation of rl \GI by cosets of Xi has a dense leaf. 
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Let f be a continuous map from r l \Gl  to T2\G2, such that the restriction o f f  to 
each leaf of the foliation of Fl  \GI by cosets of XI is a covering map onto a leaf of the 
foliation of F2\G2 by cosets of X2. Then there exists 

- a map a: Fl\Gl + Fl\Gl of type 1.1A; 
- a map b:Yi\G2 + h \G2  of type 1.15; and 
- a map c: F1\Gl + r2\G2 of type l.lC1', 

such that f ( h g )  = b(c(a(rg))), for all g e GI. 
In the definition of c, we may take G], as defined in Definition 1.5. W e  may take TI to 

be the elliptic part of k(X1) and let T2 be an appropriately chosen elliptic part of r 1  x2r, 
where k is the homomorphism used in the construction of c, and r is the element of G2 
used in the construction of b. 

DEFINITION 1.5 (cf. Proposition 2.4). Let G be a simply connected, solvable Lie 
group, and let To be a maximal compact torus of Ad. Define G~ = G TG. 

For any connected Lie subgroup X of G ~ ,  there is a compact, Abelian subgroup Tx 
of G ~ ,  such that AdGTx is a maximal compact torus of AdG X. The subgroup TX is 
the elliptic part of X; it is unique up to conjugation by an element of X. 

The nonellipticpart of X is the unique simply connected Lie subgroup Y of G~ such 
that XTx = YTx and AdG Y has no nontrivial compact subgroup. 

The theorem was proved by D. Benardete [l, Theorem A(b)] in the special case 
where XI and Xi are one-dimensional, the map f is a homeomorphism, and the 
almost-Zariski closures Ad Gl and Ad G2 have no nontrivial compact subgroups. 
(However, he proved only that some foliation-preserving homeomorphism is a com- 
position of the standard types, not that all are.) D. Witte [7, Theorem 5.11 removed 
the dimension restriction on the subgroups X1 and Xi, and replaced it with the 
weaker hypothesis that they are unimodular. We use the same methods as Benardete 
and Witte. The map <5* does not appear in the conclusions of [I] and [7], because TI 
and T2 must be trivial if Ad G2 has no compact subgroups. 

If the foliation of rl \GI is not assumed to have a dense leaf, then it is not possible 
to obtain such a precise global conclusion about the form off However, the proof 
shows that there is a homomorphism k: GI Ã‘ G[ with k(I'1) c F2, such that k(X1) 
and r 1 x 2 r  have the same nonelliptic part, for some r e G2. 

D. Benardete and S. G. Dani [2] recently provided families of examples G, F, and --  
XI, such that Ado F # Ad G, yet, if the foliation of FAGi by cosets of X1 is topo- 
logically equivalent to the foliation of r l \ G l  by cosets of X2, then X1 is conjugate 
to X2. The foliations are topologically equivalent to linear foliations of ordinary tori 
(by applying Remark 2.2), but not via affine maps. 

The previous work of D. Benardete [l] and D. Witte [7] requires GI and G2 to be 
either solvable or semisimple. This is because the proofs rely on the Mostow Rigidity 
Theorem, which, until recently, was only known in these cases. Now that results 
of this type have been generalized to other groups 19, 5 91, the proof can be 
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generalized. Therefore, in the final section of this paper, we sketch an application of 
Benardete's method to many groups that are neither solvable nor semisimple. 
However, unlike our work in the solvable case, our results in this general setting 
are not at all definitive, because we impose severe restrictions on the subgroups XI 
and X2. (However, the restrictions are automatically satisfied if XI and X2 are 
one-dimensional.) We have not attempted to push these methods to their limit, 
because it seems clear that new ideas will be needed to settle the general case. 

2. Preliminaries 

2.1. TECHNICAL ASSUMPTIONS ON THE LATTICES 

The following remarks show that the assumptions on the lattices F i  and F2 in the 
statement of Theorem 1.4 can be satisfied by passing to finite covers of r l \ G l  
and r2\G2. Therefore, modulo finite covers, the theorem describes the foliation- 
preserving maps for the natural foliations of all solvmanifolds. 

Remark 2.1. The assumption in Theorem 1.4 that AdG, T' is connected, for every 
subgroup r' of F2, can always be satisfied by replacing F2 with a finite-index sub- 
group (cf. [5, Theorem 6.1 1, p. 93]), or, in other words, by passing to a finite cover of 
r2\G2. (This may also require TI to be replaced by a finite-index subgroup, so that 
the map f is still well-defined.) However, the proof of the theorem does not require 
the full strength of even this mild assumption. Rather, there is one particular sub- 
group T' whose almost-Zariski closure needs to be connected; see the first paragraph 
of the proof of the theorem. In particular, iff is a homeomorphism, then we need 
only assume AdGT2 is connected. 

-- 
Remark 2.2. The assumption in Theorem 1.4 that AdG, Fl = Ad GI is restrictive, 

but it does not limit the applicability of the result very severely, because the theorem 
applies to a certain natural finite cover F\G of Ti \GI, which we now describe. (Note, 
however, that the covering map is usually not affine; G is not isomorphic to GI.) 
Because XI has a dense orbit on Tl\Gl, it is easy to see that AdG, XI contains a 
compact torus T of Ad GI, such that AdG T\ T = Ad GI. Therefore, the nilshadow 
construction (cf. [9, Proposition 8.21) yields a simply connected, normal subgroup G 
of GI T, such that 

- G contains a finite-index subgroup T of Y\, --  
- AdG r = Ad G and 
- GT = GIT. 

Define A: GI Ã‘> G by A(g) e gT. Then A is a homeomorphism, and A(yg) = yA(g), 
for all y l- and g G. Therefore, A '  induces a finite-to-one covering map A*: 
r \ G  -+ \GI. Furthermore, because Tnormalizes Xi, we see that, letting X = A(Xi), 
we have A M i )  = A(g)X, so X is a subgroup of G, and A* maps each leaf of the 
foliation of r \ G  by cosets of X to a leaf of the foliation of Fl \GI by cosets of XI. 
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2.2. HYPOTHESES NEEDED FOR EXAMPLES OF TYPE l.l(C1') 

The following lemma describes some simple hypotheses that guarantee the condi- 
tions needed for the construction of examples of type 1. l (C1)  or 1.1 (C"). 

L E M M A  2.3. For i = 1,2,  let Gi be a simply connected, solvable Lie group, let Ti be a 
compact, Abelian subgroup of G\, and let 8,: GI  + Ti be a continuous group homo- 
morphism. Let k :  GI  + G; be a continuous group homomorphism, and let X I  be a 
connected closed subgroup of G I ,  such that k \ y  is a homeomorphism onto k(X1). Define 
0,: GI  Ã‘> G\ by 

^ 1 ( g ) = k ( g ) - ~ 1 ( g )  and ^ ( g ) = k ( g ) . 5 , ( g ) - W -  

If 
[ ~ ( G I ) ,  T i ]  c k(ker 81 n ker &) 

and 
 XI), T I ]  c k(X1 n ker 81 n ker &), 

then (^ l (Gl )  and o1 ( X i )  are subgroups of G;, and the restriction of c/)-, to each left coset 
of X1 is a homeomorphism onto a left coset of + , (XI ) .  I f ,  furthermore, 

T2  normalizes d 1 ( X 1 ) ,  

then <f)2(X1) is a subgroup, and the restriction of d)2 to each left coset of Xl is a homeo- 
morphism onto a left coset of &(XI) .  

Proof. We give here only the last part of the proof, showing that the restriction of 
4'2 to each coset of XI  is a homeomorphism onto a coset of 4'2(X1), because the rest is 
very similar. Given g e GI  and x X i ,  we have 
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Therefore (l)^(x\)Â¤^(xi = 4)1(x'̂ )S2(x'y). Because is a homeomorphism onto 
&(Xi), we know that <^l(Xl) is simply connected, so it has no nontrivial compact 
subgroups (see Lemma 2.11). Thus, (Xi) f l  T2 = e, so because (l)^~')Â¤~(x\ = (f>^ (x'y) 
d2(x'y), we conclude that 4)1(x\) = <^l(x'y), so XI = x'y. In particular, we have 
di(xl) = &(xi) = ai(x;) = di(x2) for i = 1,2, so the equation ^(gxl) = 4)2(gx2) 
immediately implies k(xl) = k(x2). Therefore xl = x2. 

The restriction of k to XI is proper (since it is a homeomorphism onto its image), so 
the restriction of to gXl is proper. From the preceding paragraph, we know that 
it is also injective. Therefore, it is a homeomorphism onto its image (see Lemma 2.16). 

2.3. ELLIPTIC AND NONELLIPTIC PARTS OF A SUBGROUP 

The following proposition justifies the assertions in Definition 1.5, and establishes 
some basic facts that will often be used without specific reference. 

PROPOSITION 2.4. Let G be a simply connected, solvable Lie group, let TG be a 
maximal compact torus of AdG, define G~ = G x To, and let X be a connected Lie 
subgroup of GT. Then 

(1) [GT, GT1 = [G, GI, 
(2) Z(G)  has no nontrivial, compact subgroups, 
(3) there is a compact, Abelian subgroup Tx of G ~ ,  unique up to conjugation by an 

element of X, such that AdGTx is a maximal compact torus of AdGX, 
(4) there is a unique closed, simply connected subgroup Y of G^ such that XTx = YTx 

and AdG Y has no nontrivial compact subgroup, 
(5) we have [XTx, XTx] c xn Y,  
(6) TX n Y = e, and 
(7) Y is normal in XTx. 

Proof. Lemma 2.12 asserts that [ G ~ ,  GT] = [G, GI. 
Every compact subgroup of G~ is conjugate to a subgroup of TG (see 2.13). Since 

To is a subgroup of Aut G, we know that no nontrivial element of TG centralizes G. 
Therefore z(G~) has no nontrivial, compact subgroups. - 

All maximal compact tori of Ad G are conjugate under Ad G (e.g., see [8, Coro- 
llary 4.22]), so, replacing TG by a conjugate, we may assume TG contains a maximal 
compact torus S of AdG X. Then the desired subgroup Tx is simply S, thought of as a 
subgroup of TG c GT. The uniqueness follows from the fact that all maximal com- 
pact tori of AdG A are conjugate under AdA (e.g., see [8, Corollary 4.221). 

Assume, as in the preceding paragraph, that To contains Tx. There is a natural 
- - 

projection from AdG to TG, given by the splitting Ad G = (A x To) U ,  where A is 
a maximal R-split torus and U is the unipotent radical. Let a': G~ Ã‘> TG be the 
composite homomorphism 

projection - TG 
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and define A: GT Ã‘> GT by A(g) = ga(g), so A is a nilshadow map [9, Definition 4.11. 
Then A(GT) is a subgroup of A(GT) [9, Corollary 4.81. Since A is obviously a proper 
map, we know that A(G) is closed. Since Tx c TG, we have a(X) c Tv, so A(X) is a 
subgroup of A(G) [9, Corollary 4.91 and, obviously, ATx = A(X)Tx. By construction, 
A ~ G  A(GT) has no nontrivial compact subgroup [9, Proposition 4.101. Since z(GT) has 
no nontrivial, compact subgroups, this implies that A(G') has no nontrivial, compact 
subgroups, which means that A ( G ~ )  is simply connected (see Lemma 2.11). Therefore, 
we may let Y = A(X) (see Lemma 2.9). If Y' is any nonelliptic part of X, then, because 
AdG Y' has no nontrivial compact subgroup, the subgroup Y' must be contained in 
the kernel of a.  This kernel is precisely A(GT), so it is not difficult to see that Y' = Y. 

The definition of the nilshadow map A immediately implies X n  ker a c A(X). 
Since TG is Abelian, ker a must contain [GT, GT]. Therefore X r\ [GT, GT] c Y .  Then, 
because Lemma 2.12 implies [XTx, XTX] = [X, XI c X, we have [XTx, XTx] c 
xn [ G ~ ,  GT] c x n  Y .  

Being simply connected, Y has no nontrivial, compact subgroups (see Lemma 2.1 I), 
so Txfl Y = e .  

Since [ Y ,  XTx] c [XTx, XTx] c X C\ Y c Y ,  we see that Y is normal in XTx. 

2.4. NONDIVERGENT SUBGROUPS 

DEFINITION 2.5 ([7,Â 41). Let X and Y be subsets of a Lie group G. We say that 
X does not diverge from Y if there is a compact subset K of G with X c YK. If X does 
not diverge from Y, and Y does not diverge from X, then we may say that X and Y do 
not diverge from each other. 

For the special case where the subgroup Y is unimodular, the following 
proposition was proved by D. Witte [7, Cors. 4.10 and 4.111. 

PROPOSITION 2.6. Let X and Y be connected Lie subgroups of a simply connected - 
solvable Lie group G, and assume that Ad G has no nontrivial compact subgroups. If X 
does not diverge from Y, then X c Y. 

Proof. Each element of [G, GI acts unipotently, hence unimodularly, on each 
" subspace of Q that it normalizes, so [G, GI n Y c ker Ay, where Ay is the modular 

function of Y. Hence, Ay extends to a continuous homomorphism A: G Ã‘ R̂ . 
Define a semidirect product G K R, by letting each g e G act on R via multiplication 
by l/A(g), so YK R is a unimodular subgroup of G K  R. Since X does not diverge 
from Y in G, we see that X does not diverge from Yx R in G R, so the proof of 
[7, Corollary 4.111 shows that X c Y x R. (Although the statement of the corollary 
assumes both X and Yare unimodular, the proof only requires this assumption for 
Y.) Hence, X c ( Y  K R) ("I G = Y ,  as desired. 

COROLLARY 2.7. Let G be a simply connected, solvable Lie group, and let X and Y 
be connected Lie subgroups of GT. I f X  does not diverge from Y, then the nonelliptic 
part of  X is contained in the nonelliptic part of Y .  
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Proof. Letting XI, Yl and GI be the nonelliptic parts of X, Y, and G, respectively, 
it is easy to see that XI does not diverge from Yl in GI. Therefore, Proposition 2.6 
implies XI c Yl, as desired. 

EXAMPLE 2.8. Let G = %(2)ixIX2, where %(2) is the universal cover of 
S0(2), and let X be a subgroup of G that is conjugate to g ( 2 ) .  Then X does not 
diverge from %(2) in G~ R x (SO(2) x R ~ ) ,  but X need not be contained in 
%(2), so we see that the conclusion of the corollary cannot be strengthened to 
say that X c Y. 

2.5. MISCELLANEOUS FACTS 

For ease of reference, we record some basic results on solvable groups. 

LEMMA 2.9 ([3, Theorem XII.2.2, p. 1371). Every connected subgroup of a simply 
connected, solvable Lie group G is closed and simply connected. 

LEMMA 2.10 ([9, Lemma 2.171). Let N be a closed subgroup of a connected, solvable 
Lie group G. Then G/N is simply connected i f  and only i f  N is connected and contains 
a maximal compact subgroup of G. 

LEMMA 2.11 ([9, Corollary 2.181). A connected, solvable Lie group is simply 
connected if and only i f  it has no nontrivial compact subgroups. 

LEMMA 2.12 (cf. [9, Lemma 3.241). If G is a connected, solvable Lie group, and 
- 

T is an Abelian subgroup of Ad G, then [G x T, G xi TI = [G, GI x e. 

PROPOSITION 2.13 ([3, Theorem XV.3.1, pp. 180-18 11). Every compact subgroup 
of a connected Lie group G is contained in a maximal compact subgroup, and all 
maximal compact subgroups of G are conjugate. 

LEMMA 2.14. Let Y\ be a lattice in a simply connected, solvable Lie group GI, such -- 
that Ade, Fl = Ad GI, and let E be a compact, Abelian Lie group. Let XI be a con- 
nected Lie subgroup of GI, and assume that the foliation of T\\ by cosets of XI has a 
dense leaf. Suppose T :  XI Ã‘ E and S*: F l  1 -+ E are continuous maps, such that 
S*(rl) = e,  and 8*(px) = S*\p)t(x), for every p F l  1 and - x e XI. Then there is a 
continuous homomorphism6: G1 Ã‘ E such that S*(T1g) =S(g) for every g e GI. 

Proof. (cf. [ I ,  Proof on p. 5021). For x ,  y e XI, we have 

so we see that T is a homomorphism. Because Xl is simply connected (see 2.9), we 
may lift T to a homomorphism ?XI  Ã‘ E, where E is the universal cover of E. 
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Because the foliation of Fl\G1 has a dense leaf, we may assume FIXl is dense in 
GI. Because GI is simply connected, we may lift 8* to a map 8: Gl Ã‘ E with - 
6(e) = e. The restriction of(5 to the fundamental group Fl  is a homomorphism into 
E. Theorem 2.15 implies that this restriction qr, extends to a continuous homo- 
morphism k: Gl + E. 

We have 8(yg) = k(y) . 8(g), for every y ? Fl  and g GI. Therefore, because Fl \Gl 
is compact, there is a compact subset K of E, such that 8(g) E k(g)K, for all g e GI. 
In particular, for x e XI, we have ?(x) =8(x) k(x)K, so the difference T - k is a 
homomorphism with bounded image. Therefore, Lemma 2.11 implies that the image 
is trivial, which means T = k, so 8agrees with k on XI. Since they also agree on Y\, 
and W-[ is dense in GI, this implies that 8= k is a homomorphism. 

In the statement of the following result in [9], it is assumed that the maximal 
compact torus TG used in the construction of G\ contains a maximal compact torus 
of AdGzF?. Because all maximal compact tori of Ad G2 are conjugate under Ad G2, 
this assumption is unnecessary. 

THEOREM 2.15 ([9, Corollary 6.51). Let FI  be a lattice in a simply connected, 
-- 

solvable Lie group GI, and assume Adg  Fl  = AdGI. Let G2 be a simply connected, 
solvable Lie group. I f  a is a homomorphism from F l  into G2, such that Adg2F? is 
connected, then a extends to a continuous homomorphism from GI to G\. 

For convenience, we also note the following well-known, simple lemma. 

LEMMA 2.16. Every continuous, proper bijection between locally compact Hausdorff 
topological spaces is a homeomorphism. 

3. Proof of the Main Theorem 

The outline of this proof is based on [7, 5 61. However, complications are caused 
by the possible lack of an inverse to f, and by the possible existence of nontrivial 
compact subgroups of Ad G2. 

Proof of Theorem 1.4. By composing f with the translation by some element 
r G2, we may assume without loss of generality that f ( F l )  = F2. Then, because Gl 
is simply connected, we may lift f to a map/: GI -+ G2 with f (e) = e. Because Ti is 
the fundamental group of FAGi, we see that the restriction of f to Y\ is a 
homomorphism into F2. Because ~dg./'(Fl) is connected, Theorem 2.15 implies that 
this restr ict ionf~~,  extends to a continuous homomorphism k: GI Ã‘ G:. 

Remark 3.1. We have fiyg) = k(y) .fif}, for every y F l  and g GI. Therefore, 
because FI\GI is compact, there is a compact subset K of G:, such that/(g) k(g)K, 
for all g ? GI. Hence, for every subset A of G, the s e t s f i ~ )  and k(A) do not diverge 
from each other (see Definition 2.5). 
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Step 1 .  The restriction o f f  to each coset of Xl  is a homeomorphism onto a coset of X2. 
By assumption, the restriction offto each leaf of the foliation of rl\Gl by cosets of 
X1 is a covering map onto a leaf of the foliation of r2\G2 by cosets of X2. Therefore, 
the restriction off to each coset of XI  is a covering map onto a coset of X2. Because X I  
and X2 are simply connected (see Lemma 2.9), this covering map must be a homeo- 
morphism. 

Step 2 [7, Step 3 of Proof of Theorem 6.11. k ( X l )  and X2 have the same nonelliptic 
part; call it Y .  Because k maps X1 to k ( X l ) ,  andfmaps Xl to Xi, Remark 3.1 implies 
that k ( X l )  and Xi do not diverge from each other. Therefore, Corollary 2.7 implies 
that k ( X l )  and X2 have the same nonelliptic part. 

Step 3. The restriction of k to X1 is a homeomorphism onto k ( X l ) ,  and k ( X l )  is 
closed. Since f \ y  is a homeomorphism onto X2, it is a proper map. Therefore, 
Remark 3.1 implies that k \ y  is also a proper map. This implies k ( X l )  is closed. It 
also implies that the kernel of k \ y  is compact. Then Lemma 2.1 1 implies that the 
kernel is trivial, so k \ y  is injective. Thus, k\̂  is an isomorphism onto its image 
[6, Lemma 2.5.3, p. 591. 

Step 4 [7, Step 4 of Proof of Theorem 6.11. For g e G I ,  define 6(g) e G], by : f ig )  = 

k ( g ) .  6(g); then 8(g) normalizes Y,  and S(yg) = 6(g), for every y F l ,  so 6 factors 
through to a well-defined map P rl\Gl + NG;(Y). Because f maps cosets of Xl 
to cosets of Xi, we have 

Then, because Remark 3.1 implies that k(g)- l f igxl)  and k ( X l )  = k(g)- lk(gx1)  do 
not diverge from each other, this implies that the subgroups 8 ( g ) ~ 2 6 ( g ) 1  and 
k ( X l )  do not diverge from each other. Therefore, Corollary 2.7 implies that the 
nonelliptic part of 6 ( g ) ~ 2 6 ( g ) - ~  is the same as the nonelliptic part of k ( X l ) ,  
namely, Y .  On the other hand, because the nonelliptic part of X2 is Y (see Step 2), 
it is obvious that the nonelliptic part of 8(g)x2S(g) '  is 8 ( g ) ~ S ( ~ ) .  Therefore, 

I 

Y = 8(g) ys(g)-l. 
~ecausef(yg) = k(y) - f ( g ) ,  it is easy to see that S(yg) = S(g). 

Step 5 [7, Step 5 of proof of Theorem 6.11. Let Ti  and T2  be the elliptic parts of 
k ( X l )  and X2, respectively; then 8(g) e T 1  T2 Y ,  for every g e G I .  For xl e X I ,  we have 
f(,gx1) = f(s). xi  for some x2 e Xi, so 

Writing k ( x l )  = tlyl and x2 = t2y2 for some tl T i ,  t2 T2,  and y1, y2 e Y ,  we then 
have t1yl .6(gxl)  = S(g) .  t2y2. This implies that the map %\G~ -+ Tl\NG; 
(Y)/T2 Y,  induced by 6, is constant on each leaf of the foliation of rl\Gl by cosets 
of X i .  Because this foliation has a dense leaf, this implies that <5 is constant. Because 
f ( e )  = e = k(e), we know that S(e) = e, so this implies that 8(g) belongs to T 1  T2 Y for 
every g G G I ,  as desired. 
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Step 6. W e  may assume ( T I  T 2 )  n Y = e; then the maps 

v: Y x T i  T2 -> YTl  T2: (y, t )  v-^ptyt, 
vl: Xi x T I T 2  + k(Xl)TlT2:  (x , t )v-^k(x) t ,  and 
v2: X2 x 7-2 T i  -+ X2T2 T 1  : ( x ,  t )  H X ~  

are homeomorphisms. Let S = T I  Ci (T2Y).  Then there is some g e T 2 Y ,  such that 
S c g-$g (see 2.13). We have 

so, by replacing the choice T2 of the elliptic part of Xi with the equally valid choice 
g \ T Â ¥ i g  we may assume T I  n ( T 2 Y )  c T2. We now show that this implies 
( T I T 2 )  n Y = e: if tlt2 Y, with ti E T I  and t2 ? Ti, then ti e Ti  n (T iY)  c T2, so 
t\ti e T2 n Y = e,  as desired. 

The maps v, v l ,  and v2 are obviously continuous, surjective, and proper. (For the 
properness of v l ,  recall that k \ y  is a homeomorphism onto k(Xl) . )  Thus, it suffices to 
show that they are injective (see 2.16). 

Suppose y't, t; = ytl t2, for some y', y Y and ti, ti e Ti. Then trlt', t i t ~ l  
( T I  Ti)  n Y = e,  so t,t'̂  = tlt2 and, hence, y' = y, so v is injective. 

Suppose k(xr)t\t; = k(x) t l  t2, for some x', x X I  and tj, ti e Ti. We have 
k(x')  = y't' and k ( x )  = yt,  for some y', y E Y and t', t e Ti .  Then y1t't',t; = y t t f i ,  
so, from the conclusion of the preceding paragraph, we must have y' = y. Since 
k ( X l )  Ci T1 = e, this implies k ( x f )  = k(x) .  Therefore x = x', so vl is injective. A simi- 
lar argument applies to v2. 

Warning 3.2. The compact set T\Ti need not be a subgroup of G;, because T I  and 
Ti need not commute with each other. 

Step 7.  There is a left Y\-equivariant homeomorphism 4 of G1, such that 
fig) k(d>(g))T\T'i, for every g e G I ,  and 4 takes each left coset of X I  onto itself. 
Since 8(g) T 1 T 2 Y  = k(Xl )T \T i ,  there is a unique element y(g) of X I ,  such that 
S(g) k(x(g))Tl T2;  namely, ~ ( g )  is the first coordinate of v ~ ( ( > ( , Â ¤ ' ) )  so x is a contin- 
uous function of g. Define 4(g)  = g . ~ ( g ) ,  so 4: G I  Ã‘ G I  is continuous, and takes 
each left coset gXI  of X I  into itself. Then 

So all that remains is to show that 4 is left Fl-equivariant and has a continuous 
inverse. 

Note that, because S(yg) = S(g), we must have y(yg) = ~ ( g ) ,  for all g E GI and 
y F l .  Therefore 

which is exactly what it means to say that 4 is left Fl-equivariant. 
Define 
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Similarly, we have [k(Gl), TI] c k(ker 81 n ker 62). 
For any x ? XI, we have 

and a2(x) ? Ti, so 4>l(Xl) c YT2. Therefore, from Step 9, we have 

[($i(xi), 3-21 c [yT2, T21=[Y, T21 c (Ynx2)@. 

Define a map :̂X\ Ã‘ Y by c(x) = k ( x ) ~ ~ ( x ) ~ .  Then f, is bijective, because 
k(Xl)Tl = YTl and k(Xl) fl TI = e. It is also proper, because klX, is proper and 
TI is compact. Therefore f, is a homeomorphism (see 2.16). 

,* 

Let y E (Yn X2)@. Since y ? Y, there is some x e Xi, such that f,(x) = y. Since 
y X2, we have d x )  = e,  so x ker 72. Because ( is a homeomorphism, we know 
f,-'((m la)') is connected, so we conclude that x (ker r2)@ c ker bi. (see Step 
11). Also, from Step 10, we have -c\(x)1~2(x) = 6(x). Therefore 

4. Non-Solvable Groups 

DEFINITION 4.1 ([9, Definition 9.11). A lattice F in a connected Lie group G is 
superrigid if, for every homomorphism a: F Ã‘ GLn(R), such that F" has no non- 
trivial, connected, compact, semisimple, normal subgroups, there is a continuous 
homomorphism 6: G Ã‘ F", such that 6 agrees with a on a finite-index subgroup of T. 

Remark 4.2. In the context of Definition 4.1, suppose G2 is any connected Lie 
subgroup of GLn(R) that contains Fa. Then 6 induces a homomorphism 
j :  G2 Ã‘ G-i/G2. Since G /G2  is abelian, and 8 is trivial on a finite-index subgroup of 
the lattice F, we see that B(G) is compact and Abelian. Therefore p(G) c G2S, for 
any maximal compact torus S of Rad G2. Therefore, letting G\ = G2 x T, for any 
maximal compact torus T of Adc2RadG2, we see that there is a homomorphism 
k: G -+ G2 x T, such that k agrees with a on a finite-index subgroup of F. 

DEFINITION 4.3. Let us say that a connected Lie group G is almost linear if there 
is a continuous homomorphism 6: G -+ GLJR), for some n, such that the kernel of 
6 is finite. 

The following two theorems combine to show that many lattices are superrigid. 
Furthermore, by considering induced representations, it is easy to see that every 
finite-index subgroup of a superrigid lattice is superrigid. 



FOLIATION-PRESERVING MAPS BETWEEN SOLVMANIFOLDS 105 

THEOREM 4.4 (Margulis [4, Theorem IX.5.12(ii), p. 3271). Let G be a simply 
connected, almost linear, semisimple Lie group, such that R-rank(L) > 2 ,  for every 
simple factor L of G. Then every lattice F in G is superrigid. 

THEOREM 4.5 ([9, Theorem 9.91). Let T be a lattice in a simply connected, almost 
linear Lie group G, and assume that G has no nontrivial, connected, compact, semi- 
simple, normal subgroups. Then T is superrigid i f  
--  

- AdG F = Ad G; and 
- the image of T in G/Rad G is a superrigid lattice. 

THEOREM 4.6. For i = 1,2,  let Xi be a closed, unimodular subgroup of a simply 
connected, almost linear Lie group Gi. Assume Rad Xi is simply connected, and that Xi 
has no nontrivial, compact, semisimple quotients. Also assume there is no connected, 
closed, normal subgroup N of [X\,X\], such that Ad[,y,,~,-),~Xl is compact and non- 
trivial. 

For i = 1,2,  let Fi be a lattice in Gi. Assume that Gi has no nontrivial, connected, -- 
compact, semisimple, normal subgroups, that AdgFi = AdGi, and that TI is superrigid 
in GI. 

Assume, furthermore, that the foliation of V\G1 by cosets of XI has a dense leaf, for 
every finite-index subgroup of Y\. 

Let$ r{\Gl -+ F2\G2 be a homeomorphism, such that f maps each leaf of the folia- 
tion of T\\Gl by cosets of Xl onto a leaf of the filiation of F2\G2 by cosets of X2. 

Then, for some finite-index subgroup F; of Y\, there exists 

- a map a: F; \GI Ã‘ T\ \GI of type 1.1A; 
- a map b: T2\G2 Ã‘ r2\G2 of type 1.1 5; and 
- a map c: r',\Gl -+ F2\G2 of type l.lC1', 

such that f (Fig) = b(c(a(Fig))), for all g E GI. 
In the definition of c, we may take G} as defined in Remark 4.2. W e  may take Tl to 

be the elliptic part of k(Xl) andlet Ti be an appropriately chosen elliptic part of r 1 x 2 r ,  
where k is the homomorphism used in the construction of c, and r is the element of G2 
used in the construction of b. 

Sketch of proof. The proof of Theorem 1.4 applies with only minor changes; we 
point out the substantial differences. 

A change is required already in the first paragraph of the proof. Assume 
f ( f i )  = b. Then f lifts to a homeomorphismf: GI Ã‘ G2 with fie) = e. Since G2 is 
almost linear, l-1 is superrigid, and G1 is simply connected, it is not difficult to see 
from Remark 4.2 that there is a finite-index subgroup F'[ of F1, such that /Ir 
extends to a homomorphism k :  GI -+ G}. For simplicity, replace T\ with Fi. 

See [7, Defnitions. 4.3 and 4.81 for the definition of elliptic and nonelliptic parts of 
a subgroup of G}. Note that the assumptions on Xi imply that Ti is a torus, and 
Xi n Ti is finite. Also, Xi has no nontrivial connected, compact, normal subgroups. 
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Because Fl\Gl may not be compact, the second sentence of Remark 3.1 may not 
be valid, so the arguments of Steps 2 and 4 need to be modified, as in Steps 3 and 4 of 
the proof of [7, Theorem 6.11. 

The conclusion of Step 3 should be weakened slightly: instead of being a homeo- 
morphism, the restriction of k to X1 is a finite-to-one covering map. Similarly, the 
maps v, v l ,  and VT. of Step 6 are finite-to-one covering maps. For example, to see this 
in the case of v, let T [  be a subtorus of T I ,  such that T {  fl T2 is finite, and 
TI = T { ( T I  n T2).  Then the group ( Y x  7,') x T2 acts on G2 by (y, t i ,  t2) . g  = 
ytlgt2. The orbit of e under this action is Y T I T 2 ,  and the stabilizer of e is finite. 
So the map (y, t ~ ,  t2)  ~ y t l t 2  is a covering map with finite fibers. The space 
Y x T f i  = ( ( Y  T i )  x T2)/(T,' n T2)  is an intermediate covering space, with 
covering map v. 

In the proof of Step 7 ,  v ~ ' ( h ( ~ ) )  may not be a single point, but, because Gl  is 
simply connected, there is a continuous function i: G I  Ã‘> X I  x T I T 2  with 
vl( i (g))  = h(g) (and i ( e )  = e). Define (̂s) to be the first component of i (g) .  (A simi- 
lar device is used to define /.) Because vl is finite-to-one, and the lift is determined 
by its value at any one point, there is a finite-index subgroup F of Fi, such that 
y(yg) = y(g), for all g 6 GI and y E F. Then, by replacing T\ with I?, we may assume 
4 is left Fl-equivariant. 

Still in the proof of Step 7, to see that [ is a finite-to-one covering map, note that 
the map b: G I  x Xi Ã‘> GI x X2 defined by Cl(g, x )  = (g , / ' fe ) lxgx))  is a homeo- 
morphism (by the argument in the last paragraph of Step 7), and we have 
C(g, x, 0 = (Id x ~2)(Cl(^ x ) ,  0. 

Also in the proof of Step 6 ,  let us show that \h is the inverse of 4. For all g G G I ,  
we have 

both satisfy v2(/li(g)) = f ( g ) l k ( ~ ( g ) ) .  Since Al(e) = (e,  e)  = &(e), and v2 is a covering 
map, this implies 21 = A2. By comparing the first coordinates, and noting that/is a 
homeomorphism, we conclude that if/ o #I is the identity map. Similarly, <f> o if/ is also 
the identity. 

In Definition 3.4, since Xi n Ti  may be nontrivial, the functions 71 and 7 2  may not 
be well defined. However, there is a finite cover of Xi, such that 7;  is a well-defined - 
map from X I  to Ti  with ~ i ( e )  = e. 

The conclusion of Step 9 can be established as follows. Because T 2  normalizes Y,  
we have [ Y ,  T2]  c Y .  Furthermore, because T2 is Abelian and is in Ada X2, we have 
[T2X2, 72x21 = [ X i ,  XT] c Xi. Therefore, [ Y ,  T2]  c Y r\ Xi. Since [ X I ,  X I ]  c Y ,  we 
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have A ~ [ x ~ , x ~ I ~ [ Y ,  y~ Y = e, so A d I ~ l , ~ l l ~ I ~ , ~  XI = A ~ [ X ~ , X , ~ ~ [ Y ,  YI TI is compact. There- 
fore, by hypothesis, it must be trivial. Since AdT1xll[x, ,~l~Tl is also trivial, and 
Adxl Ti is semisimple, this implies [TlXl, TI] c [Y, Y] c X2. Therefore, [Y, TI] c 
yn  x2.  

The argument of Step 10 shows that, for all g GI and x E X\, we have 

S(gx) 6 (Ti n Y)~I(X)-~~Q^X)(TZ n Y). 

(This calculation uses the observation that Tl 0 Y and T2 n Y are contained in 
Y n X2. To see this, note that Ti n Y is contained in a maximal compact subgroup 
K of Y. Because RadY is simply connected, we see that K is contained in a Levi sub- 
group of Y, so K c [Y, Y] c Y H X2.) Since 6 ,  q, and T.I are continuous, and Ti n Y is 
finite, this implies the equation in the conclusion of Step 10. 

For Step 11, it is necessary to prove a slightly modified version of Lemma 2.14. 
In Step 12, although the map Â£, X\ Ã‘> Y is not a homeomorphism, we must have 

(Y f~ X2)0 c <^((ker z2)'), because Â£ is a covering map. 
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