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1. INTRODUCTION 

Roughly speaking, a discrete subgroup l- of a topological group G is 
automorphism rigid if every automorphism of l- extends to a continuous 
automorphism of G. However, the formal definition below is slightly more 
complicated, because it allows for passage to finite-index subgroups. 

Definition 1.1. It is traditional to say that a group F virtually has a 
property if some finite-index subgroup of l- has the property. It is con- 
venient to extend this terminology to group isomorphisms. 

0 A virtual isomorphism from GI to G2 is an isomorphism 
A : G\ -+ Gh, where G s s  a finite-index, open subgroup of G;. 

0 A virtual automorphism of G is a virtual isomorphism from G to G. 
0 A virtual isomorphism A from GI to G2 virtually extends an iso- 

morphism X from Fl to Ti if there is a finite-index, open subgroup 
Vi of Vl, such that Fi c GI, and Alp, = XIr;. 

Definition 1.2. A discrete subgroup l- of a topological group G is auto- 
morphism rigid in G if every virtual automorphism of r virtually extends to a 
virtual automorphism of G. 

A classical example is provided by the work of Malcev. 

Definition 1.3 (l6lRern. 1.11,p.211). A discrete subgroup F of a topological 
group G is a (cocompact) lattice if G/F is compact. 

Theorem 1.4 ( ~ ~ l ~ ~ ~ [ ~ l ~ ! 6 > 0 " " J  2-11-1, P- 341 ) If r is a lattice in a 
1-connected, nilpotent real Lie group G, then l- is automorphism rigid in G. 

In fact, every virtual automorphism of l- extends to a unique auto- 
morphism of G. 

Malcev's Theorem can be restated in the terminology of algebraic 
groups (cf. t6. after T h .  2.12, P. 341 ). Recall that a matrix group G is unipotent if, 
for every g G, there is some n ? N, such that (g - Id)" = 0. (In other 
words, 1 is the only eigenvalue of g.) 

Corollary 1.5. Let V be an arithmetic subgroup of a unipotent algebraic Q- 
group G. Then F is an automorphism rigid lattice in G(R). 

In this paper, we discuss the analogue of Malcev's Theorem for uni- 
potent groups over nonarchimedean local fields, instead of R. It is well 
known that if G is a unipotent algebraic group over a nonarchimedean local 
field L of characteristic zero, then the group G(L) of L-points of G has no 
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nontrivial discrete subgroups. (For example, Z is not discrete in the p-adic 
field Qp.) Thus the case of characteristic zero is not of interest in this setting; 
we will consider only local fields of positive characteristic. 

For abelian groups, it is easy to prove automorphism rigidity. 

Proposition 1.6. Let Fl and Fa be lattices in a totally disconnected, locally 
compact, abelian group G. Then every isomorphism K : Fl -+ F2 virtually 
extends to a virtual automorphism of G. 

Proof. Since f i  and F2 are discrete, and G is totally disconnected, there 
exists a compact, open subgroup K of G, such that Fl n K = F2 fl K = e. Let 

= FIK and G2 = FzK, so and ~2 are finite-index, open subgroups of 
G, and define i : -+ C& by i(^c) = K(y) c for y e Fl and c K. 

For nonabelian groups, automorphism rigidity seems to be surpris- 
ingly more difficult to prove, but we provide examples of automorphism 
rigid lattices. Although we do not have a general theory, and we do not have 
enough evidence to support a specific conjecture, the examples suggest that 
there may be mild conditions that imply that arithmetic lattices are auto- 
morphism rigid. 

Notation 1.7. 

Fix a prime p, and a power q of p. 
Fq denotes the finite field of q elements. 
F denotes the field IFq((;)) of formal power series over Fq. 
F- denotes IFq[trl], the IFq-subalgebra of F generated by t-l. 

Note that F is a local field of characteristic p. (Conversely, any local 
field of characteristic p is isomorphic to Fq((t)), for some q [9' Thm- p- 201 

The subgroup F is a lattice in the additive group (F, +). 

Definition 1.8. Let G be a closed subgroup of GL(m, F), for some m ? N. 

0 Two discrete subgroups Fl and F2 of G are commensurable if 
FI n F; is a finite-index subgroup of both Fl and F2 14- p' 81. 
A subgroup r of G is arithmetic if it is commensurable with 
G q m ,  n G r c j  14, 51.3-1- PP. 6 ~ 2 1  / 

By definition, if TI and F2 are arithmetic subgroups of G, then Fl is com- 
mensurable with F2. Thus, is a lattice in G if and only if T2 is a lattice in G. 

Definition 1.9 (cf. [2- Ex 921 ). Fix a power r of p, and let 
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G, = { ( Ã  ^) 
0 0 1  

So G2 is a two-dimensional, unipotent F-group, and has arithmetic lattices. 
Note that if r > 1, then G2 is nonabelian. 

The following theorem describes the virtual automorphisms of any 
arithmetic lattice in G2. 

Definition 1.10. For any continuous field automorphism T of F and any 
a ? -F\{O}, there is a continuous automorphism <f>^y of G2, defined by 

Let us say that <  ̂is standard if 

(1) there exist o- e Gal(Fq/Fp), a ? Fq \ {O}, and f i  E Fg, such that 

for all fit-') E F-,  and 

(2) there exists some nonzero b ? F ,  such that ab ? F .  

Note that if ha  is standard, and T is an arithmetic lattice in Gi, then <^,a(T) 
is commensurable with T. 

Theorem 1.11. Let 

0 be an arithmetic lattice in G2; and 
'k be a virtual automorphism of F. 

If r > 2, then there exist 

a standard automorphism (f>T,a of G2, 
0 a finite-index subgroup T' of T, and 

a homomorphism i; : T' + Z(Y), 

such that X(y) = &(y) ^),for all y 6 TI. 
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Corollary 1.12. I f  r # 2, then any arithmetic lattice in G2 is automorphism 
rigid. 

Theorem 1.1 1 and Corollary 1.12 are proved in Sec. 2. The authors do 
not know whether they remain true in the exceptional case r = p = 2. 

Definition 1.13. Let [., .]: F~" x F~~ -> F be a symplectic form, and, for 
notational convenience, let Z = F. The corresponding Heisenberg group is the 
group H = ( F ~ ~  x Z,  0 ), where 

We remark that, up to a change of basis, the symplectic form I - ,  .] on F~'" is 
unique, so, up to isomorphism, the Heisenberg group H is uniquely deter- 
mined by m. Note that Z is the center of H. 

Because H is isomorphic to a subgroup of GL(m + 2, F), namely, 

we may speak of arithmetic subgroups of H. 
We assume that [-, .] is defined over F - ,  by which we mean that 

[ F ,  F ]  c F .  Then we may assume that the above isomorphism has been 
chosen so that a subgroup of H is arithmetic if and only if it is com- 
mensurable with ( F - ) ~ ~  x F .  Thus, H has arithmetic lattices. 

Definition 1.14. We say T E GL(2m,F) is a symplectic similitude i f  there 
exists some nonzero CT E F, such that, for all v,  w E V, we have 

For every symplectic similitude T E GL(2m7 F ) ,  and every continuous 
field automorphism T of F, there is a continuous automorphism (^T,T of H 
defined by 

Let us say that 4~~ is standard if 
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(1) there exist o- Gal(IFq/Fp), a IFq \ {O}, and j3 Fq, such that 

for all f ( r l )  F; and 

(2) there exists some nonzero b F ,  such that bT e Mat(2m, F-).  

Note that if 4Jn is standard, then (^(F) is commensurable with F for 
any arithmetic lattice F of H. 

Theorem 1.15. Let 

F be an arithmetic lattice in a Heisenberg group H; and 
1 be a virtual automorphism of F. 

Then there exist 

a a standard automorphism 4JT,= of H; 
a a finite index subgroup I" of T; and 
a a homomorphism C, : T' + Z(F), 

such that X(y) = 4JT,T(y)((y), for all y E F. 

Corollary 1.16. Any arithmetic lattice in a Heisenberg group H is auto- 
morphism rigid. 

Theorem 1.15 and Corollary 1.16 are proved in Sec. 3. 

Remark 1.17. Malcev's Theorem 1.4 does not extend to all lattices in 
solvable Lie groups. (See the work of A. Starkov [71 for a thorough dis- 
cussion.) On the other hand, the Mostow Rigidity Theorem implies that 
lattices in most semisimple Lie groups are automorphism rigid. 

Superrigidity deals with extending homomorphisms, instead of only 
isomorphisms. The Margulis Superrigidity Theorem [4' Thm- V11.5-9- p- 2301 

implies that lattices in most semisimple Lie groups are superrigid. (Lattices 
in many non-semisimple Lie groups are also s ~ ~ e r r i ~ i d . [ * ~ ] )  The Super- 
rigidity Theorem also applies to arithmetic subgroups of many semisimple 
groups defined over nonarchimedean local fields, whether they are of 
characteristic zero or not r4>81. 
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2. ARITHMETIC SUBGROUPS OF THE TWO- 
DIMENSIONAL LHNIPOTENT GROUP G2 

Recall that r and G2 are defined in Definition 1.9. (Also recall the 
definitions of p, q, F, and F in Notation 1.7.) 

Proof of Theorem 1.11. Let Fl and Yy. be finite-index subgroups of F,  such 
that X is an isomorphism from Fl to F2. Then X induces isomorphisms 

By identifying each of G2/Z(G2) and Z(G2) with F i n  the natural way (and 
noting that Fj n Z(G2) = Z(Fi)), we may think of Fi/Z(Fi) and [Fi, Ti] as 
Fn-subspaces of F. By replacing T\ and F2 with finite-index subgroups, we 
may assume that these subspaces are contained in F .  Then, because X is an 
isomorphism, we see that the conditions of Notation 2.3 are satisfied, so 
Theorem 2.4 below implies that there exist 

a standard automorphism <f)T,a of G2, and 
a finite-index subgroup Fi of F i ,  

such that q y )  (^,a(y)Z(G), for all y E F i .  
Because <f)T,a(F1) is an arithmetic lattice, it is commensurable with Fz. 

Thus, replacing Fi with a finite-index subgroup, we may assume that 
<f)ia(F1) c F2. Then we may define C : -  ̂Z(l-2) by C(y) = X(y) 
 MY)-^- 

Lemma2.1. Let 

F be a lattice in a totally disconnected, locally compact group G, 
A be a locally compact, abelian group, and 
4 : F -+ A be a homomorphism. 

Assume 

(1)  there is a finite-index subgroup Ff of F, such that 
I? n [G, G] c [F, F] , and 

(2) F f l  [G, GI is a lattice in [G, GI. 

Then there is a finite-index, open subgroup G of G, containing [G, GI, such that 
<Ir, extends to a continuous homomorphism : G -+ A that is trivial on [G, GI. 

Proof. Let G = G/[G, GI, and let and F' be the images of F and F', 
respectively, in G. Since : F + A, and A is abelian, we see that 
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[F, c ker L so, by the choice of r', we have F' n [G, G] c ker(3. Hence, (3 
induces a well-defined homomorphism [ : f' --+ A. 

By assumption, m [G, G] is a lattice in [G, GI, so is closed 16' 
'.l3, p. 231, hence discrete. Thus, there is a compact, open subgroup K of G, 
such that I? n K =  e. Extend ^Ip, t o  a homomorphism [ : T'K+ A by 
defining it to be trivial on K. Then E, induces a homomorphism [ : G Ã‘ A, 
where G is the pullback of T'K under the canonical homomorphism 
G -  ̂G. 

Proof of Corollary 1.12. We may assume r > 2. (Otherwise, we must 
have r = 1, which means G2 is abelian, so Proposition 1.6 applies.) From 
Theorem 1.11, we may assume there exist 

a standard automorphism of G2, and 
a homomorphism (3 : FI + Z(F2), 

such that k(y) = <f>7,a(y)t,(y), for all y Fi. From Lemma 2.1, we may 
assume that there is a finite-index subgroup G'-, of 62, such that G, contains 
[G2, G2], and (3 extends to a homomorphism [ : G, --+ Z(G2) that is trivial on 
[G2i Let Ge M G ; ) .  

Define X : G'-, -+ G2 by i(g) = ~ , ~ ( g ) [ ( g ) ,  for g ? G;, so i is a con- 
tinuous homomorphism that extends A. Because (3 is trivial on [G2? G2], we 

know that ~ G ~ I  = M [ G ~ -  Also, because [(G;) c Z(G2) = [G2? G2], we 
know that ^(g) <f)^,a(g)[G2, G2] for all g G'-,. Thus, i induces an auto- 
morphism of [G2, G2], and an isomorphism G'^/[G2, G-i] --+ G'^/[G2, Gt], so ^ 
is an isomorphism. 

2.1. Using Linear Algebra to Prove Theorem 1.11 

The remainder of this section is devoted to the statement and proof of 
Theorem 2.4. This result is a reformulation of Theorem 1.11 in terms of 
linear algebra. The reformulation is not of intrinsic interest, but it clarifies 
the essential ideas of the proof, and provides more flexibility, by allowing us 
to focus on the important aspects of the internal structure of F that arises 
from the structure of F as a polynomial algebra, without being constrained 
by the external structure imposed by the group-theoretic embedding of F 
in G2. 

Notation 2.2. Define an IFn-bilinear form I-, .] : F- x F-  + F- by 

[a, b} = arb - abr. 
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For any V, W c F ,  [V, W\ denotes the Fp-subspace of F spanned by 
b , w ]  1 v e  V,w e  W}. 

Notation 2.3. Throughout the remainder of this section, we assume that 

0 r > 2 ;  
0 Vl and V2 are Fn-subspaces of finite codimension in F ;  and 

Y : Vl -  ̂V2 and L : [Vl, Vl] + [V2, V2] are Fp-linear bijections, 

such that 

Theorem 2.4. There exist 

a subspace Vl of jinite codimension in V1, 
a e bEIF-, for some b e  F-, 
a;̂ e F,, with a # 0, and 
a l Gal(Fo/Fp), 

such that 

for allf[t-l) l V, 

Let us outline the proof of Theorem 2.4, assuming, for simplicity, that 
V1 = V2 = F .  For any power Q > 1 of r, we may define an equivalence 
relation on F \ {O} by a =Q b iff a/b ? FQ; let [a] denote the equivalence 
class of a. For each a 6 F ,  the subspace [a, F ]  has infinite codimension in 
I F ,  F ] ,  but Proposition 2.6 shows that [[a], F ]  has finite codimension. 
Because Corollary 2.10 shows that ^*([a]) = [K*(a)], this codimension is a 
useful invariant. Proposition 2.12 shows that it is closely related to the 
minimum degree of the elements of [a]. Using this, Corollary 2.22 shows that 
there is some a F ,  a constant k, and some Q, such that degPK*(b) = k + 
d e g b  for all b =.Q a. Also, Corollary 2.24 shows that K* approximately 
preserves the degrees of greatest common divisors. Then Proposition 2.25 
shows that the restriction of K* to the Fp-rational elements of some 
equivalence class is of the desired form. Finally, we show that K* has the 
desired form on all of F .  

Notation 2.5. 

We use dim W to denote the dimension of a vector space W over Fp. 
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Let s = dimFq, so q =ps. 
For a = ELn aitri E F-, with each a, e Fq, we let d e g a  = n if 
an # 0. 

The following proposition is used in almost all of the following results. 
Because the implication (+) of (1) requires the assumption that r > 2, it 
seems that a different approach will be needed for the exceptional case 
p = r = 2. 

Proposition 2.6. (1) Let a, b Vi \ {O} and assume a/b$ Fq. The subspace 
[a, Vi] + [b, Vi] has finite codimension in [Vi, V;] if and only i fa /b  e Fr. 

(2) The subspace [V;, V;] has finite codimension in F .  

Proof. Because [a, F,] and [b, Vi] have finite codimension in [a, F ]  and 
[b, F ] ,  respectively, we see that [a, V;] + [b, Vi] has finite codimension in 
a ,  F ]  + [b, F ] .  Thus, in proving (I), we may assume that Vi = F-. 

(1) (+) There are some nonzero u,v F ,  such that aur = bur. 
Let x = aru - brv. 

We claim that x # 0. Otherwise, we have 

a''-' (aur) = (arulr = (brvlr = bri-'(bur) = bripl (ad) ,  

so a r i l  = b r i l .  This implies a/& Fq, which is a contradiction. This 
completes the proof of the claim. 

For any y F ,  we have 

a ,  uy] - [b, uy] = (aruy - auryr) - (brvy - bdyr) 

= (aruy - brvy) - (auryr - buryr) 

=xy-0 ,  

so [a, F ]  + [b, F ]  contains x F ,  which is of finite codimension in F .  
(1) (+) We may write b (uniquely) in the form b = x + yra, with 

x, y e F, and such that we may write x = Eai tp i  with a; = 0 whenever 
i = d e g  (a)(mod r). (Note that we do not assume x, y F . )  

For u, v e F ,  we have 

b, u] - [b, v] = (aru - aur) - (brv - bur) 

= (aru - brv) - (aur - (x + yra)vr) 

= (aru - brv) - a(u - y ~ ) ~  - xur. 

Whenever either deg(u)  or deg(v) is large, it is obvious that deg(aru - 
brv) is much smaller than max{deg(u - yvlr, degif}. Also, we may assume 
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x # 0 (otherwise, we have b/a = yr ? Fr ,  as desired), and, from the defini- 
tion o f  x ,  we know that d e g x  $ degPa(mod r), so 

d e g  (a(u - yvY - xur) = max{deg (a(u - yv)'), d e g  (xu"}}. 

Therefore, we conclude that 

degP([a, u] - [b, v])  ? {deg- (a(u - yvlr) deg- (xur)} 

must be congruent to either d e g ( a )  or degP(x), modulo r. Thus, because o f  
our assumption that r > 2, we see that [a, F ]  + [b, F ]  does not contain 
elements o f  all large degrees, so it does not have finite codimension in F-. 
Then, from (2), we conclude that it does not have finite codimension in 
[F-, F-]. 

(2) This follows from the above proof o f  the implication (+) o f  (1) .  0 

Corollary 2.7. Let ah a2 E Vi \ {O}. We have al/a2 ? Fr  i f  and only i f  there 
is some nonzero b V I ,  such that the subspace [ajl V;] + [b, Vi] has finite 
codimension in [ Vi, Vi] , for j = 1,2. 

Proof. (+) Choose b alFr r? Vi \ (Fgal U F&). Then Proposition 2.6(1) 
implies the desired conclusion. 

(+) From Proposition 2.6(1), we have a\/b E Fr  and a2/b ? Fr,  so 
al/a2 Fr .  

Lemma 2.8. Let ah a2 ? F ,  and let Q > 1 be a power of r, such that 

Define 

subspaces W1 and W2 of finite codimension in F- by a; 
(F-)Q n V; = a;@; 
p* : Wi -+ W2 by 'k*(al wQ) = a 2 , ~ * ( w ) ~ ;  and 

: [Wi, W l ]  -  ̂[W2, W d  by W w Q )  = a T l p * ( ~ ) ~ .  

Then [f and A are Fp-linear bijections, and we have 

for all a, b W I .  
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Definition 2.9. Let Q > 1 be a power of p. An element of F is Q-separable 
if it is not divisible by a nonconstant Qth power. 

Corollary 2.10. Let a 6 F ,  and let Q > 1 be a power of r, such 
separable. Then there is some Q-separable b E F ,  such that 
VI) = b ( ~ - ) ~  n v2. 

Proof. Assume, for the moment, that Q = r. For a \ ,  a2 E F- \ {O}, define 
a1 = a2 iff 01/02 Fr. For nonzero a, b E Vi, we see, from Notation 2.3, 
that [a, Vd + [b, Vl] has finite codimension in Vl if and only if [^*(a), V2] + 
[A*(&), Vz] has finite codimension in V2. Therefore, Corollary 2.7 implies 
that a = b iff 'k*(a) = 'k*(b). The equivalence classes are precisely the sets of 
the form c ( F l r  n Vi, for some r-separable c 6 F ,  so the desired conclusion 
is immediate. 

We may now assume Q > r. Let Q' = Q/r. There is some Q'-separable 
a' E F-, such that a 6 a ' ( ~ - ) ~ ' .  By induction on Q, we know that there is 
some Q'-separable b' 6 F-, such that V U'(F-)~' n v1) = b ' ( ~ - ) ~ '  n V2. ( From the definition of a', we know there is some a1 6 F ,  such that 
a = a'af. Then, because a is Q-separable, we know that a1 is r-separable. 

Define Wl, W2, p*, and p, as in Lemma 2.8 (with Q', a', and b' in the 
places of Q, a, and b, respectively). Because a1 is r-separable, we know, from 
the case Q = r in the first paragraph of this proof, that there is some r- 
separable bl 6 F-, such that W F - ) "  n WI) = bl (F-)r n W2. Therefore 

as desired. 

Lemma 2.11. Let a E Vi, let Q > 1 be a power of r, and let k be the codi- 
mension of Vi in F .  Then there is some nonzero b E F- with 
d e g b  < r2(k + l ) ,  such that [ U ( F ) ~  f? Vi, Vi] contains a subspace of codi- 
mension 2k in the ideal arbQIrF;  that is, 
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c f b Q / r ~ -  
dim < 2k. 

[ a ( ~ - ) ~  n V;, V;] n arbQlrF- - 

Proof. Choose c E F- \ IFq, such that acQ E V; and d e g c  < k + 1;  let 
b = c? - c. For y ? F ,  we have 

arbQIry = ar(crQ - cQlr)y 

= (arcrQy - acQyr) - (arcQlry - acQyr) 

= [acQ, y] - [a, cQlry] 

E [acQ, F-] + [a, F-] ,  

so [acQ, F-] + [a, F-] contains a r b Q l r ~ - .  
The codimension o f  [a&, Vi] in  [a&, F ]  is < k ,  and the codimension 

o f  [a, Vi] in [a, F-] is also < k .  Thus, the conclusion o f  the preceding 
paragraph implies that [a@, Vi] + [a, Vi] contains a subspace o f  codimen- 
sion 2k in arbQIrF.  Because acQ and a belong to  a ( ~ - ) ~  n Vi, the desired 
conclusion follows. 

Proposition 2.12. Let a 6 Vi, let Q > 1 be a power of r, and let k be the 
codimension of V;  in F .  Then 

dim 
F-  

= s(r - 1)(degpa) + S + X,  
n V;, Vj] 

where 

S = smax{degPc 1 cr[a, c E F } ,  and 
0 <X<sr(k + 1)Q + 3k. 

Proof. Choose b as in Lemma 2.1 1 ,  and let I = arbQIrF- and F = F P / I .  
I t  suffices to  show 

dim F - / [ a ( F - f ,  F-]  > s(r - l)(deg-a) + S 

and 

dim F- / [a ,  F-]  5 s + s?(k + l )Q / r  + s(r - 1) deg-a. (2.14) 

Let q, u2,. . . , UN be the irreducible factors o f  arbQIr. Then we may 
write 
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where Ã‡ = rmj + ~j .  

From the Chinese Remainder Theorem, we know that the natural ring 
homomorphism from F to 

is an isomorphism. Thus, we may work in each factor F / U ? F ,  and add up 
the resulting codimensions. 

Define 6 : F- -+ F-/(uimjF-) by 4/x) = axr. Then, letting m} = 
mj - l_mj/rJ, we have 

ker 4, = {x F- 1 Ã̂,% 

F- ker (f>, 
dim = dim - 

uirnjF- + a(F-lr "7~- 
ker 4, 

= s dimp, -rm- 
uj 'F- 

= s(rmj - m;)deguj 

= s(r - l ) d e g u y  + s[mj/r\deguj. 

We have ar "7, so 

and 
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From (2.1 5) ,  we have 

F-  F-  
dim 2 dim 

[ L Z ( F - ) ~ ,  F-I + U ~ F -  M - ) ~ ,  F-1 + u;'"~F- 
F-  

2 dim 
U ~ F -  + a(F-IT 

This establishes (2.13). 
Because d i m ( ~ m J ~ - / u " } ' ~ - )  = s e j d e g  UJ, and from (2.16), we have 

F- F-  
dim 5 dim + s ~ j  deg- u, 

[a, F-1 + u F -  [a, F - ]  + U J ~ ~ F -  

F-  
= dim + sej d e g  uj 

uFJF- + a(F-IT 

= s(r - 1) d e g  u? + s[mj/r\ d e g  uj + sej d e g  uj, 

N 

dim F - / [ a ,  F-]  5 (s(r - 1) deg- u p  s[mj/rJ deg- uj 
j= 1 

+ se, d e g  uj) 

= s ( r  - l ) d e g - a + S + s d e g - b Q f r  

< s(r - 1 )  deg- a + S + s ? ( k  + l ) Q / r .  

This establishes (2.14). 

Lemma 2.17. For any a F and any n >. 0, we have 
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Proof. For any v E F ,  we have 

v ,  a] = vra - var 
? r2 = vra - (v  a - v ar) - (ifd1 - ̂cf") - va' 

= [vra, l ]  + [vrl a l  + [varl l ]  
E [ 1 ,  F-] + [ar,F-]. 

Then the proof is completed by induction on n. 

Proposition 2.18. There is some N E N (depending only on the codimensions 
of Vl and V2, not on the choice of V 1 ,  V2,  I* ,  or L), such that 
deg- r ( 1 )  < N. 

Proof. Let k be the codimension o f  V1 .  Choose a power Q > 1 o f  r so large 
that I * ( l )  is Q-separable. Then Corollary 2.10 implies v ( ( F - ) ~  n V l )  = 
v ( ~ ) ( F - ) ~  n v2. 

Choose c E F- \ Fq, such that cQ E V l  and deg- c 5 r + 1. W e  have 

u ( ~ - ) ~  n Vi .  vi] 3 p. Vi]  + [cQ, Vi]  

[I. F-] + [cQl F-] 

N l ,  F - l + V ,  F-] (see 2.17) 

D (c? - c)F- (proof o f  (2.11)). 

So [(F-)' n V1, V l ]  has small codimension in [ V l ,  V l ] .  Therefore 
[ Y ( ~ ) ( F - ) ~  n V2, V2] = u ( F - ) ~  n V l ,  Vi] must have small codimension 
in [V-i, V d ,  so d e g  ̂ * ( I )  must be small, as desired. 

Corollary 2.19. There is some N 6 N (depending only on the codimensions 
of V1 and V2, not on the choice of V I ,  V2, V", or I* ) ,  such that, for everypower 
Q > 1 of r and every Q-separable element a of V l ,  we have 
d e g  ̂ *(a) - d e g  d <, QN, where a' is the Q-separable element of Via)!^ .  

Proof. Apply Proposition 2.18 to the map p* o f  Lemma 2.8. 

Proposition 2.20. There is apower Q > 1 of r, and some d > 0 ,  such that, for 
every v E Vi with d e g  v > d, there are Q-separable elements vl.. . . . v,,, of Vi, 
such that v=v1+.. .+v, , ,  a n d d e g v j < d e g v ,  f o r j=  1 ,  ... ,m. 
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Proof. Let k be the codimension of Vi in F ,  and choose Q > k + 4 so 
large that, for every m > Q, the subspace Vi contains elements of degree m 
whose leading coefficients span Fn. For any element of V1 of degree m, we 
show that there is a Q-separable element of Vi of degree m with the same 
leading coefficient. 

Let a be the leading coefficient of some element of V\ of degree m. 
Then Vi contains exactly r"  ̂ elements of degree m with leading coeffi- 
cient a. 

On the other hand, if a is an element of F that is of degree m and is 
not Q-separable, then a must be of the form a = xQy, where x is an element 
of F of some degree j, and y is an element of F of degree m - QJ. Thus, 
the number of such elements a of degree m is no more than 

Therefore, not every element of Vi of degree m whose leading coefficient is a 
can be such an element a, so Vi has a Q-separable element of degree m with 
leading term a, as desired. 

Corollary 2.21. For each b e F-, there exists N N, such that, for every 
a ? b(F-lr n Vl, we have 1 deg- X* (a) - deg- a \  < N. 

Proof. By symmetry, it suffices to show d e g  X*(a) < d e g  a + N. We may 
assume b is r-separable. By combining Proposition 2.20 with Lemma 2.8, we 
may choose a power Q > 1 of r, such that each element of b ( F l r  is a sum of 
Q-separable elements of b ( F l r  of smaller degree. Thus, we may assume a is 
Q-separable (and our bound N may depend on Q). 

Define S as in the statement of Proposition 2.12, and let ki be the 
codimension of Vi. Because a e ~ ( F P ) ~  and b is r-separable, we have 
S = s (deg  a - d e g  b)/r, so Proposition 2.12 implies 

F- 
- s(r - 1 + l/r) d e g  a 

d e g  b < s- 
r + (sr(k1 + 1)Q + 3k1) 

is bounded. Similarly, letting a' be the Q-separable element of ^(a)@, and 
b be the r-separable element of X*(b)Fr, we know that 
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F- 1 dim - s(r - 1 + l / r )  deg- a' 
lat(F- )Q n v2, V2n 

is bounded. Then, because 

dim uv1, v1n = dim uv2, v2n 

U ~ G F - ) ~  n Vi ,  Vl] [ a ' ( ~ - ) ~  n v2, v2] ' 

we see that [ d e g a '  - d e g a  is bounded. Corollary 2.19 asserts that 
I d e g  A* (a)  - d e g  a'\ is also bounded. 

Corollary 2.22. For each b E F ,  there is a power Q of r, such that, for 
every a\, a2 E b ( F )  f~ Vl , we have d e g  A* ( a l )  - d e g  V (a2) = d e g  a1 
- d e g  a2. 
Proof. Choose N as in Corollary 2.21. Now choose Q > IN. Because 

d e g  2 (a1 ) = deg- V ( 0 2 )  (mod Q)  

and 

d e g  a1 == d e g  a2 (mod Q) , 

we have 

deg- A* (a1 ) - deg- a1 = d e g  A* (02 )  - d e g  a2 (mod Q) ,  

so, from the choice o f  N and Q, we conclude that 

deg- A* (al)  - d e g  a1 = d e g  A* (a2) - d e g  0 2 .  

Proposition 2.23. There is a constant C > 0, such that, for all a\, a2 G Vi, 
and every power Q of r, we have 

s d e g  gcd(al,a2) - C < dim 
UVi, Vi] 

[a1 ( F - ) ~  n Vi, Vi] + [a2 (F-)  n Vi, Vi] 

5 C d e g  gcd(a1, a2) + C. 
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the left-hand inequality is obvious. 
Let c = gcd(al,a2) and let k be the codimension of Vi. Then 

Lemma 2.11 implies that there exist nonzero b11b2 F- with 
d e g  bj <; r2(k + l), such that ~ ( F P ) ~  n Vi, Vi] contains a subspace of 
codimension 2k in a f l ~ ' ,  for j = 1,2. Then, letting b = bib2, we have 
deg- b < 2r2(k + I), and [a@-)Q n Vil Vi] + [ a 2 ( ~ - ) ~  n Vi, Vi] contains a 
subspace of codimension 4k in the ideal I = crbQIr~-.  Thus, it suffices to 
show that the codimension of [allF-] + [a2, F ]  +I in F- is bounded 
above by s(r + 2) d e g  c + s d e g  b. 

Let ul . . . , UN be the irreducible factors of crbQIr, so we may write 

and 

where nj = rmj + tjQ/r. From the Chinese Remainder Theorem, we have 
F / I  E @ ~ l F / u " ~ ~ ,  so we may calculate the codimension in each factor, 
and then add them. 

Fix j. By interchanging a1 and a2 if necessary, we may assume that 
u?+~.+ al. It suffices to show that 

F- 
dim 5 s((r + 2)mj + tj) d e g  uj; [al, F-] + unjF- 

(r+l)mj+l thus (because mj + tj > I), we need only show that uj F- C 
[a \ ,F]  + u ? F .  To show this, let M be minimal, such that 
? I F -  c [a, F-] + U?F-. (Obviously, we have M < nj; we wish to show 
M (r + l)mj.) Suppose M > (r + l)mj. (This will lead to a contradiction.) 
We have mj + r(M - rmj) > M, so 

r(M-rmj) 
C [all u? F-] + a1 uj F- + flF- 

mj+r(M-rm-) 
C [al,F-] +uj F- + ;AF- 

c [al,F-] + uF'F- + K". IF- 
= [all F-] + zPF-. 
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This contradicts the minimality of M. 

Corollary 2.24. There is a constant C > 0, such that, for all a, b e Vl, we 
have 

d e g  gcd(a, b) 
c - C 2 degPgcd(r (a), A* (b)) 5 Cdeg-gcd(a, b) + C. 

Proposition 2.25. There exist b Vl, b' e V2, a, j? e IFq, and some Q that is 
apower of both r and q, such that, for all bf^rQ) b ( ~ ~ [ t - ~ ] ) ~  fl V1, we have 
A*(b f(t-Q)) = bl^t-Q + j?). 

Proof. Corollary 2.22 shows that, by replacing Vl with some ( F " ) ~  n V1 
(using Lemma 2.8), we may assume d e g  ̂ .*(a) = d e g  a, for every a e V1. 

The terms -C and +C in Corollary 2.24 are significant only when 
d e g  gcd(a, b) is small. On the other hand, d e g  gcd(a, b) can never be small 
(and nonzero) if a, b ( F ) ~  for some large Q. Thus, by replacing V1 with 
some ( F ) ~  n V1 (using Lemma 2.8), we may assume 

1 
- deg- gcd(a, b) < deg- gcd(A* (a), V (b)) 5 C deg- gcd(a, b) , c 

for every a ,b  VI. In particular, gcd(a,b) = 1 if and only if 
gcd (A* (a), V (b)) = 1. 

Let k be the codimension of V1 in F .  Choose some 

Choose a power Q of r, such that Q > Nk. There is some nonzero 
b IFp[t-'1, with d e g  b 5 Nk, such that 

Because d e g  b < Q, we know that b is Q-separable, so, by applying Lemma 
2.8 to b(F-lQ n V1 , we may assume 

By composing A* with a map of the form f ( t l )  IÃ‘ yfla t l  + j?), for 
some a, j?, y e Fq (with ay # O), we may assume X*(l) = 1 and A*(t l )  = t l ,  
SO VIFp+Fpt-~ = Id. 
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Let V̂ " = Vi n FP[t"l]. It suffices to show r ( a )  = a for every a ^Fj>. 
Suppose A*kp # Id, and let 

I 

Let A = A*(a) - a, for any monic a E @ with d e g  a = m. (Note that 
the definition of m implies that A is independent of the choice of a.) 

Case 1. Assume m <: N. Let u be any irreducible element of F p [ t l ]  with 
d e g u s m - 1 .  

We claim that ^Fj> contains a (monic) element a, such that d e g  a = m 
and u\a. To see this, let b e with d e g  b = m. There is some a F ,  such 
that u\a and de ( a  - b) < d e g  u < d e g  b. Because d e g  b N, this 
implies a -  b v / ,  so a ?  1'1'1. 

Because u\a (and 'k*(u) = u), we know gcd(u, ̂ *(a)) # 1. Because u is 
irreducible, we conclude that u\'k*(a). We also have u\a, so this implies 
u\(V(a) - a) = A. 

Thus, we see that A is divisible by every irreducible polynomial over Fp 
of degree < m - 1, so A is divisible by t p m  - t i .  Therefore 
d e g  A 2 p m l .  However, we also know d e g  A <; d e g  a = m (and all 
nonzero polynomials in & [ t l ]  are monic, so d e g  A < m if p = 2). This is a 
contradiction. 

Case 2. Assume m > N. Choose some monk a e, with d e g  a = m. By 
subtracting a polynomial of degree < k, we may assume tdk+')\a; let 
u = a/ t (k+l) .  There is some nonzero x ? FP[t1]  with d e g  x < k, such that 
ux e @. (Note that d e g  ux <: k + d e g  u < m.) 

Let 

C = { c  ? FP [tK1]\ {0} \ deg- c < C} , 

and 

so deg- b < (C + k ) ~ ^ ~ + l .  Now, for each c  C, let 

uc uC = (u + c)x and u' = 
gcd(uc, b) ' 
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For c E C, we have {ex, ct-^} c '̂, so uc e e and a + ctdr+l) e e. 
Also, because a = ~ t - ( ~ + l ) ,  we have (u+ c)\(a+ ~ t - ( ~ + l ) ) .  Then, since 
'k*{u + c) = u + c, we have deg- gcd('k*(a + ctdk+l)), u + c) 2 (deg- (u + 
c))/ c ,  so 

degPgcd(A, u') 2 degPgcd(A, uc) - d e g  b 

= degPgcd(V (a + ct-^^) 

- (a + ctdk'')), uc) - deg-b 

Also, for cl, cz e C, we have 

so we see that g c d ( 4 ,  u') = 1 whenever c1 # cz. Thus, we conclude that 

This is a contradiction. 

Proof of Theorem 2.4. Choose b, bf,a,/?, Q as in Proposition 2.25. By 
replacing 'k* with x i-> ( b l ) '  'k* (bx) and replacing 1, with x ++(bf)"^ 
'k*(br+'x), we may assume b = b = 1. Then, by composing 'k* and 'k, with 
t 1  !-Ã  ̂ a 1  ( t l  - f i ) ,  we may assume a = 1 and /? = 0. Thus, 

V(a) = a for all a ~ ~ [ t - ~ ]  n Vl . (2.26) 

We wish to show that there is some a e Gal(Fq/Fp), such that, for every 
a Vl , we have 'k* (a) = a(a) . 

Step 1. For each a ?  V1, there is some a Gal(Fq/Fp), such that 
^*(a) = a(a). Fix a 6 Vl. Choose C as in Corollary 2.24, let k be the codi- 
mension of Vl, and choose b E Fp[ tQ]  n V1, such that 

d e g  b -- 
c C > Q(s(deg-a + deg-r  (a)) + k) . 
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Let 

and choose some nonzero x e. Fp[ t l ] ,  such that Vi and d e g x  <, k. 
We have 

Q(deg-gcd(b - P (a), c) + k) 2 deg-gcd(b - v (a), (cx) ') 

=degPgcd(A* (b - a) ,A*((cx)^)) (see 2.26) 

degPgcd(b- a, > c - C (choice of Q 

> Q(s(deg-a+degp qa) ) +^)(choice of b). 

Thus, from the definition of c, we conclude that there is some a 
Gal(Fq/Fp), such that 

deg-gcd(b - A* (a), b - a(a)) > d e g a  + d e g  X* (a) 

= deg- a(a) + deg- A* (a) 

> deg7(a(a) - Y (a)) 

= deg-((A - A*(a)) - (b - ~ ( a ) ) ) .  

Therefore (b - A* (a)) - (b - a(a)) = 0, so A* (a) = a(a). 

Step 2. There is some a Gal(Fq/Fp), such that X*(a) = a(a) for every 
a V1. For v e. F ,  let 6 denote the leading coefficient of v. Choose b e. Vl, 
such that 6 generates IFq, that is, Fq = Fp[b}. From Step 1, we know there is 
some a e Gal(Fq/Fp), such that A*(b) = a(b). We show V(a) = ~ ( a )  for 
every a Vl. 

Given a e Vl, choose some c ^V\, such that 2 generates Fq, and 
such that d e g c  > max{dega,degb}. From Step 1, there exist a', a" 
Gal(Fq/Fp), such that A* (c) = al(c) and A* (a + c) = #(a + c). Because 
d e g c  > d e g a ,  we have c = a and ^*(a + c) = X*(c). Thus, we have 

a" (c) = d1(Zi7)  = al'(a + c) = A* (a + c) = V (a) + (c) = A* (c) 
= d(c). 

Because 2 generates Fq, we conclude that a" = a'. Therefore 
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Similarly, we have ^,*(A) = a'(b). Because we also have X*(b) = a(b),  
and 6 generates IFg, we conclude that a' = a. 

Therefore X*(a) = ( / ( a )  = a(a),  as desired. 0 

3. ARITHMETIC SUBGROUPS OF HEISENBERG GROUPS 

Proof of Theorem 1.15. Let l-1, FZ be finite-index subgroups of F, such 
that X : Fl Ã‘ F; is an isomorphism. Let Fi, i = 1,2 be the image of Fi in 
Fzm under the projection H + FZm with kernel Z .  By passing to a finite- 
index subgroup, we can assume that ri c ( F ) ~ ~ .  Since Z(Fi)  = Fi fl Z ,  
we can identify ri with Fi/Z(Fi), so X induces an isomorphism 
X:F1 +f2. 
Step 1. We can assume 'k(av) = a q v )  for all a 6 F and v 6 TI, such that 
av ? Fl. For each nonzero u ? Fl, let As = {a F 1 av ? Fl}. Note that An 
is a finite-index subgroup of F. For g, h Fi, we have Fg = Fh if and only 
if Cri(g) = Cri(h), so %(A"V) = Fk(v) n G. Thus, we can define a function 
zs : An + F by zi,(a)'k(v) = 'k(av). Let w 6 be such that [v, w] # 0, and let 
a An n Aw. Then 

70 = zW on An n Aw whenever [u, w] # 0. (3.1) 

For any nonzero v, w Fi and any a 6 A,, II Aw, since Fi n a l F l  is of 
finite index in Fl ,  we can find u ? l?i so that a e An, [u, v] # 0, and 
[u, w] # 0. Then it follows from Eq. (3.1) that rn(a) = zU(a) = d a ) .  Since 
a 6 As n Aw was arbitrary, we conclude that 



AUTOMORPHISMS OF ARITHMETIC SUBGROUPS 2739 

T" = rw on Ai, n Awl for all nonzero v, w ? Ti.  (3.2) 

For an arbitrary a F we can always find w e F1 so that a e Aw, thus we 
can define a function T : F -+ F, by r(a)  = ~,,,(a). Eq. (3.2) implies that T is 
well defined. Note that ~ ( l )  = 1. Since 

T(a)r(b)[%(u), %(v)] = [ % ( a ~ ) ~  %(bv)] 

= [ a u ,  bv]) 

= 'k({abu, v ] )  

= [%(abu) %(v)] 

= T ( ^ ) U ^ ( ~ ) ,  V v ) I ,  

we have ~:(a)i:(b) = ~ ( a b ) .  Since T is also an additive homomorphism, and % 
is an isomorphism, we conclude that T is a ring automorphism of F.  
Therefore r(/(t-I)) = o-(/(atp1 + ;8)) for/(rl)  F ,  where o- ? Gal(Fq/Fp), 
a Fq \ {O}, and ;8 e Fn. Hence, by composing with the standard auto- 
morphism T M 7 - ~ ,  we obtain the claim. 

Step 2. W e  may assume that is the identity map. Let vl,  wl, v-i, w2 E F 
with [vi, win # 0. There is a finite-index subgroup A of F ,  such that avi r, 
for every a e A and i = 1,2. Then, for all a ? A, Step 1 implies that 

Thus, choosing a\, a2 A ,  such that a1 [vl, W I ]  = a2[v2, w2], we have 

We conclude that L(z)/z = C is constant, for z [FI,  Fl] \ {O}. 
By composing with a standard automorphism ^>nd, such that 

CT = 1/C7 we may assume that C = 1, so = Id. Then, by replacing 
FI with a finite-index subgroup I?',, such that F', n Z c [rl, Fl], we may 
assume ^. jwr,)  = Id. 

Step 3. % : Fl --+ Fl can be extended to a symplectic similitude A : F~'" Ã‘ F~'", 
with CA = 1. By Step 1, %(av) = a%(v) for all a -F"' and v E fi such that 
av Fi.  Because Fl is commensurable with (F)~'", this implies that % 
extends (uniquely) to an F-linear map A : Fh + F ~ ~ .  For any v, w F17 we 
have 
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by Step 2. Because spans F ~ ~ ,  this implies that A is a symplectic simili- 
tude, with c~ = 1. . 

Step 4. Completion of the proof. Define A : H Ã‘ H by A(u, z )  = (A(u),z) .  
From Step 3, we see that A is an automorphism. Denote by L, : T\ + Z ( H )  
the map defined by <(y) = A ( y ) - l ~ ( y ) .  Then L, is a homomorphism and 
VY)  = L , (Y )A(Y ) ,  for y e l-1. a 
Proof of Corollary 1.16. From Theorem 1.15, we may assume that the 
following exist 

a standard automorphism 4>T,T of H, and 
a homomorphism t, : T\ -+ Z ( H ) ,  

such that X(y) = 4>T,T(y)((y) for all y T i .  By Lemma 2.1, there exists a 
finite-index open subgroup H of H, containing [H, 4, such that L, extends to 
[ : H + Z(H) .  Let ff = 4 > T , T ( ~ ) .  

Define A : H Ã‘ H by A(h) = 4-(h)[(h), so that A is a continuous 
homomorphism virtually extending X .  Because L, is trivial on [H, H\, we have 

4 = 4>T,i 1 s o  IH,̂ l is an automorphism. Because (̂H) c z(H) = 
[H, H\, we see that A induces an isomorphism H/[H,  H\ + H'/[H, HI. So A : 
H Ã‘ H' is an isomorphism. - 
Definition 3.3. Let 

Remark 3.4. Hy could also be described as the F-points of the group 
obtained from H by applying the isogeny of factoring by the Lie algebra of 
( [I, Prop. V.17.4, p. 2151 

Corollary 3.5. Any arithmetic lattice in Hp is automorphism rigid. 

Proof. Let K p  : Fi + F2 be an isomorphism, where Fl and Fz are arith- 
metic lattices in Hp. Define 
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and 

A =  

Then Hp = H x A. By passing to a finite-index subgroup we may assume 
that r1 = 1-1 x rl,A, where l-1 = F1  n I fp  and rl,A = r1 n A. Let = 
~ ( F I , A )  c Z(F2) and r; = 'kp(r')). Then, by passing to a finite-index sub- 
group, we may assume Q n I f  = e and F; n A = e. 

Step 1. Let H A  : Z(Hp) -+ A denote the projection with kernel 3. Then 
H A  O ' k p  : F I A  -+ H ~ ( f t )  virtually extends to a virtual automorphism Y of A. It 
is easy to see that z ~ ( Z ( r 2 ) )  is closed in A and hence is a lattice. Because 
Z ( r i )  x has finite index in Z(Tl) ,  we know Xp(Z(T\)) x 'kp(Fl,A) has 
finite index in Z(l-2). Then, since [r', , ri] has finite index in Z(r')) and 

&([ri, r')]) c [ F h  rg c Pp = ker Q 

we conclude that 7 c ~ ( f 2 )  = m(Xp(F1,~)) has finite index in ^(Z(r2)). Hence 
H A  (0) is a lattice in A. By Proposition 1.6 H A  o X p  : F ~ A  -+ H A  (Q) virtually 
extends to a virtual automorphism Y of A. 

Step 2. Let n' : Hp Ã‘ H be the projection with kernel A, and let /i = do 
% I p i  : F', -+ zl(r;).  Then ftp  virtual extends to a virtual automorphism of 3. 

We claim that d(F;) is an arithmetic lattice in q. Because Fl = F') x 
F 1 , ~  and r 1 , A  c Z(r l ) ,  we have 

Then, because F; c F2, we conclude that r;Z(Hp) = r;Z(Hp) is a lattice in 
Hp/Z(Hp) E Hp/Z(Hp). So the image of d ( r 2  in H'JZ(f$) is a lattice. 
Also, 
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so d ( r i )  n Z($) is a lattice in [Hp, Hp] = Z ( 3 ) .  Thus, we conclude that 
xl(I'k) is a lattice in Jf.  Because z l ( r i )  is contained in the arithmetic lattice 
7?(F2), this implies that xl(G) is arithmetic. 

From the preceding paragraph, we know that pp is an isomorphism 
of arithmetic lattices in Hp. Let F? : H+ Hp denote the group iso- 
morphism induced by the Frobenius automorphism x + xP of the ground 
field F. Then there exist arithmetic lattices fi, F2 in H, such that Fr(Fi) = 
I-; and F ~ G )  = zl(ri),  and an isomorphism X = ~ r '  o o Fr : Î! -+ fi. 
By Corollary 1.16, we can virtually extend X to a virtual automorphism A 
of H. Then A- = F r o ~ o F r '  is a virtual automorphism of If virtually 
extending pp. 

Let Ap = Ah x Y, so Ap is a virtual automorphism of Hp. We can 
define a map 6 on some finite index subgroup of fi by ^(y) = ̂ ,(y)A/,(y)-'. 
By Lemma 2.1, < virtually extends to : Hp + Z(Hp). Then An = An( is a 
virtual endomorphism of Hp. Since ker(<) D [Hp, Hp] we conclude (much as 
in the proof of Corollary 1.12) that An is a virtual automorphism. It is easy 
to see that it virtually extends L>. 
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