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2716 LIFSCHITZ AND WITTE
1. INTRODUCTION

Roughly speaking, a discrete subgroup I" of a topological group G is
automorphism rigid if every automorphism of T" extends to a continuous
automorphism of G. However, the formal definition below is slightly more
complicated, because it allows for passage to finite-index subgroups.

Definition 1.1. It is traditional to say that a group I" virtually has a
property if some finite-index subgroup of I' has the property. It is con-
venient to extend this terminology to group isomorphisms.

o A virtual isomorphism from G; to G, is an isomorphism
A : G} — G, where Gj is a finite-index, open subgroup of G;.

o A virtual automorphism of G is a virtual isomorphism from G to G.

e A virtual isomorphism A from Gy to G, virtually extends an iso-
morphism A from I'y to I’ if there is a finite-index, open subgroup
I} of Ty, such that I} C Gy, and Alrs =M.

Definition 1.2. A discrete subgroup I' of a topological group G is auto-
morphism rigid in G if every virtual automorphism of T" virtually extends to a
virtual automorphism of G.

A classical example is provided by the work of Malcev.

Definition 1.3 (Rem™ M1L2-2y A gigcrete subgroup T” of a topological
group G is a (cocompact) lattice if G/T is compact.

Theorem 1.4 (MalcevPh6Com21LLp.34Y  1r T s 4 lattice in a
1-connected, nilpotent real Lie group G, then T is automorphism rigid in G.

In fact, every virtual automorphism of T extends to a unique auto-
morphism of G.

Malcev’s Theorem can be restated in the terminology of algebraic
groups (cf. (& after Thm. 212, p. 341y ‘R ecall that a matrix group G is unipotent if,
for every g @ G, there is some n € N, such that (g —1d)" = 0. (In other
words, 1 is the only eigenvalue of g.)

Corollary 1.5. Let T" be an arithmetic subgroup of a unipotent algebraic Q-
group G. Then T is an automorphism rigid lattice in G(R).

In this paper, we discuss the analogue of Malcev’s Theorem for uni-
potent groups over nonarchimedean local fields, instead of R. It is well
known that if G is a unipotent algebraic group over a nonarchimedean local
field L of characteristic zero, then the group G(L) of L-points of G has no
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nontrivial discrete subgroups. (For example, Z is not discrete in the p-adic
field Q,.) Thus the case of characteristic zero is not of interest in this setting;
we will consider only local fields of positive characteristic.

For abelian groups, it is easy to prove automorphism rigidity.

Proposition 1.6. Let I'y and Ty be lattices in a totally disconnected, locally
compact, abelian group G. Then every isomorphism X :T'1 — T2 virtually
extends to a virtual automorphism A of G.

Proof. Since I'1 and I', are discrete, and G is totally disconnected, there
exists a compact, open subgroup K of G, suchthat 'y NK=T>NK =e. Let
G =T1K andAGZ =T,K, so G, and G, are finite-index, open subgroups of
G, and define A : G; — G, by A(ye) = Ay)c fory € T} and ¢ € K. [ ]

For nonabelian groups, automorphism rigidity seems to be surpris-
ingly more difficult to prove, but we provide examples of automorphism
rigid lattices. Although we do not have a general theory, and we do not have
enough evidence to support a specific conjecture, the examples suggest that
there may be mild conditions that imply that arithmetic lattices are auto-
morphism rigid.

Notation 1.7.

Fix a prime p, and a power g of p.

I, denotes the finite field of g elements.

F denotes the field Fy((z)) of formal power series over F,.
F~ denotes F,[r"!], the F,-subalgebra of F generated by ¢~!.

Note that F is a local field of characteristic p. (Conversely, any local
field of characteristic p is isomorphic to F,((¢)), for some g - T2 148 p. 20]
The subgroup F~ is a lattice in the additive group (F,+).

Definition 1.8. Let G be a closed subgroup of GL(m, F), for some m € N,

e Two discrete subgroups T'1 and Ty of G are commensurable if
T'y1 NI, is a finite-index subgroup of both T'1 and T, 4. p- 8]

o A subgroup T of G is arithmetic if it is commensurable with
GL(m,F‘) NG (Cf [4, §1.3.1, pp. 60—62]).

By definition, if I'; and I'; are arithmetic subgroups of G, then I'y is com-
mensurable with I';. Thus, I'; is a lattice in G if and only if I'; is a lattice in G.

Definition 1.9 (cf. > = %2, Fix a power r of p, and let
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1y
Gy, = 0 1 yv,z€F).
0 0

So G, is a two-dimensional, unipotent F-group, and has arithmetic lattices.
Note that if r > 1, then G, is nonabelian.

— N

The following theorem describes the virtual automorphisms of any
arithmetic lattice in G,.

Definition 1.10. For any continuous field automorphism t of F and any
a € F\{0}, there is a continuous automorphism ¢., of G2, defined by

1 y z 1 dt(y) a*lz(2)
610 1 y]=10 1 at(y) |-
0 0 1 0 0 1

Let us say that ¢, is standard if
(1) there exist o € Gal(F,/F,), @ € F,\ {0}, and g € F,, such that

() = o(flar™ + ),

for all f{(r!) € F~, and

(2) there exists some nonzero b € F~, such that ab € F~.

Note that if ¢, , is standard, and T is an arithmetic lattice in G,, then ¢, ,(I')
is commensurable with I'. '

Theorem 1.11. Let

o T be an arithmetic lattice in G,; and
e L\ be a virtual automorphism of T'.

If r > 2, then there exist

e a standard automorphism ¢, of Gy,
e a finite-index subgroup T’ of T, and
e a homomorphism { : T' — Z(T'),

such that My) = ¢, ,(v) §(y), for all y € T".
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Corollary 1.12. If r # 2, then any arithmetic lattice in G, is automorphism
rigid.

Theorem 1.11 and Corollary 1.12 are proved in Sec. 2. The authors do
not know whether they remain true in the exceptional case r = p = 2.

Definition 1.13. Let [-,]: F*™ x F?" — F be a symplectic form, and, for
notational convenience, let Z = F. The corresponding Heisenberg group is the
group H = (F?" x Z, o), where

(v1,21)0 (v2,22) = (v1 + 02,21 + 25 + [v1, 12 ]).

We remark that, up to a change of basis, the symplectic form [, ] on F2™ is
unique, so, up to isomorphism, the Heisenberg group H is uniquely deter-
mined by m. Note that Z is the center of H.

Because H is isomorphic to a subgroup of GL(m + 2, F), namely,

(/1 x1 x - Xy z
1 N1
1 o 2 ||*1-sXm €F,
H =~ V- sVm €EF, 3,
: : zeF
0 1 Ym
\ 1 y

we may speak of arithmetic subgroups of H.

We assume that [-,-] is defined over F~, by which we mean that
[F~,F~] C F~. Then we may assume that the above isomorphism has been
chosen so that a subgroup I' of H is arithmetic if and only if it is com-
mensurable with (F~)*" x F~. Thus, H has arithmetic lattices.

Definition 1.14. We say T € GL(2m, F) is a symplectic similitude if there
exists some nonzero cr € F, such that, for all v,w € V, we have

I[T(U), T(W)ll = chIva W]].

For every symplectic similitude T € GL(2m, F), and every continuous
field automorphism 7 of F, there is a continuous automorphism ¢, of H
defined by

¢1,:(v,2) = (2(T(v)), 7(erz)).

Let us say that ¢, is standard if
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(1) there exist ¢ @ Gal(F,/F,), « @ F; \ {0}, and § @ F, such that
(A7) =A™ + )

for all f(+!) @ F; and

(2) there exists some nonzero b @ F~, such that bT € Mat(2m, F™).

Note that if ¢, is standard, then ¢ (I') is commensurable with I" for
any arithmetic lattice I" of H.

Theorem 1.15. Let

o I" be an arithmetic lattice in a Heisenberg group H; and
® A be a virtual automorphism of T'.

Then there exist

e a standard automorphism ¢, of H;
4 finite index subgroup T’ of T; and
e a homomorphism § : T" — Z(T'),

such that My) = ¢1.(Y)E(y), for all y e T".

Corollary 1.16. Any arithmetic lattice in a Heisenberg group H is auto-
morphism rigid.

Theorem. 1.15 and Corollary 1.16 are proved in Sec. 3.

Remark 1.17. Malcev’s Theorem 1.4 does not extend to all lattices in
solvable Lie groups. (See the work of A. Starkov {7 for a thorough dis-
cussion.) On the other hand, the Mostow Rigidity Theorem ! implies that
lattices in most semisimple Lie groups are automorphism rigid.

Superrigidity deals with extending homomorphisms, instead of only
isomorphisms. The Margulis Superrigidity Theorem [ Thm- VIL39, p. 230]
implies that lattices in most semisimple Lie groups are superrigid. (Lattices
in many non-semisimple Lie groups are also superrigid."'”) The Super-
rigidity Theorem also applies to arithmetic subgroups of many semisimple
groups defined over nonarchimedean local fields, whether they are of
characteristic zero or not %],
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2. ARITHMETIC SUBGROUPS OF THE TWO-
DIMENSIONAL UNIPOTENT GROUP G,

Recall that r and G, are defined in Definition 1.9. (Also recall the
definitions of p, ¢, F, and F~ in Notation 1.7.)

Proof of Theorem 1.11. LetT'| and I'; be finite-index subgroups of I', such
that A is an isomorphism from I'; to I',. Then A induces isomorphisms

AT F]/Z(F]) — Fz/Z(Fz) and )\,* : [1“1,1“1] — [1“2,1“2].

By identifying each of G»/Z(G,) and Z(G;) with F in the natural way (and
noting that I'; N Z(G,) = Z(I';)), we may think of I';/Z(T;) and [T';,T] as
F,-subspaces of F. By replacing I'; and T', with finite-index subgroups, we
may assume that these subspaces are contained in F~. Then, because A is an
isomorphism, we see that the conditions of Notation 2.3 are satisfied, so
Theorem 2.4 below implies that there exist

e a standard automorphism ¢, of G,, and
e a finite-index subgroup I'j of I'y,

such that A(y) & ¢, ,()Z(G), for all y € T'}.

Because ¢, ,(I'1) is an arithmetic lattice, it is commensurable with T,.
Thus, replacing I'| with a finite-index subgroup, we may assume that
¢.,T1) CT2. Then we may define (:T — Z(T3) by {(v)=2A(y)
$eal¥) O

Lemma 2.1. Let

o T be a lattice in a totally disconnected, locally compact group G,
o A be a locally compact, abelian group, and
o {:T' — A be a homomorphism.

Assume

(1) there is a finite-index subgroup T' of T, such that
I''n[G,G] c [,T], and
(2) T N[G,G] is a lattice in [G, G].
Then there is a finite-index, open subgroup Giof G, containing [G, G], such that
Clp: extends to a continuous homomorphism { : G — A that is trivial on |G, G).

Proof. Let G =G/[G,G], and let T and I’ be the images of T and I,
respectively, in G. Since {:I"— 4, and A4 is abelian, we see that
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[[,T] C ker{, so, by the choice of I, we have I" N [G, G] C ker{. Hence, {
induces a well-defined homomorphlsm [:T' - A.

By assumption, I' N [G, G] is a lattice in [G,G], so T is closed
113 p- 23] hence discrete. Thus, there is a compact, open subgroup X of G,
such that I N K =e. Extend {lz to a homomorphism {: I'K— A4 by
defining it to be trivial on K. Then ¢ induces a homomorphism £ : G — 4,
where G is the pullback of I'K under the canonical homomorphlsm
G- G. (]

Proof of Corollary 1.12. We may assume r > 2. (Otherwise, we must
have r = 1, which means G, is abelian, so Proposition 1.6 applies.) From
Theorem 1.11, we may assume there exist

[6, Thm.

e a standard automorphism ¢, of G;, and
e a homomorphism {: I'y — Z(I',),

such that A(y) = ¢,,(y){(y), for all y @ ';. From Lemma 2.1, we may
assume that there is a finite-index subgroup G; of G, such that G, contains
[G2,G3], and § extends to a homomorphism  : G}, — Z(G,) that is tnv1a1 on
[G2,Gy]. Let G = ¢, ,(GY). X

Define A : G’ — G, by AMg) = ¢,,,,(g)ﬁ(g), for g € G, so A is a con-
tinuous homomorphlsm that extends A. Because { is trivial on [G2, G|, we
know that A, 6, = @, liG, ¢, Also, because £(G}) C Z(G2) = [G2, G2, we
know that A(g) @ ¢.4(8)[G2,G] for all g @ G,. Thus, % induces an auto-
morphism of [G,, Ga], and an isomorphism G, / (G2, G2] — GY/[G2,G2), so &
is an isomorphism. O

2.1. Using Linear Algebra to Prove Theorem 1.11

The remainder of this section is devoted to the statement and proof of
Theorem 2.4. This result is a reformulation of Theorem 1.11 in terms of
linear algebra. The reformulation is not of intrinsic interest, but it clarifies
the essential ideas of the proof, and provides more flexibility, by allowing us
to focus on the important aspects of the internal structure of I that arises
from the structure of F~ as a polynomial algebra, without being constrained
by the external structure imposed by the group-theoretic embedding of T’
in Gz.

Notation 2.2. Define an F-bilinear form [-,-] : F~ x F~ — F~ by

[a,b] =d’b—ab".
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For any V,W C F~, [V, W] denotes the F,-subspace of F~ spanned by
{lo,w] |ve V,we W}

Notation 2.3. Throughout the remainder of this section, we assume that

o r>2
e V1 and V; are F,-subspaces of finite codimension in F~; and
o \*: V1 — Vyand A, : [V1, V1] — [V, V2] are Fy-linear bijections,

such that

Aula, ] = [V (a), A (B)],
for all a,b € V.

Theorem 2.4. There exist

® a subspace V' of finite codimension in V7,
e ac b 'F~, for some b c F~,

o o, €F,, withoa#0, and

e g € Gal(F,/F,),

such that

A (f) = ao(flar™" + ),
Sor all f(r™1) € V1.

Let us outline the proof of Theorem 2.4, assuming, for simplicity, that
V1=V, =F~. For any power Q > 1 of r, we may define an equivalence
relation on F~ \ {0} by a =¢ b iff a/b € FZ; let [a] denote the equivalence
class of a. For each a € F~, the subspace [a, F~] has infinite codimension in
[F~,F~], but Proposition 2.6 shows that [[a], F~] has finite codimension.
Because Corollary 2.10 shows that A*([a]) = [A*(a)], this codimension is a
useful invariant. Proposition 2.12 shows that it is closely related to the
minimum degree of the elements of [a]. Using this, Corollary 2.22 shows that
there is some @ ® F~, a constant k, and some Q, such that deg”A"(b) = k +
deg™b for all b=¢p a. Also, Corollary 2.24 shows that A* approximately
preserves the degrees of greatest common divisors. Then Proposition 2.25
shows that the restriction of A* to the F,-rational elements of some
equivalence class is of the desired form. Finally, we show that A* has the
desired form on all of F~.

Notation 2.5.

e We use dim W to denote the dimension of a vector space W over F,.
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o Let s =dimF,, so ¢ =p°.
e For a=Y7 ot € F~, with each o; € F,, we let deg"a=n if
oy # 0.

The following proposition is used in almost all of the following results.
Because the implication (=) of (1) requires the assumption that r > 2, it
seems that a different approach will be needed for the exceptional case
p=r=2
Proposition 2.6. (1) Let a,b @ V;\ {0} and assume a/b¢ Fy. The subspace
la, Vil + [b, Vi] has finite codimension in [V;, V3] if and only if a/b € F'.

(2) The subspace [V;, Vi] has finite codimension in F~.

Proof. Because [a, V3] and [b, V;] have finite codimension in [a, F~] and
[b, F~], respectively, we see that [a, V] + [b, Vi] has finite codimension in
[a,F~] + [b, F~]. Thus, in proving (1), we may assume that ¥; = F~.

(1) (<) There are some nonzero u,v @ F~, such that au” =bv'.
Let x =d'u— b'v.

We claim that x # 0. Otherwise, we have

a1 (a) = (aru)r _ (brv)r _ br2—1 (bv') = br2—1 (a),

so @' ="', This implies a/b @ F,, which is a contradiction. This
completes the proof of the claim.
For any y @ F~, we have

[a,uy] — [b,vy] = (Fuy —aw'y") — (bvy — bv'y")
= (a'uy — b'vy) — (au’y" — bv'y")
=xy—0,
so [a,F~] + [b, F~] contains xF~, which is of finite codimension in F~.
(1) (=) We may write b (uniquely) in the form b=x+y"a, with
x,y € F, and such that we may write x = >_ oz~ with o; =0 whenever

i = deg” (a)(mod r). (Note that we do not assume x,y @ F~.)
For u,v € F~, we have

[a,u] — [b,v] = (@"u — au”) — (b'v — bY)

— (@u— ) — (@ — (5 Y a))

= (d'u—bv)—alu—yv) —xv.

Whenever either deg™ (u) or deg™ (v) is large, it is obvious that deg™ (a’'u —
b'v) is much smaller than max{deg™ (u — yv)",deg™v"}. Also, we may assume
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x # 0 (otherwise, we have b/a = y" € F’, as desired), and, from the defini-
tion of x, we know that deg™ x # deg”a(modr), so

deg™ (a(u — yv)" — xv") = max{deg ™ (a(u — yv)"),deg™ (xv")}.
Therefore, we conclude that

deg” ([a, 4] — [b,v]) € {deg™ (a(u — yv)"), deg™ (xv")}

must be congruent to either deg™(a) or deg™ (x), modulo r. Thus, because of
our assumption that r > 2, we see that [a, F~] + [b, F~] does not contain
elements of all large degrees, so it does not have finite codimension in F~.
Then, from (2), we conclude that it does not have finite codimension in
[F~,F].

(2) This follows from the above proof of the implication («=) of (1). [

Corollary 2.7. Leta;,a; € V;\ {0}. We have ay/a; € FT if and only if there
is some nonzero b & V1, such that the subspace [a;, Vi]+ [b, V3] has finite
codimension in [V, V3], for j=1,2.

Proof. (=) Choose b @ a;F" N V;\ (Fya; UF,a;). Then Proposition 2.6(1)
implies the desired conclusion.

(<) From Proposition 2.6(1), we have a;/b € F” and a;/b € F', so
ajja, @ F'. a

Lemma 2.8. Let aj,ar € F~, and let Q > 1 be a power of r, such that
M (@(F)enm) =a(F)2n V..

Define

e subspaces W) and W, of finite codimension in F~ by a;
(F)enV;=aWs;

oyt Wi — Wy by M (aw?) = ay*(w)?; and

o o [Wi, W] — [Wa, Wa] by A (a'w@) = a5y, (w)©.

Then p* and u, are By-linear bijections, and we have

pela, b] = [w*(a), (D],

for all a,b @ W1.
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Definition 2.9. Let Q > 1 be a power of p. An element of F~ is Q-separable
if it is not divisible by a nonconstant Qth power.

Corollary 2.10. Leta € F~, and let Q > 1 be a power of r, such that a is Q-
separable. T hen there is some Q-separable b € F~, such that k*( (F )Qﬂ
V1) = b( ) N ¥Vs.

Proof. Assume, for the moment, that Q = r. For a1,a; € F~ \ {0}, define
a) = ay iff ay/a, &« F". For nonzero a,b € V1, we see, from Notation 2.3,
that [a, V1] + [, V1] has finite codimension in ¥ if and only if [A*(a), V2] +
[A*(B), V2] has finite codimension in ¥,. Therefore, Corollary 2.7 implies
that @ = b iff A" (@) = A" (). The equivalence classes are precisely the sets of
the form ¢(F~)" N ¥V}, for some r-separable ¢ € F~, so the desired conclusion
is immediate.

We may now assume Q > r.Let Q' = Q/r. There is some Q'-separable
d € F~, such that a € ¢ (F~)2. By induction on 0, we know that there is
some Q’-separable b € F~, such that A" (¢(F)¢ n Vl) —V(F )NV,

From the definition of d', we know there is som€ @; € F~, such that
a= a’alQ’ Then, because a is Q-separable, we know that a; is r- separable

Define W1, W, p*, and u, as in Lemma 2.8 (with O/, &, and ¥ in the
places of Q, a, and b, respectively). Because a; is r-separable, we know, from
the case Q = r in the first paragraph of this proof, that there is some r-
separable b; € F~, such that p*(a;(F~)" N W) = b1(F~)" N W,. Therefore

M (a(F)2N V) = Vd(a

as desired. O

Lemma 2.11. Letac V;, let Q > 1 be a power of r, and let k be the codi-
mension of V; in F~. Then there is some nonzero bec F~ with
deg™h < r2(k+ 1), such that [a(F~)2 N V;, V;] contains a subspace of codi-
mension 2k in the ideal a’b9/"F~; that is,
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B0 F-
m 5 <2k

la(F)* NV, Viinab2/TF-
Proof. Choose ¢ € F~\ F,, such that ac? € V; and deg c < k+1; let
b=c" —c. For y € F~, we have

di

ab?y = a' (@ — 2y
= (d'c®y — acly") — (@'c®"y — ac®y")
= [ac?,y] — [a,c®/")]
€ [ac?, F7] + [a,F],

so [ac?, F7] + [a, F~] contains a"b@/"F~.

The codimension of [ac?, V] in [ac?, F~] is < k, and the codimension
of [a,Vi] in [a,F~] is also <k. Thus, the conclusion of the preceding
paragraph implies that [ac?, V] + [a, V] contains a subspace of codimen-
sion 2k in a"h%/"F~. Because ac and a belong to a(F~)? N V;, the desired
conclusion follows. -

Proposition 2.12. Let ac V;, let Q > 1 be a power of r, and let k be the
codimension of V; in F~. Then

F-
dim =g(r— 1)(deg"a) + S+ X,
GF2 NV T (r—1)(deg"a)

where

e S=smax{deg c|'|a,c € F}, and
o 0 <X <sr(k+1)0Q+ 3k.

Proof. Choose b as in Lemma 2.11, and let I = a’p9/"F~ and F~ = F~/I.
It suffices to show

dim F-/[a(F-)2,F-] > s(r — 1)(deg™a) + S (2.13)
and

dim F~/[a, F-] < S+ sP*(k+1)Q/r + s(r — 1) deg™a. (2.14)

Let uy,u,...,uy be the irreducible factors of a"p2/". Then we may

write
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— 1, . ,N
a=u"uy? -l

per = wi} U,

and
aher = u’]‘ldzlz . u;",

where n; = rm; + g;.
From the Chinese Remainder Theorem, we know that the natural ring
homomorphism from F~ to

&L
j=1 u;jF—

is an isomorphism. Thus, we may work in each factor F~/ uJ'.’j F~,andadd up
the resulting codimensions.

Define ¢;: F~ — F~/(u;"F~) by ¢;(x) =ax’. Then, letting m}=
m; — |m;/r}, we have

kerg, = {x @ F™ | u;nf|x},

$0
. F- . ker
dim — — = dim — ¢;
uj F + a(F ) uj F
. ker ¢;
= Sdlqu u;ij_

= s(rm; — m))deg ™y,
=s5(r— l)deg"u}"j + s|m;/r|deg” u;.

We have a" @ uJ'.'"fF =, 50

[a(F ), F ] cd(F)YF +a(F)2(F)
Cu"F~ +a(F) (2.15)

and
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la, F ]+uw"F =w"F +a(F). (2.16)

From (2.15), we have
Q r n; 2 dim Q r rm;
[a(F-)*, F-]+u/F~ l[a(F~)*, F-] +u; "F~
=
u]'-ij— +a(F-)
= s(r—1)deg”u;” + s[my/r| deg” w,

dim

> dim

SO

dim F~/[a(F-)2,F-] > Z s(r — 1) deg™ u" + s|my/r deg” w)
J——
=s(r—1)deg a+S.
This establishes (2.13).
Because dim ()" F~ /u}’ F~) = s¢;deg™ w;, and from (2.16), we have
F~- . F-

dim . < dim - + sg;deg™ u;
[aF1+diF~ e F]tu e Y

= dim £ + sg;deg”
~ R ey YR
= s(r — 1)deg” u]'-"’ + s{m;/r] deg™ u; + sg;deg™ u,

SO

N
dim F~/{a,F~ ]]SZ (r—1)deg”™ u’+s\_mj/rjdeg u;
=1

+ sgjdeg™ w))
s(r—1)deg” a+ S+sdeg™ bO"
<s(r—1)deg”a+S+sr(k+1)Q/r.

I

This establishes (2.14).

Lemma 2.17. For any a @ F~ and any n > 0, we have
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la, F7 )+ [, F ) c[a”,F]+[1,F].

Proof. For any v € F~, we have

[v,a] =v'a—va

=va—("d —vd)-(Va" - v’a’z) —vd
=[v'a,1] + [v",d"] + [vd’, 1]
e[l,F]+[d,F].
Then the proof is completed by induction on x. O

Proposition 2.18. There is some N € N (depending only on the codimensions
of Vi and V,, not on the choice of Vi, Vo, A*, or A.), such that
deg” A*(1) < N.

Proof. Let k be the codimension of ¥;. Choose a power Q > 1 of r so large
that 7\.*(1) is Q-separable. Then Corollary 2.10 implies A*((F~)2 N Vy) =
MV (O)(EFE) NV

Choose ¢ € F~ \ F,, such that ¢? € ¥; and deg™ ¢ < r + 1. We have

[(FH)e vy, vi] o [1, 1] + [2, 7]
[LF]+[?, F]

DILF ]+, F] (see2.17)
(c’2 ¢)F~ (proof of (2.11)).

Q

So [(F~ )Q NV, V1] has small codimension in [V, Vi]. Therefore
[[A.*(l)(F 2N Vy, V2] = MJ(F)2 N V1, V1] must have small codimension
in [V3, V3], so deg™ A"(1) must be small, as desired. |

Corollary 2.19. There is some N € N (depending only on the codimensions
of V1 and V, not on the choice of V1, Vs, M, or M), such that, for every power
O>1 of r and every Q-separable element a of Vi, we have
deg™ A*(a) —deg™ & < ON, where d is the Q-separable element of \*(a)F2

Proof. Apply Proposition 2.18 to the map p* of Lemma 2.8. O
Proposition 2.20. There is a power @ > 1 of r, and some d > 0, such that, for

every v € V; with deg™ v > d, there are Q-separable elements vy, ..., v, of Vi,
such that v =1v; + -+ v, and deg” v; <deg v, forj=1,...,m
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Proof. Let k be the codimension of V; in F~, and choose Q > k+4 so
large that, for every m > Q, the subspace V; contains elements of degree m
whose leading coefficients span F,. For any element of ¥V} of degree m, we
show that there is a Q-separable element of V; of degree m with the same
leading coefficient.

Let a be the leading coefficient of some element of V| of degree m.
Then V; contains exactly " * elements of degree m with leading coeffi-
cient a.

On the other hand, if a is an element of F~ that is of degree m and is
not Q-separable, then a must be of the form a = x%y, where x is an element
of F~ of some degree j, and y is an element of F~ of degree m — Qj. Thus,
the number of such elements a of degree m is no more than

] i oi+1 2 ol (1-0) qm+2 qm+2 0+4
_S- J - — E ) - _1 m—
j=1q - =7 j=1q1 _qQ‘l—lqu‘2<Q

Therefore, not every element of V; of degree m whose leading coefficient is «
can be such an element a, so ¥; has a Q-separable element of degree m with
leading term o, as desired. O

Corollary 2.21. For each b € F~, there exists N @ N, such that, for every
a € b(F~) NV, we have |deg™ X*(a) — deg”a| < N.

Proof. By symmetry, it suffices to show deg™ A*(a) < deg™ a + N. We may
assume b is r-separable. By combining Proposition 2.20 with Lemma 2.8, we
may choose a power Q > 1 of r, such that each element of 5(F~)" is a sum of
Q-separable elements of 5(F~)" of smaller degree. Thus, we may assume q is
Q-separable (and our bound N may depend on Q).

Define S as in the statement of Proposition 2.12, and let k; be the
codimension of V;. Because a € b(F~)" and b is r-separable, we have
S = s(deg” a —deg™ b)/r, so Proposition 2.12 implies

: F-
dim
[a(F-)2 N vy, 7]
deg™ b
8 2 4 (sr(ky +1)Q + 3k1)

r

—s(r—1+1/r)deg” a

N

is bounded. Similarly, letting &’ be the Q-separable element of A*(a)F?, and
¥’ be the r-separable element of A*(b)F", we know that



2732 LIFSCHITZ AND WITTE
dim £
[@(F-)2 N V2, V3]
deg™ ¥
+ (sr(k2 -+ 1)Q + 3k,)

r

—s(r—1+1/r)deg”d

<s

is bounded. Then, because

[V, V1l —di V2, V2]

dim 0 = dim 0 ’
[@(F2 AV, V1] [@(F-)2 Vs, Vi

we see that |deg” @' —deg™ a] is bounded. Corollary 2.19 asserts that
ldeg™ A*(a) — deg™ 4| is also bounded. O

Corollary 2.22. For each b € F~, there is a power Q of r, such that, for
every aj,a; € b(FT)2 NV, we have deg™ A*(a)) —deg™ A*(ax) = deg™ a
—deg” ar.

Proof. Choose N as in Corollary 2.21. Now choose @ > 2N. Because

deg™ A*(a1) = deg™ A*(az) (mod Q)

and

deg”a; =deg” a; (mod Q),
we have

deg” A*(a1) —deg” a1 =deg” A" (@) —deg” a; (mod Q),
so, from the choice of N and @, we conclude that

deg™ A*(a1) — deg™ a1 = deg™ A*(a2) — deg™ as. -

Proposition 2.23. There is a constant C > 0, such that, for all a1,a; € V3,
and every power Q of r, we have

[vi, Vi
m 0 0
l[ai(F-)* N Vi, Vi] + [ax(F)* NV, V]
< Cdeg™ ged{ay, a3) + C.

sdeg™ ged(ay,a2) — C < di
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Proof. Because
[ai(F)2 NV, Vil + [a2(F)E 0 Vi, Vi) € ged(ar, a)F,

the left-hand inequality is obvious.

Let ¢ =ged(ay,a;) and let & be the codimension of FV;. Then
Lemma 2.11 implies that there exist nonzero by,b, € F~ with
deg™ by < r*(k+1), such that [a;(F~ Y2 " V;, Vi] contains a subspace of
cod1mens1on 2k in a’b ofr "F—, for j=1,2. Then, lettmg b = b1by, we have
deg b < 22(k + 1), and [[al(F ¥n v Vil + [a2(F~)2 N V;, V;] contains a
subspace of codimension 4k in the ideal I = ¢"b2/"F~. Thus, it suffices to
show that the codimension of [a;,F~]+ [a2, F~]+ I in F~ is bounded
above by s(r + 2)deg™ ¢+ sdeg™ b.

Let u, ..., uy be the irreducible factors of ¢’b2/7, so we may write

c=uyt -y,
b=uf---uy,

and

C’bQ/' = u’lll ...unNN,

where n; = rm; + ¢;Q/r. From the Chinese Remainder Theorem, we have
F~ /I~ eaj’ilF ~/uF~, so we may calculate the codimension in each factor,
and then add them.

Fix j. By interchanging a; and a, if necessary, we may assume that

J{ a;. It suffices to show that

F-
|[a1,F 1+wvF-—

thus (because m;j+¢ >1), we need only show that u]('+1)mj+lF T C
[ai,F-]+u/F~. To show this, let M be minimal, such that
uMtF- [[/a F~] + u/F~. (Obviously, we have M < n;; we wish to show
M<(r+1)m.) Suppose M > (r+ 1)m;. (This will lead to a contradiction.)
We have m; + r(M — rm;) > M, so

< s((r + 2)my + g;) deg™ uy;

uF~ = ]""‘u]M "
C dlu) ™ F " +uVF-
C [a, u]M—"""F_]] + alu]'-(M_'mj)F_ +uF~
Cla, F ]+ u;"f+'(M"'"")F“ +uF~
Cla, F 1+ u™ F~ +uwyF-
= [[al,F_]] + ™.
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This contradicts the minimality of M. O

Corollary 2.24. There is a constant C > 0, such that, for all a,b € V;, we
have

degLCd(a,b) ~ C < deg™ged(A*(a), A" (b)) < Cdeg™ged(a,b) + C.
Proposition 2.25. There existb &« V1, ' € V3, a, B € Fy, and some Q that is
a power of both r and g, such that, for all b f(t~2) & b(F,[t™1])¢ N V1, we have
AbA2) = fat 2+ B).
Proof. Corollary 2.22 shows that, by replacing F; with some (F ‘)Q NV
(using Lemma 2.8), we may assume deg™ A*(a) = deg™ q, for every a € V1.
The terms —C and +C in Corollary 2.24 are significant only when
deg™ ged(a, b) is small. On the other hand, deg™ ged(a, b) can never be small
(and nonzero) if a, b @ (F~)2 for some large Q. Thus, by replacing ¥ with
some (F~)? N ¥} (using Lemma 2.8), we may assume

2 deg™ ged(a, ) < deg” ged (1" (a), (1)) < Cdeg™ ged(a,),

for every a,hb@Vi. In particular, gecd(a,b)=1 if and only if
ged(M'(a),2"(B)) = 1.
Let k& be the codimension of V7 in F~. Choose some

N> 4(C(C+ k)p“H+ 4k +1).

Choose a power Q of r, such that Q > Nk. There is some nonzero
b & F,[r!], with deg™ b < Nk, such that

b(F, + t 9F, + t 2F, +--- + t VOF,) C V1.

Because deg™ b < Q, we know that b is Q-separable, so, by applying Lemma
2.8 to b(F~)2 N ¥, we may assume

Fo+ 7 'Fp+ t2Fp+ -+ +1VF, C 11.
By composing A* with a map of the form f(t~1) — yflar™! + B), for

some «, f,v € F, (with ay # 0), we may assume A*(1) = 1 and A* (1) = ¢,
$0 Mg g, =1d.
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Let Vf" = V1 NF,[r1]. It suffices to show A*(a) = a for every a @ Vf".
Suppose 1*| x # Id, and let
1

m = min{deg™ a|A*(a) # a,a € Vf”} >2.

Let A = A*(a) — a, for any monica € Vf” with deg™ a = m. (Note that
the definition of m implies that A is independent of the choice of a.)

Case 1. Assume m < N. Let u be any irreducible element of F,[r"1] with
degu<m-—1.

We claim that Vf" contains a (monic) element a, such that deg™ a =m
and ula. To see this, let b € Vf" with deg™ b = m. There is some a @ F~, such
that u|la and deg™(a—b) <deg” u < deg™ b. Because deg” b < N, this
impliesa—b & V{’,soae V,’.

Because u|a (and A*(u) = u), we know ged(u, A*(a)) # 1. Because u is
irreducible, we conclude that u|A*(a). We also have u|a, so this implies
u|(AM*(a) — a) = A.

Thus, we see that A is divisible by every irreducible polynomial over F,
of degree <m—1, so A is divisible by ¢?" —¢!. Therefore
deg” A > pm~!. However, we also know deg” A <deg” a=m (and all
nonzero polynomials in F,[¢~!] are monic, so deg™ A < mif p = 2). Thisis a
contradiction.

Case 2. Assume m > N. Choose some monic a @ VF", with deg™ a = m. By
subtracting a polynomial of degree <k, we may assume ¢t *+D|g; let
u = a/t-®1). There is some nonzero x € F,[¢"!] with deg™ x < k, such that
ux € Vf". (Note that deg” ux <k+deg” u <m.)

Let

C={ceF,[r']\{0}|deg” c < C},
and

b= H c,
deg” c<C+k

so deg™ b < (C+ k)p©+*+1, Now, for each c @ C, let

U

u5=(u+c)x and ui:g_c—d(T,b)
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For ¢ € C, we have {cx, cr-®D} C V17, s0 u, € V3? and a + cr~¢*1) € Vi*.
Also, because a=utr~*+), we have (u+c)/(a+ ct=* D). Then, since
A(u+c)=u+c, we have deg™ ged(A*(a+ ct=* 1) u+¢) > (deg™ (u+
¢))/ C, so
deg™ged(A, 1)) > degged(A,u;) — deg™b
= deg~ged(\*(a + cr~*+1)
—(a+ct=®D) u) —deg™h
S deg™(u+c¢)
- C
m—k—1
> A
C

—deg™b

_ (C+ k)pC+k+1

m
> —.
—4C

Also, for ¢y, ¢; € C, we have
deg™ ged(ue,, ue,) < deg™ (1, — u,,) =deg™((c1 — e2)x) < C+ k,

so we see that ged(u, ,u;, ) = 1 whenever ¢1 # c. Thus, we conclude that
m
TA>pf—>m.
degA>p ic m
This is a contradiction. a

Proof of Theorem 2.4. Choose b, b',a,8,Q as in Proposition 2.25. By
replacing A* with x— (¥)'A*(bx) and replacing A, with x—s (&/)~"+D
A*(F*1x), we may assume b = b’ = 1. Then, by composing A* and A, with
t 1 al(r71 — B), we may assume o = 1 and B = 0. Thus,

M(a) = afor all a @ F,[t 2] N V. (2.26)

We wish to show that there is some o € Gal(F,/F,), such that, for every
a @ V1, we have A*(a) = a(a).

Step 1. For each a€ Vi, there is some o @ Gal(F,/F,), such that
A" (@) = o(a). Fix a € V1. Choose C as in Corollary 2.24, let k be the codi-
mension of V7, and choose b € ]Fp[t—Q] N V1, such that

deg™b
C

— C > Q(s(deg™a + deg"A*(a)) + k).
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Let
c= I G-o@) eFl,
s€Gal(F, /F,)
and choose some nonzero x € F,[¢~1], such that (cx)? @ V; and deg™ x < k.
We have
Q(deg™ged(h—1"(a),c)+k) > deg™ged(b—A*(a), (cx)?)
=deg gcd(\* (b—a),A*((ex)?))  (see2.26)
N deg~ged(bh—a,(cx)?)
- C
(deg™h)

=2 _c (b-a)lo)

> Q(s(deg”a+deg™A*(a)) +k)(choice of b).

—C (choiceof C)

Thus, from the definition of ¢, we conclude that there is some ¢ @
Gal(F,/F,), such that

degged(b — A" (a),b — a(a)) > deg”a+ deg A*(a)
= deg”g(a) + deg A" (a)
> deg” (o(a) — A" (a))
= deg™ ((b —1"(a)) — (b — o(a))).

Therefore (b —A*(a)) — (b—a(a)) =0, so A*(a) = o(a).

Step 2. There is some o @ Gal(F,/F,), such that \*(a) = o(a) for every
a @ V1. For v € F~, let 7 denote the leading coefficient of v. Choose b € V7,
such that b generates F,, that is, F;, = F,[b]. From Step 1, we know there is
some ¢ € Gal(F,/F,), such that A*(b) = o(b). We show A*(a) = o(a) for
every a @ V.

Given a € V1, choose some ¢ € V7, such that ¢ generates F,, and
such that deg”c¢ > max{deg a,deg b}. From Step 1, there exist ¢’,¢” @
Gal(F,/F,), such that A*(c) =0¢'(c) and A*(a+c) =0"(a+c). Because
deg™c > deg”a, we have ¢ = a+ ¢ and A"(a + ¢) = A*(c). Thus, we have

o"(@) =c"(a¥c)=0"(a+c) =N (a+c)=1"(a) +1"(c) =A"(c)
=d'(e).

Because ¢ generates 'y, we conclude that ¢” = ¢’. Therefore
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M@ =M@a+c)—A()=d"(a+c)—d(c)=d(a+c)—d(c)

_Similarly, we have A*(b) = o’(b). Because we also have A*(b) = o(b),
and b generates I, we conclude that ¢ = g.
Therefore A*(a) = ¢'(a) = g(a), as desired. O

3. ARITHMETIC SUBGROUPS OF HEISENBERG GROUPS

Proof of Theorem 1.15. Let I'y, I'; be finite-index subgroups of I', such
that A : Ty — I'; is an isomorphism. Let I';, i = 1,2 be the image of I'; in
F2™ under the projection H — F?™ with kernel Z. By passing to a finite-
index subgroup, we can assume that I'; ¢ (F~)*". Since Z(I'}) =T;N Z,
we can identify I; with I;/Z(T;), so A induces an isomorphism
}_\, : fl — r_z.

Step 1. We can assume \(av) = a\(v) for all a € F~ and v € Ty, such that
av € I';. For each nonzero v € I'y, let 4, = {a @ F~ | av € T';}. Note that 4,
is a finite-index subgroup of F~. For g,/ @ I';, we have Fg = Fh if and only
if Cr,(g) = Cr,(h), so A(A,w) = FA(v) N T,. Thus, we can define a function
Ty : Ay — F by 1,(a)M(v) = A(av). Let w € I'1 be such that v, w] # 0, and let
a@A,NA,. Then

Thus
Ty = T On 4, N 4,, whenever [v, w] # 0. (3.1)

For any nonzero v,w @ I'; and any a € 4, N 4,,, since I'; Na!T7 is of
finite index in I';, we can find u €T so that a€ 4,, [u,v] #0, and
[u, w] # 0. Then it follows from Eq. (3.1) that 7,(a) = 7,(a) = 74 (a). Since
a € A,N A,, was arbitrary, we conclude that
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7, = 1, on 4, N A,, for all nonzero v,w € I';. (3.2)

For an arbitrary a @ F~ we can always find w € I'; so that a € 4,,, thus we
can define a function 7 : F~ — F, by t(a) = t,(a). Eq. (3.2) implies that 7 is
well defined. Note that (1) = 1. Since

t(a)1(b) [M(w), A(v)] = [A(an), A(bv)]
= MJau, bv])
= A([abu,v])

= [A(abu), M(v)]
= 1(ab)[A(), A(v)],

we have t(a)t(b) = (ab). Since 7 is also an additive homomorphism, and A
is an isomorphism, we conclude that 7 is a ring automorphism of F.
Therefore t(f(t!)) = o(f{ar™! + B)) for f{r"!) & F~, where ¢ € Gal(F,/F,),
« @« F;\ {0}, and p € F,;. Hence, by composing with the standard auto-
morphism T4 -1, We obtain the claim.

Step 2. We may assume that Mzr ) is the identity map. Let vy, wi,vo,wy € T
with [v;, wi] # 0. There is a ﬁmte 1ndex subgroup 4 of F~, such that av; € T,
for every a € A and i = 1,2. Then, for all a € 4, Step 1 1mphes that

Maoi, wil)) _ Mo wil)

alv;, wi] [v;, wi]

Thus, choosing a,a, @ A4, such that aj[v;, wi] = asffva, w2], we have

Mo, mil) _ Mar[or, wil) _ Maafva, wa]) _ Moz, wa])

[o1, w1] vy, wi] @[, wo] [o2,wa]
We conclude that A(z)/z = C is constant, for z & [[';,T;] \ {0}.

By composing with a standard automorphism ¢ry, such that
cr = 1/C, we may assume that C = 1, so Aj ryry = 1d. Then by replacing
I'; with a finite-index subgroup I'j, such that I'NZ c [I,T], we may
assume Al = Id.

Step 3. A : T'| — T'| can be extended to a symplectic similitude A : " — F2™,
with c5 = 1. By Step 1, A(av) = aA(v) for all a @ F and v € Ty such that
av & ;. Because I'| is commensurable with (F~)*", this implies that A
extends (uniquely) to an F-linear map A : F2" — F?™, For any v,w @ I';, we
have



2740 LIFSCHITZ AND WITTE

[A®), Aw)] = [M(v), A(w)] = M[v, w]) = [, ],

by Step 2. Because I'; spans F2™, this implies that A is a symplectic simili-
tude, with ¢ = 1.

Step 4. Completion of the proof. Define A:H— Hby A(,2) = (A(v),2).
From Step 3, we see that A is an automorphism. Denote by £ : I'y — Z(H)
the map defined by {(y) = f\(y)_lk(y). Then { is @ homomorphism and
AY) =E(VA(Y), fory €T O

Proof of Corollary 1.16. From Theorem 1.15, we may assume that the
following exist

e a standard automorphism ¢y, of H; and
e a homomorphism ¢ : 'y — Z(H),

such that A(y) = ¢1.(y){(y) for all y @T'1. By Lemma 2.1, there exists a
finite-index open subgroup H of H, containing [H, H], such that { extends to
{:H— Z(H), Let H = ¢TT( ). )

Define A : H— H by A(h) = b7 (h )C(h), so that A is a continuous
homomorphlsm virtually extending A. Because £ is trivial on [H H], we have
Al[HH] ¢TT|[HH], s0 AI[HH] is an automorphism. Because £(H) C Z(H) =
(H, H], we see that A induces an isomorphism H/[H, H| — H'/[H,H). So A :
H— H'is an isomorphism. 0

Definition 3.3. Let

(/1 ¥ & - X 2z
1 b
1 0 ¥ X1,y Xm € F,
HPZ X . yl,...,ymGF,
- : zeF
0 1
. 1 )

Remark 3.4. H, could also be described as the F-points of the group

obtained from H by applying the isogeny of factoring by the Lie algebra of
Z(H) [1, Prop. V.17.4, p. 215].

Corollary 3.5. Any arithmetic lattice in H), is automorphism rigid.

Proof. Let A, : Ty — I'; be an isomorphism, where I'; and I'; are arith-
metic lattices in H,. Define
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((1 £ X o &z )
1 bt
1 0 J’g X1y Xm € F,
H;:< . . yla"‘LymEFa
T : zeF
0 1 ¥
\ 1
/
and
1 0 0 z
1 0lz= Y ax™,
4 1 .0 9 40 Goi)
neN,
0 1 0 o; € By
1

Then H, = H, x A. By passing to a finite-index subgroup we may assume
that I'; =T xI'; 4, where I} =T NH, and I' 4 =T1NA4 Let Q=
Ap(T1,4) C Z(T'2) and T = A,(I"}). Then, by passing to a finite-index sub-
group, we may assume QNH, =eand ;N4 =e.

Step 1. Let ny: Z(H,) — A denote the projection with kernel H,. Then
n4ohp : T 4 — m4(Q) virtually extends to a virtual automorphism ¥ of A. It
is easy to see that n4(Z(I',)) is closed in 4 and hence is a lattice. Because
Z(I'}) x Ty 4 has finite index in Z(I";), we know A,(Z(I')) x A,(I"1 4) has
finite index in Z(I';). Then, since [I'},I"}] has finite index in Z(I"}) and

)\’P([Fllvrll]) C [F121r12] - H;, = ker T4

we conclude that m,4(Q) = 74(A,(I'1,4)) has finite index in 74 (Z(I";)). Hence
n4(Q) is a lattice in 4. By Proposition 1.6 m4o0h, : I'1 4 — m4(Q) virtually
extends to a virtual automorphism ¥ of A4.

Step 2. Let o' : H, — H’ be the projection with kernel A, and let p, = n'o
Aplp : T = @'(T5). T hen Wy Virtual extends to a virtual automorphzsm of H,.
We claim that n'(T"}) is an arithmetic lattice in H},. Because I'; = Fl
I'gand Iy 4 C Z(T';), we have

T, =T x Q C TZ(H,).
Then, because Iy C I';, we conclude that T',Z(H, p) “Z(Hp) is a lattice in

H,/Z(H,) = p/Z( ). So the image of n'(T) in H’/Z(H;) is a lattice.
Also,
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n’(l“'z) N Z(H;,) > [1“’2,1“’2] =[5, T3],

so @'(I'y) N Z(H,) is a lattice in [H), Hp] Z(H,). Thus, we conclude that
n'(Th)isa lattice in H' . Because = (T,) is contained in the arithmetic lattice
7'(I'2), this implies that #/(I';) is arithmetic.

From the preceding paragraph, we know that y, is an isomorphism
of arithmetic lattices in H,. Let F;: H — H, denote the group iso-
morphism induced by the Frobenius automorphism x — x” of the ground
field F. Then there exist arithmetic lattices I“l, I“z in H, such that Fs (Fl)
I} and Fx([;) = #(I'}), and an isomorphism A = Fr! op,oFr : It =T,
By Corollary 1.16, we can virtually extend A to a virtual automorphlsm A
of H. Then A' = FroAoFr~! is a virtual automorphism of HI’J virtually
extending p,.

‘ Let A, = A x ¥, so A is a virtual automorphism of H,. We can
define a map ( on some finite 1ndex subgroup of I'y by {(y) = p(y)qp(y)_l.
By Lemma 2.1, { virtually extends to { : H, — Z(H,,). Then A, = A,{isa
virtual endomorphism of H,. Since ker({) O [H,, H,| we conclude (much as
in the proof of Corollary 1.12) that A, is a virtual automorphism. It is easy
to see that it virtually extends A,. O
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