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Almost-Minimal Nonuniform Lattices 
of Higher Rank 

1. Introduction 

We find the minimal elements in three different (but essentially equivalent) par- 
tially ordered categories of mathematical objects: 

(A) finite-volume, noncompact, complete, locally symmetric spaces of higher 
rank; 

(B) nonuniform, irreducible lattices in semisimple Lie groups of higher real rank; 
and 

(C) isotropic, simple algebraic Q-groups of higher real rank. 

The main interest is in categories (A) and (B), but the proof is carried out using 
the machinery of (C). (For completeness, we also provide a generalization that ap- 
plies to algebraic groups over any number field, not only Q.) Justification of the 
examples and facts stated in the Introduction can be found in Section 2. 

1A. Locally Symmetric Spaces 

It is well known that if G is a connected, semisimple Lie group and R-rank G 2 
2, then G contains a closed subgroup that is locally isomorphic to either SL3 (R) 
or SL2 (R) x SL2(R). Passing from semisimple Lie groups to the corresponding 
symmetric spaces yields the following geometric translation of this observation. 

1.1. FACT. Let 2 be a symmetric space of noncompact type, with no Euclidean 
factors, such that r a n k i  > 2. Then i contains a totally geodesic submanifold 
X' such that X' is the symmetric space associated to either SL3(R) or SL2(R) x 
SL2(R). In other words, X' is isometric to either 

(1) SL3(R)/SO(3) E (3 x 3 positive-definite symmetric real matrices of deter- 
minant 11 or 

(2) the product IH12 x IH12 of two hyperbolic planes. 

In short, among all the symmetric spaces of noncompact type with rank $: 2, 
there are only two manifolds that are minimal with respect to the partial order de- 
fined by totally geodesic embeddings. Our main theorem provides an analogue of 
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this result for noncompact finite-volume spaces that are locally symmetric, rather 
than globally symmetric, but in this setting the partial order has infinitely many 
minimal elements. 

1.2. THEOREM. Let X  be a finite-volume, noncompact, irreducible, complete, 
locally symmetric space of noncompact type, with no Euclidean factors (locally), 
such that rank X  > 2. Then there is a finite-volume, noncompact, irreducible, 
complete, locally symmetric space X' such that X' admits a totally geodesic, 
proper immersion into X  and the universal cover of X'  is the symmetric space as- 
sociated to either SL3(R), SL3 (C), or a direct product SL2(R)In x SLz (C)", with 
m + n  > 2 .  

1.3. REMARK. The symmetric space associated to SL3 (R) is given in Fact 1.1(1). 
The others are: 

(1) SL3(C)/SU(3) E {3 x 3 positive-definite Hermitian matrices of determi- 
nant I}; and 

(2) the product (HI2)'" x (HI3)" of m hyperbolic planes and n hyperbolic 3-spaces. 

1.4. REMARK. (1) Our main result actually provides a precise description of X' 
(modulo finite covers), not only its universal cover. It does this by specifying the 
fundamental group -n:\ ( X ' ) ;  the possible fundamental groups appear in Section 1B. 

(2) Our proof of the theorem is constructive: For a given locally symmetric 
space X ,  our methods produce an explicit locally symmetric space X' that embeds 
in X .  

(3) Our theorem assumes X  is not compact. It would be interesting to obtain 
an analogous result that assumes X  is compact (and that X '  is also compact). 

The Mostow rigidity theorem tells us that any locally symmetric space X  as just 
discussed is determined by its fundamental group. This means that the foregoing 
geometric result can be reformulated in group-theoretic terms. This restatement 
of the result is our next topic. 

IB. ~ a t t i c e s  in Semisimple Lie Groups 

1.5. DEFINITION. Let us say that an abstract group r is a nonuniform lattice 
of higher rank if there exists a connected, semisimple, linear (real) Lie group G 
such that 

r is isomorphic to an irreducible, nonuniform lattice in G ;  and 
R-rank G > 2. 

(Recall that a discrete subgroup I" of G is a nonuniform lattice if G / r '  has finite 
volume but is not compact; the lattice I" is irreducible if no finite-index subgroup 
of I" is isomorphic to a direct product x I'i with both I',' and I'i infinite.) 

1.6. REMARK. The nonuniform lattices of higher rank have made many appear- 
ances in the literature. For example, the Margulis arithmeticity theorem [Mall 
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was first proved for this class of groups, and Raghunathan [Rag2; Rag31 proved 
the congruence subgroup property for these groups. 

It is obvious that the collection of all nonuniform lattices of higher rank is closed 
under passage to finite-index subgroups, so it has no elements that are minimal 
under inclusion. Thus, it is natural to consider a slightly weaker notion of mini- 
mality that ignores finite-index subgroups. 

1.7. DEFINITION. A nonuniform lattice r of higher rank is almost minimal if no 
subgroup of infinite index in r is a nonuniform lattice of higher rank. 

Our main result describes all the almost-minimal nonuniform lattices of higher 
rank. The significance of this result lies in the fact that every nonuniform lattice 
of higher rank must contain an almost-minimal one, so, for example, they can be 
the base cases in a proof by induction. 

1.8. THEOREM. Every almost-minimal nonuniform lattice of higher rank is iso- 
morphic to a nonuniform, irreducible lattice in either SL3 (R), SL3 (C), or a direct 
product SL2(R)m x SLz(C)" with m + n 3. 

We now describe the almost-minimal lattices more explicitly. 

1.9. EXAMPLE. SL3(Z) is an almost-minimal nonuniform lattice of higher rank. 

1.10. REMARK. SL3(Z) is an arithmetic group whose Q-rank is 2. It is well 
known that any irreducible lattice r with Q-rank V >_ 2 must contain a finite- 
index subgroup of either SL3(Z) or Sp4(Z), and one can show that Sp4(Z) is not 
almost minimal. Therefore, up to finite index, SL3(Z) is the only almost-minimal 
lattice of higher rank whose Q-rank is >_ 2. 

Although (up to finite index) there is only one almost-minimal nonuniform lattice 
whose Q-rank is 2, there are infinitely many whose Q-rank is 1. 

1.11. EXAMPLE. (1) If r is any square-free integer >_ 2, then SLz(Z[fi])  is an 
almost-minimal nonuniform lattice of higher rank. 

(2) More generally, let OK be the ring of integers of an algebraic number field K, 
and assume K is neither Q nor an imaginary quadratic extension of Q. Then r = 
SL2(OK) is a nonuniform lattice of higher rank. (We remark that if K is a totally 
real extension of Q ,  as is the case in (I), then r is called a Hilbert modular group.) 
This nonuniform lattice is almost minimal if and only if each proper subfield of K 
is either Q or an imaginary quadratic extension of Q. 

1.12. EXAMPLE. Let: 

F be either the field Q or an imaginary quadratic extension of Q; 
F u = R i f F = Q a n d F u = C i f F  ( f R ;  
L be any quadratic extension of F such that L c Fu; 
T be the nontrivial Galois automorphism of L over F ;  



f be the r-Hermitian form on L~ defined by 

f(x,y)  = ~ ( x 1 ) y i -  ~ ( ~ 2 1 ~ 2  - ~ ( ~ 3 1 ~ 3 ;  
and 
OL be the ring of integers of L. 

Then 

is a nonuniform lattice in SL3 (F"), so it is a nonuniform lattice of higher rank. It 
is almost minimal if and only if either F = Q or L FlR = Q. 

The preceding examples are well known (and are of classical type). Our main re- 
sult shows there are no others. 

1.13. THEOREM. Every nonuniform lattice of higher rank contains a subgroup 
that is isomorphic to a finite-index subgroup of a lattice described in Example 1.9, 
Example 1.11(2), or Example 1.12. 

1.14. REMARK. Theorem 1.13 is a fundamental ingredient in the proof [LMo] 
that if all nonuniform lattices of higher rank are boundedly generated by unipotent 
elements, then no nonuniform lattice of higher rank can be right ordered. 

The Margulis arithmeticity theorem tells us that (modulo finite groups) any non- 
uniform lattice of higher rank can be realized as the integral points of a simple alge- 
braic Q-group. Also, the Margulis superrigidity theorem tells us that any embed- 
ding r" ' ~ r  r extends to an embedding of the corresponding algebraic Q-groups 
(modulo finite groups). This means that the classification of almost-minimal non- 
uniform lattices of higher rank is logically equivalent to a result on simple algebraic 
Q-groups. 

1C. Simple Algebraic Q-Groups 

Let G be a connected algebraic group over Q that is almost simple. (Recall that, 
by definition, this means every proper, normal Q-subgroup of G is finite.) It is 
well known that if Q-rank G 2 2, then G contains a Q-split almost-simple sub- 
group H such that Q-rank H = 2. (Indeed, one may choose H to be isogenous to 
either SL3 or SPA,.) If we replace the assumption that G has large Q-rank with the 
weaker assumption that G has large R-rank, then one cannot expect to find a sub- 
group of large R-rank that is split over Q. (In any Q-split subgroup, the Q-rank 
and R-rank are equal.) However, our main result states that if we add the obvious 
necessary condition that G is Q-isotropic, then there is always a subgroup of large 
Shrank that is quasisplit over Q. 

1.15. THEOREM. Suppose G is an isotropic, almost-simple algebraic group over 
Q such that R-rank G 2 2. Then G has a connected, isotropic, almost-simple Q- 
subgroup H such that H is quasisplit over Q and R-rank H 2 2. 
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It was mentioned previously that H can be chosen to be isogenous to either SL3 
or Sp4 if Q-rank G >_ 2. So the theorem is interesting only when Q-rank G = 1. 
Because there are very few quasisplit groups of Q-rank 1 (and it is not difficult to 
find quasisplit proper subgroups of Sp4, as will be seen in the proof of Lemma 3.8), 
we can restate the result in the following more precise form. 

1.16. DEFINITION. Suppose G is an isotropic, almost-simple algebraic group 
over Q such that K-rank G > 2. For convenience, let us say that G is minimal if 
no proper, isotropic, almost-simple Q-subgroup of G has real rank >_ 2. 

1.17. NOTATION. RKIF denotes the Weil restriction of scalars functor from K 
to F. 

1.18. THEOREM. Suppose G is an isotropic, almost-simple algebraic group over 
Q such that K-rank G >_ 2. I f  G is minimal, then G is isogenous to either: 

(i) SL3 or 
(ii) SU3(L, f ,  r ) ,  where L is a real quadratic extension of Q ,  T is the Galois 

automorphism of L over Q ,  and 

f(xi,xz,x3) = r(xi)xi - ~(x2)x- i  - T ( X ~ ) X T ;  (1.19) 

or 
(iii) RKIO SU3(L, f ,  r ) ,  where K is an imaginary quadratic extension of Q, L is 

a quadratic extension of K ,  r is the Galois automorphism of L over K ,  and 
f is given by (1.19); or 

(iv) RK/Q, SL2 for some finite extension K of Q such that K is neither Q nor an 
imaginary quadratic extension of Q. 

1.20. REMARK. Conversely: 

(i) SL3 is minimal. 
(ii) The groups described in Theorem 1.18(ii) are minimal. 

(iii) A group as described in Theorem 1.18(iii) fails to be minimal if and only if 
L contains a real quadratic extension of Q. 

(iv) A group as described in Theorem 1.18(iv) fails to be minimal if and only if 
K contains a proper subfield that is neither Q nor an imaginary quadratic ex- 
tension of Q. 

1.21. REMARK. Under the additional assumption that some minimal parabolic K- 
subgroup of G is defined over Q, Theorem 1.18 was proved long ago by Margulis 
[Ma2, Lemma 2.4.21 and independently by Raghunathan [Rag3, Lemma 3.2(ii)]. 

1.22. REMARK. Theorem 3.4 provides a generalization of Theorem 1.18 that ap- 
plies to algebraic groups over any algebraic number field. 

OUTLINE OF THE PAPER. Section 2 justifies statements made in the Introduction. 
The remaining sections of the paper state and prove our main result (Theorem 3.4). 
Section 3 covers some preliminaries and deals with groups that either have global 



rank >_ 2 or are of type E7, Eg,  or G2. We treat groups of classical type in Sec- 
tion 4, groups of type F4 in Section 5, groups of type 3 7 6 ~ 4  in Section 6, and groups 
of type ' ' E ~  in Section 7. 

2. Justification of the Introduction 

In this section, we provide brief justifications for the assertions made in the Intro- 
duction. The order of the topics there was chosen for purposes of exposition; they 
will now be treated in reverse order (Section lC, Section lB, Section 1A). 

JUSTIFICATION OF SECTION 1C. The observation that Q-simple groups of higher 
Q-rank contain subgroups isogenous to either SL3 or Sp4 appears in [Ma3, Prop. 
1.1.6.2, p. 461. 

The following sections will present aproof of (a generalization of) Theorem 1.18. 
Because all of the groups in the conclusion of that theorem are quasisplit, Theo- 
rem 1.15 is an immediate consequence. 

To verify the observations in Remark 1.20, note the following. 
1. The groups described in Theorem 1.18(i) and (ii) are isomorphic to SL3 over 

the algebraic closure 0. Since SL3 has no semisimple, proper subgroups of abso- 
lute rank 2 2, it is immediate that these groups are minimal. 

2. Let G be one of the groups described in Theorem 1.18(iii). If L contains a real 
quadratic extension F of Q, then G contains SU3 (F, f ,  T 1 F), so G is not minimal. 

Conversely, if G is not minimal, then there is an isotropic, almost-simple, proper 
Q-subgroup H of G such that R-rank H 2. Since G is isomorphic to SL3 x SL3 
over a, we know that H must be isogenous to either SL3 or SLz x SLz over a. 
In either case, because EX-rankH 3 2, there is a real quadratic extension F of Q 
such that F-rankH = 2. Therefore F-rank G >_ 2. If F <t L,  then T extends to an 
automorphism of L . F that is trivial on K - F, and G is F-isomorphic to 

So F-rank G = 1. This is a contradiction, so we conclude that L does contain the 
real quadratic extension F. 

3. Let G be one of the groups described in Theorem 1.18(iv). Any Q-subgroup 
of G that is almost simple is isogenous to RLIO SLz for some subfield L of K. 
Thus, G fails to be minimal if and only if R-rank (RLIQ SLz) > 1 for some proper 
subfield L of K. 

JUSTIFICATION OF SECTION IB. The Margulis arithmeticity theorem [Ma3, Thm. 
IX.1.16, p. 299, and Rem. IX.1.6(iii), p. 2941 states that (up to isomorphism of 
finite-index subgroups) the collection of nonuniform lattices of higher rank is the 
same as 

G )  1 G is an isotropic almost-simple Q-group with EX-rank G 2 2) 

For isotropic almost-simple Q-groups G and G I  with R-rankGi 3 2, the Mar- 
gulis superrigidity theorem [Ma3,Thm. IX.5.12(ii), p. 327, and Rem. IX.1.6(iv), 
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p. 2951 implies there is a finite-index subgroup of Gl(Z)  that is isomorphic to a 
subgroup of G(Z) if and only if G I  is isogenous to a subgroup of G. Hence, G(Z)  
is almost minimal (as a nonuniform lattice of higher rank) if and only if G is min- 
imal (as an algebraic Q-group). Therefore, all the assertions of Section 1B are 
simply translations of results in Section 1C. For example, because SL3 is minimal, 
it is immediate that SL3(Z) is almost minimal. 

JUSTIFICATION OF 1A. Let X be as in Theorem 1.2. It is well known (cf. [E, 
Sec. 2.2, pp. 70-711 and [H, Thm. 5.6, p. 2221) that, up to isometry, we have X = 
r \ G / K ,  where 

G is a connected, semisimple, adjoint Lie group with no compact factors, 
K is a maximal compact subgroup of G ,  and 
r is a (torsion-free) nonuniform, irreducible lattice in G .  

We have R-rank G = rank X (cf. [E, Sec. 2.7, pp. 76-77]), so, since rank X > 2, 
we see that r is a nonuniform lattice of higher rank. Hence, Theorem 1.13 implies 
that r contains a subgroup r' that is isomorphic to a nonuniform, irreducible lat- 
tice in a connected, semisimple, adjoint Lie group H ,  and H is locally isomorphic 
to either SL3(R), SL3(C), or a product SL2(R)'" x SL2(C) with m + n > 2. The 
Margulis superrigidity theorem [Ma3, Thm. IX.5.12, p. 3271 implies that (after 
passing to a finite-index subgroup of r ' )  the inclusion r' - r extends to an em- 
bedding H - G ,  so we may assume H c G and r' = H n r. We may choose a 
Cartan involution cr of G such that a(H) = H [Mos, Thm. 7.31. Let 

go <= G such that go ~ g ;  is the maximal compact subgroup of G on which cr is 
trivial [H, Thm. 2.2(i), p. 2561, 
K' = (go ~ g ; ' )  f l  H ,  so K' is a maximal compact subgroup of H, and 
X' = r'\H/K'.  

Then X' is a a finite-volume, noncompact, irreducible locally symmetric space 
whose universal cover is H/K1.  The immersion 

X ' +  X :  V ' h K 1 -  m K  

is proper IRagl, Thm. 1.13, p. 231 and has totally geodesic image [E, Prop. 2.6.2, 
p. 741. 

3. Preliminaries 

Throughout the remainder of this paper, G is a connected, isotropic, almost-simple 
algebraic group over an algebraic number field F. 

3.1. REMARK. Our notation and terminology for discussing algebraic groups gen- 
erally follows [PlRa]. However, we use boldface letters (G, H, T, etc.) to denote 
algebraic groups. Also, if A is a central simple algebra and f is a Hermitian (or 
skew-Hermitian) form on Am with respect to an involution r ,  we use SUm(A, f ,  r )  
to denote the corresponding special unitary group, whereas [PlRa] writes merely 
SUm(f ). 



3.2. NOTATION. Let SG be the set of  all Archimedean places v o f  F such that 
Fv-rank G > 2. 

3.3. DEFINITION. We say G is minimal i f  SG # 0 and i f  there does not exist a 
proper, isotropic, almost-simple F-subgroup H o f  G such that Fv-rank H > 2 for 
every v SG. 

The following is a natural generalization o f  Theorem 1.18. 

3.4. THEOREM. Suppose G is an isotropic, almost-simple algebraic group over 
an algebraic number field F such that SG # 0. I f  G is minimal, then G is isoge- 
nous to either: 

( i )  SL3;  or 
( i i )  SU3(L, f ,  r ) ,  where 

L is a quadratic extension of F such that L C Fv for some Archimedean 
place v of F, 
r is the Galois automorphism of L over F, and 
f(x12x2>x3) = ~ ( ~ 1 ) x l  - ~ ( ~ 2 1 x 2  - ~ ( ~ 3 1 x 3 ;  

or 
(iii) RK/F SU3 ( L ,  f ,  r ) ,  where 

K is a quadratic extension of F such that K (f_ Fv for some Archimedean 
place v of F, 
L is a quadratic extension of K ,  
r is the Galois automorphism of L over K ,  and 
f(x1,x2,x3) = r (x1)x1-  ~ ( ~ 2 1 x 2  - r(x31x3; 

or 
(iv) RKIF SL2 for some nontrivial finite extension K of F such that either 

\ K : F 1 > 2 or K c Fv for some Archimedean place v of F. 

3.5. COROLLARY. Suppose G is an isotropic, almost-simple algebraic group over 
an algebraic number field F such that SG # 0. Then G contains an isotropic, 
almost-simple F-subgroup H such that Fv-rank H >. 2 for every v 9 SG, and H is 
isogenous to a subgroup described in ( i ) ,  ( i i ) ,  (i i i) ,  or (iv) of Theorem 3.4. 

The remainder o f  this paper provides a proof of  Theorem 3.4. 

3.6. NOTATION. For algebraic groups G I  and G2  over afield K ,  we write G l  % G2 
i f  they have the same simply connected covering. 

Let us record an observation that will be used repeatedly. 

3.7. LEMMA. If a 9 F* and & F, then 

S O ~ ( X ~  - X{ - X }  + ax:) % R F I A I l F  sL2 .  

Proof. SO4 is o f  type D2 = Al x Al .  Since the discriminant of  the quadratic form 
under consideration is not a square, we know that the associated orthogonal group 
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is an outer form; thus, it is isogenous to RF[^allF SLI(A), where A is a quater- 
nion algebra over F[^/a]. Since the group is isotropic over F, the algebra A must 
be split, so SLi(A) Ef&. 

Recall that a connected algebraic F-group is absolutely almost simple if it remains 
simple over an algebraic closure F of F. The following basic observations allow 
us to assume that F-rank G = 1 and that G is absolutely almost simple. 

3.8. LEMMA. If G is minimal, then either: 

(1) F-rankG = 1; or 
(2) G is isogenous to SL3 (so Theorem 3.4(i) holds). 

Proof. Assume F-rankG >_ 2. It is well known that G contains an F-subgroup 
that is isogenous to either SL3 or Sp4 [Ma3, Prop. 1.1.6.2, p. 461. By minimality, 
G itself must be isogenous to either SL3 or Sp4. 

Suppose G is isogenous to Sp4. Then G is a split group of type C2 = B2, so it 
is also isogenous to 

for any a F. It therefore contains a subgroup isogenous to 
2 2 2  2 S04(x ,  - x2  - x3 + ax5 ) .  

By weak approximation, we may choose a such that a is a square in Fy for every 
v e SG but a is not a square in F. Then H is isogenous to RFi^/ajlF SL2 (see 
Lemma 3.7), so it is isotropic and Fv-rankH = 2 for every v SG. This contra- 
dicts the minimality of G. Â 

3.9. LEMMA. If G is minimal, then either: 

(1) G is isogenous to RKIF SL2, with K as described in Theorem 3.4(iv); or 
(2) G is absolutely almost simple; or 
(3) G is isogenous to RKIF Go, where Go is an absolutely almost simple group 

over a quadratic extension K of F such that K g' Fv for some v e SG. 

Proof. Assume (2) does not hold. Then there is an algebraic number field K D F 
and an absolutely almost simple group Go over K such that G is isogenous to 
RKIF Go [KMRT,Thm. 26.8, p. 3651. Since G is isotropic over F, we know Go is 
isotropic over K, so Go contains a subgroup that is isogenous to SL2. Therefore, 
G contains a subgroup H that is isogenous to RKIF SL;. 

If Fv-rankH > 2 for every v SG, then the minimality of G implies G = H ,  
so (1) holds. On the other hand, if Fv-rankH = 1 for some v SG, then K is a 
quadratic extension of F and K g' Fv, so (3) holds. 

3.10. LEMMA. If Theorem 3.4 holds (for all algebraic number fields) under the 
additional assumption that G is absolutely almost simple, then it holds in general. 

Proof. Suppose G is minimal but is not absolutely almost simple. From Lemma 3.8, 
we see that F-rankG = 1. We may assume Lemma 3.9(3) holds (for otherwise 



Theorem 3.4(iv) holds). Since G is minimal (as an F-group), it is clear that Go 
is minimal (as a K-group). The only absolutely almost-simple group o f  global 
rank 1 in the conclusion o f  Theorem 3.4 is in part (i i) .  Thus, we conclude that Go 
is as described in Theorem 3.4(ii) but with F replaced by K. Then G = R K / ~  Go 
is as described in Theorem 3.4(iii). Â 

Lemma 3.8 immediately rules out some types of  exceptional groups, as follows. 

3.11. COROLLARY. If G is minimal, then G is not of type E7, Eg ,  or G2.  

Proof. The Tits classification [Ti, pp. 59-61] shows there are no rank-1 forms o f  
any o f  these types over a number field. 

The following useful observation is well known and easy to prove. 

3.12. LEMMA. Let 

D be a quaternion algebra over a field L;  
r be an involution of D (of either the first or second kind); 
f ( x ,  y )  = r ( x i ) a i y I  + r ( x2 )a2y2  + . . -  + r ( xn )anyn  be a nondegenerate r -  
Hermitian form on D" for some n;  
d E D suchthatr(d) = d; 
r' = int(d) o T ,  where int(d) is the inner conjugation in D by d ;  and 
f l ( x , y )  = d f ( x ,  y) = - c \ x ~ ) d a ~ y ~  + T'(x2)daiyi + . - -  + T'(xn)danyn. 

Then 

( 1 )  T' is an involution (of the same kind as r ) ,  
(2)  f is rl-Hermitian, and 
(3)  Sun(Â£> f l ,  T I )  = Sun(Â£> f ,  T ) .  

3.13. DEFINITION [Ti, Sec. 2.2, p. 691. Recall that i f  S is amaximal F-split torus 
in G, then the semisimple part of  the centralizer Cc (S )  is called the semisimple 
F-anisotropic kernel o f  G. It is unique up to F-isomorphism. 

3.14. DEFINITION.  A connected, semisimple subgroup Ho o f  G is standard i f  
Ho is normalized by a maximal torus T of  G. (We remark that neither Ho nor T is 
assumed to be defined over F.) Equivalently, there exist roots pi, . . . , ftr of  G (with 
respect to T )  such that H o  is generated by the root subgroups U*,g,, . . . , U*,g. For 
short, we may say that Ho is generated by the roots *p i , .  . . , Vr.  

The following useful observation is well known (cf .  [PlRa, p. 3531). 

3.15. PROPOSITION. Let: 

M be an anisotropic, semisimple group over F such that -1 is in the Weyl group 
of M;  
L be a quadratic extension of F such that M is quasisplit over L; and 
a be a simple root of M that is fixed in the *-action shown in the Tits index 
of M .  
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Then there is a maximal F-torus T of M such that the standard subgroup M a  gen- 
erated by the roots Â± is defined over F. 

Furthermore, i f  M is split over L ,  then T may be chosen to be split over L.  

Proof. Letting o- be the Galois automorphism of L over F, there is a Borel L- 
subgroup B of M such that T = B f l  o-(B) is a maximal torus of M [PlRa, 
Lemma 6.17, p. 3291. The Borel subgroup B determines an ordering of the roots of 
M (with respect to T) .  Note that the negative roots are precisely those that appear 
in o-(B). 

Let K be a Galois splitting field of M that contains L .  Since T is defined over 
F, the Galois group Gal(K/F) permutes the root spaces of M.  Furthermore, for 
any r Gal(K/F), either r sends every positive root to a positive root (if r (B)  = 
B) or r sends every positive root to a negative root (if r (B)  = o-(B)). Since a 
is fixed in the *-action shown in the Tits index and since -1 belongs to the Weyl 
group, this implies that r ( a )  = Â±a Therefore, Mu is stable under Gal(K/F); 
thus, it is defined over F. 

It is easy to tell whether a standard subgroup of a simply connected group is sim- 
ply connected, as the following remark indicates. 

3.16. REMARK [SpSt, 11.5.3, p. 2061. Let G be a simply connected, semisimple 
F-group, and let H be the standard, semisimple subgroup of G generated by the 
roots Â±pi  . . . , Â±pr Then H is simply connected if and only if the set of roots of 
H contains every long root of G that is in the Q-span of {p i , .  . .,/?,.I. 

4. Groups of Classical Type 

4.1. ASSUMPTION. We assume in this section that G is a group of classical type 
and that G is minimal. Furthermore, with Lemmas 3.8 and 3.10 in mind, we as- 
sume that F-rank G = 1 and that G is absolutely almost simple. 

We know G # Sp,, (because Sp,, is F-split but F-rank G = 1 < Fu-rank G for any 
v SG). Thus, G is either a special linear group, an orthogonal group, or a uni- 
tary group of either the first or second kind [PlRa, Sec. 2.3.41. We consider each 
of these possibilities separately. 

4A. Special Linear Groups 

4.2. ASSUMPTIONS. 

D is a central division algebra over F. 
G = SLz(D). 

Let K be a maximal subfield of D. For v SG, we have 

Fn-rankG > 1 = Fu-rankSL2. 

Therefore D # F, so K is a proper extension of F. Because RKIF SL; G,  the 
minimality of G implies there exists w SG such that Fw-rank(RKIF SL2) = 1. 
Therefore \ K : F\ = 2, so D is a quaternion algebra over F. 



Write D = (a, b ) ~ .  By weak approximation, there exist cl, c2,c3 F such that 

for every v E SG, a c t  + bc; - abc: is a nonzero square in F,,. (4.3) 

Let c = a c t  + bc; - abc; a F, so c has a square root in D. Thus, letting H = 
RF[-TcllF SL2, we have H g G. Also, for every v SG, we know c is a square in 
Fv by (4.3), so Fv-rankH >_ 2. This contradicts the minimality of G. 

4B. Orthogonal Groups 

4.4. ASSUMPTIONS. 

f is a nondegenerate quadratic form on Fn for some n 2 5. 
G = SOn(f).  
The maximal totally isotropic F-subspace of Fn is 1-dimensional (in other 
words, F-rankG = 1). 

After a change of basis, to diagonalize the form we may write 

(We may assume the form begins with x; - x; because it is isotropic.) By nor- 
malizing the form, we may assume a3 = -1. By weak approximation, there exist 
b4, b5,. . . , bn F such that 

2 for every v E SG, a4b: + - .  - + a n b  is a nonzero square in Fv. (4.5) 

Let a = a4b2 +. - .  + a n  bi ;  then, after a change of basis, we may assume a4 = a .  
Hence 

H = SO~(X;  - x; - x: + ax:) c G. 

For any v a SG, we know F,,-rankH = 2 (since a is a square in Fv). Therefore, 
the minimality of G implies 

G = H ZZ RFLAIlF sL2. 

Consequently, Theorem 3.4(iv) holds. 

4C. Unitary Groups of the Second Kind 

L is a quadratic extension of F. 
D is a central division algebra over L. 
T is an involution of D that fixes every element of F but fixes no other elements 
of L. 
f is a T-Hermitian form on Dn for some n. 
G = SUn(D, f , r ) .  
The maximal totally isotropic D-subspace of D n  is 1-dimensional (in other 
words, F-rank G = 1). 

After a change of basis, to diagonalize the form we may write 
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where a] = a; for each j . (We may assume the form begins with x\y\ - x\y i  
because it is isotropic.) 

Case 1: Assume D = L. By normalizing the form f (x, y), we may assume 
a3 = -1. We may also assume n >_ 4; otherwise Theorem 3.4(ii) holds. 

For each v asG: 
@ let L,, = Fu OF L; 
* identify F with F,, (SF F c Lu;  and - let T,, be the extension of T to an involution of L,, with fixed field Fu. 

Claim. For every v ? S G ,  there exist b U 4 ,  bU5, .  . . , b,,,,, ? Lu such that 

a4b:>bu,4 + ~ 5 b ; ~ b , , , ~  + . . + anb^\bU,,, is a nonzero square in Fu. 

We consider two possibilities. 

(i) If L <f. Fv, then Lv is a field extension of F,, and G is isomorphic over F to 

S U n ( L v , x ~ y ~  -x^yz - x^-y  ̂ + ~ 4 x 2 ~ 4  + 0 5 x 3 5  + ... + anx:y,,,~). 

The desired conclusion follows from the fact that F,,-rankG > 2. 
i i )  If L C Fu, then there is an isomorphism (pv : (L,,, T,,) + (Fv @ Fu, ?), where 

T ( x I , x ~ )  = (x2,xl). Since (x, l)'(x, 1) = (x, x) is an arbitrary element of 
(pv(Fv), the desired conclusion is obvious. 

This completes the proof of the claim. 

Combining this claim with weak approximation yields b4, b5,. . . , bÃ ? L such that, 
for every v ? SG,  

a 4  b2b4 + as  byb5 + . . . + a,,b^b,, is a nonzero square in Fu. 

Let a = a4b2b4  +a5bTb5 +. . - +anb:bn; then, after a change of basis, we may 
assume 0 4  = a .  Hence 

H = S O ~ ( X ;  - x{ - x: + ax:) c G.  

From the choice of a ,  we know F,,-rankH = 2 for every v ? SG.  (Also, since 
F-rankG = 1, we know that a = 0 4  is not a square in F, so H w 'R .F[Â¥Ja] /  SL2 is 
almost simple.) This contradicts the minimality of G.  

Case 2: Assume D # L.  Choose a maximal subfield K of D such that K is 
invariant under T, and let KO be the fixed field of T in K. Then 

Thus, we may assume KO is a quadratic extension of F, for otherwise minimality 
implies that Theorem 3.4(iv) holds. Then, since \L  : F \ = 2 = \ K : KO\, we have 

so D is a quaternion algebra. 
There is a quaternion algebra Dl over F such that D = D'@F L and T I  of is the 

canonical involution [Sch,Thm. 11.2(ii), p. 3141. 



Subcase 2.1: Assume n = 2. For every v SG, we know Fv splits D (because 
n = 2 and Fv-rankG >_ 2). Therefore, by weak approximation and the Hasse 
principle, there is a quadratic extension E of F such that E splits D' and, for each 
v (: SG, 

E C F v  <=> L C F v .  (4.8) 

Then D splits over E - L, so we may assume K = E . L. Since T is nontrivial 
on both E and L, we see from (4.8) that the fixed field KO of T is contained in Fv 
for every v 9S(,. So the minimality of G (together with (4.7)) implies that Theo- 
rem 3.4(iv) holds. 

Subcase 2.2: Assume n > 3. By replacing T with int(a^l) o T, we may assume 
a3 = 1 (cf. Lemma 3.12). By weak approximation and the Hasse principle, there 
is a quadratic extension E of F such that E splits D' and, for each v SG, 

Then D splits over E . L, so we may assume K = E . L. 
LetHo = SU3(K7x;yi -xiy2 + x i y 3 , h )  andH = RKolF Ho c G. Forany 

v SG, the following statements hold. 

If KO C F,,, then KO @ Fv Z F,, @ Fv; therefore, it is clear that Fv-rankH 2 2 
(since H o  is isotropic). 
If KO (f. Fv then, from (4.9) and the fact that T is nontrivial on both E and L, 
we see that L c F,,; therefore, Ho  is inner (hence split) over the field KO <S>F F,,, 
so Fu-rankH >_ 2. 

This contradicts the minimality of G.  

4D. Unitary Groups of the First Kind 

D is a quaternion algebra over F. 
T is the canonical involution of D. 
f is a T-Hermitian or T-skew Hermitian form on D n  for some n. 
G = SUn(D, f ,  T). 
The maximal totally isotropic D-subspace of D n  is 1-dimensional (in other 
words, F-rank G = 1). 

After a change of basis, to diagonalize the form we may write 

+x^a^y4+. . .+x '1anyn i f f  isHermitian, 
f (x, y) = 

4 ~ 2  - x i y i  + xia3y3 
+ xTa4y4 + .. .  + xianyn i f f  is skew-Hermitian. 

(We may assume the form begins with x'\y\ - x\ y2 or x^yi - x\y\, respectively, 
because F-rank G = 1 # 0.) Note that 03, . . . , a n  are 
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elements of F i f f  is Hermitian, and 
purely imaginary i f f  is skew-Hermitian 

Case 1: Assume n < 3. The quaternion algebra D must split over Fu for each 
u ? SG (because Fu-rankG ̂ _ 2). 

Subcase 1.1: Assume f is Hermitian. Let 

Then GI is of type C 2  (see [PlRa, Prop. 2.15(2), p. 86]), so it is also of type B2. 
Therefore, it has a realization to which Section 4B applies. 

Subcase 1.2:Assume f is skew-Hermitian. Because G is absolutely almost sim- 
ple, we know it is not of type D2 = A[x A,; thus n = 3. Then G is of type D3, 
so it is also of type A3. Therefore, it has a realization to which either Section 4A 
or Section 4C applies. 

Case 2: Assume n 3 4. 

Subcase 2.1: Assume f is Hermitian. By weak approximation and the Hasse 
principle, there is aquadratic extension E of F such that E splits D and, for u SG, 

Fu splits D E C Fu. (4.11) 

By normalizing, we may assume a3 = -1. By weak approximation, there exist 
b4, b5 , .  . . , bn E F with the property that, for every u E SG such that Fu does not 
split D,  we have 

Let a = a4bi + a5 b; + . . . +an b i ;  then, after a change of basis, we may assume 
a4 = a .  

Let 

H = S U ~ ( E , X T Y I  - x i y ^  - x u ;  + a x \ y 4 , ~ ~ )  c G. 

For any u E SG, the following statements hold. 

If E c Fu, then H is split over Fu, so Fu-rank H = 3. 
If E (t Fu, then Fu does not split D (see (4.11)), so a > 0 in Fu (see (4.12)). 
Hence Fu-rank H = 2. 

This contradicts the minimality of G.  

Subcase 2.2: Assume f is skew-Hermitian. Because f is skew-Hermitian, we 
know that a3 andad are purely imaginary elements of D, so there exists a nonzero, 
purely imaginary a D such that a3 and a4 both negate a ;  that is, a3a = -q 
and a4a = -q. (To see this, note that 0 3  and 0 4  each negate a 2-dimensional 
space of imaginary elements of D; since the imaginary elements form only a 3- 
dimensional space, there must be nonzero intersection.) Hence, a3 and a4 act by 
conjugation on F [ a ] .  



Let: 

F'= F[a]  c D; 
{el, 62, e3, e4} be an orthogonal basis of D such that 

I (namely, el = 5(a3,1,0,0), e2 = ;(-a3,1,0,0), 6 3  = (0,0,1,0), and 6 4  = 

(O,O, 0,l)); 
V be the F' span of {el, e2, e3, e4}; and 
f '  be the restriction of a:'/ to V'. 

(Note that centralizes a ,  so it must belong to F'.) Then 

f'(V1 x V') g F', 
f ' is a nondegenerate, symmetric F'-bilinear form on V', 
f '  is isometric to the form f'' = xlyl - x2y2 + x3y3 + (a;1a4)~4y4 on (F ' )~ ,  
and 
G = SUn(D, f , ~ )  3 RFrlF SO(fl) % RwSL2 ,  where K = F'[^=]. 

Since F-rank G = 1, we know that f '  has no 2-dimensional totally isotropic 
subspace, so -a;a4 is not a square in F'. Hence, we have 

This contradicts the minimality of G. 

5. Groups of Type f i  

5.1. PROPOSITION. Let G be an absolutely almost-simple F-group of type F4 such 
that F-rank G = 1. Then G contains an isotropic, simply connected, absolutely 
almost-simple F-subgroup H of type C3 such that Fu-rank H > 2 for every v  SG. 

Proof. The Tits classification [Ti, p. 601 tells us that the Tits index of G is 

Q'4 Q'3 Q'z Q'l - 
(we number the simple roots as in [B, p. 2231). Let S be an F-split 1-dimensional 
torus in G and let M be the corresponding semisimple F-anisotropic kernel. 

For each v SG we have Fu-rank G > 1, so the Tits classification [Ti, p. 601 im- 
plies G is split over Fv. Hence, by weak approximation and the Hasse principle, 
there is a quadratic extension L of F such that L splits G and 

L c Fv forevery ~ â ‚ ¬ 5 '  (5.2) 

Since L splits G (and hence splits M), there is an L-split maximal F-torus T of 
M such that the standard semisimple subgroup Ga, generated by the roots Â±a 
is defined over F (see Proposition 3.15). Let R = T n Ga, c M; then R is a 
1-dimensional, L-split, anisotropic F-torus. 
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Let H be the semisimple part of the identity component of CG(R). We know 
that H is defined over F (since R is defined over F ) .  It is easy to see that H is the 
standard semisimple subgroup generated by the roots 

h 3 ,  ka4, Â±(a + 20'2 + 20'3). 

Thus, H is of type C3, so it is (absolutely) almost simple over F. Also, H is sim- 
ply connected. (Note that G is simply connected because it is of type F4; see 
Remark 3.16.) Furthermore, since H has absolute rank 3, we have CG(R) = HR. 

Since R c M, we know S c CG(R) = HR. Since S is isotropic over F and 
R is anisotropic, this implies H is isotropic over F. 
By construction, L splits both G and R;  therefore, CG(R) contains an L-split 
maximal torus of G. Since CG(R) = HR, we conclude that H splits over L. 
From (5.2), we conclude that H splits over Fy for every u SG, so Fu-rank H > 1. 

5.3. COROLLARY. If G is of type F4, then G is not minimal. 

6. Groups of Type ̂ D4 

The following theorem may be of independent interest. The proof makes no use 
of our standing assumption that F is an algebraic number field-it suffices to as- 
sume only that char F + 2. 

6.1. THEOREM. Let G be an absolutely almost-simple F-group of type 3 ~ 4  or 
'D~ such that F-rank G = 1. Then there exists an extension field K of F such that 
RKIF SL2 is isogenous to an F-subgroup of G and IK : F \ = 4. 

Proof. We start with notation. 

Let S be a maximal F-split torus of G. 
Let M = [CG(S), CG(S)] be the semisimple F-anisotropic kernel of G. 
It is well known [KMRT, Thm. 43.8 and Prop. 43.9, p. 5551 that there exist a 
cubic extension L of F and a quaternion algebra D = (a, b 1 ) ~  over L such that: 
M is isogenous to RLIF SLl(D); a F ;  bl L; and NLIF(bi) = 1. Because 
RLIF SLl (D) is anisotropic, we know that D is a division algebra. 
Let P = L[,/&!'], so P is isomorphic to a maximal subfield of D. 
Let P be the Galois closure of P over F. 
There is a maximal F-torus T of M that is isogenous to R/.//-(R}~^ Gm). 
Let 

= (Q'2,Q'z + Q'I + Q'3,Q'z + Q'i + Q!4,Q!2 + Q'3 + ~ ' 4 1  

where (a1,a2,a3,a4]  is a base of the roots of G with respect to the maximal 
torus ST, numbered as in Figure 6A. 



Figure 6A The Tits index of the trialitarian group G 

Let H be the standard subgroup of G generated by the roots in OH. Since the 
roots in 0; are pairwise orthogonal, it is obvious that H is a semisimple group 
that is of type Al x Al x Al x A[ over the algebraic closure F.  
Since M and T are defined over F, the Galois group Gal(F/F) acts on the set 

of roots of M. Letting b3 and b4 be the Galois conjugates of b1 (over F ) ,  it is clear 
that Gal(P/F) also acts on 

It is easy to see that these two actions are isomorphic (because both are transi- 
tive and have Gal(F/p) as the stabilizer of a point). Therefore, after renumbering 
and choosing the signs of the square roots appropriately, we know, for any ip e 
Gal(F/F), that there exist el, Â£3 Â£ e {O, 1) and a permutation o- of {I, 3,4) such 
that, for i = 1,3,4, 

~ ( a ; )  = (-l)6iw;) and ip(&) = (-l)'jÂ¡ff(0 

Since 

we know that ,/&v/̂& is fixed by ip; hence Â £  + Â£ + Â£ is even. Therefore, 

{ i  1 e; # 0) is either 0 or 2. (6.2) 

Let u = 2a2 + a1 + a3 + a 4  be the maximal root of G. The restriction of u to 
S is different from the restriction of any other root, so must be fixed by every 
element of Gal (.P/F). Therefore 

From (6.2), we conclude that q (a2)  e 'f'u. 
Since ip is an arbitrary element of Gal(F/F), the conclusion of the preceding 

paragraph implies that <tiu contains the entire orbit of a2 under G ~ ~ ( P / F ) .  In fact, 
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it is easy to see that this orbit must be all of $2. Since T, and hence G, is obvi- 
ously split over P,  this implies that H is defined over F and is almost F-simple. 
Also, since S c H, it is obvious that H is isotropic over F. Because H is of type 
Al x Al x Al x Al over the algebraic closure, it is now clear that H is isogenous 
to RKIF S L z ,  where K is an extension of degree 4 over F. 

6.4. REMARK. The specific choice of the maximal subfield P of D is crucial in 
the proof; it is important that 1 P : L\ = 4, where P and L are the Galois closures 
of P and L over F. If P is chosen differently, then the action of the Galois group 
on the roots of G is different, and the standard subgroup generated by the roots in 
Q H  is not defined over F. 

6.5. REMARK. Unfortunately, in the situation of Theorem 6.1, it follows easily 
from Remark 3.16 that if H is a subgroup of G that is isogenous to RKIF S L 2  with 
\ K : F [ = 4, then H is not simply connected. Indeed, if G is simply connected, 
then the fundamental group of H has order 2. 

6.6. COROLLARY. // G is of type ' ~ 4  or 6 ~ 4 ,  then G is not minimal. 

7. Groups of Type ^E6 

We assume in this section that G is of type E6. By Lemma 3.8, we may also assume 
F-rank G = 1. Then there are only two possibilities for G in the Tits classification 
[Ti, pp. 58-59]: 

(we number the simple roots as in [B, p. 2301). 
The two possible forms will be considered individually (in Theorems 7.1 and 

7.5). The proofs assume somewhat more background than those in the previous 
sections. 

7.1. THEOREM. If G is a simply connected, absolutely almost-simple F-group 
of type 'E^\, then G contains an isotropic, simply connected, absolutely almost- 
simple F-subgroup H of type 2 ~ 5  such that /^-rank H 2 2 for every Archimedean 
place v of F. 

Before proving this theorem, we recall the following result (and, for complete- 
ness, we provide a self-contained proof based on Galois cohomology). It does not 
require our standing assumption that F is an algebraic number field. 



7.2. LEMMA [GPe, Rem. 2.101. I f  G is an absolutely almost-simple F-group of 
type 'E$, then the semisimple anisotropic kernel of G is isomorphic to Spin8( f )  
for some quadratic form f on F8 with nontrivial discriminant. 

Proof. There is no harm in assuming G is adjoint. Let: 

K be the (unique) quadratic extension of F over which G becomes inner; 
G4 be a quasisplit, absolutely almost-simple, adjoint F-group of type ' E ~  that 
splits over K (so the Tits index of G4 is the diagram on the right in (7.3) to 
follow); 
P be a minimal parabolic F-subgroup of G; 
P4 be a parabolic F-subgroup of G4 that is of the same type as P (so the semi- 
simple part of P4 is the standard subgroup generated by the roots *a2, *a3, 
*a4, **I; 
R4M4 be the the Levi subgroup of P4, where R4 is its central torus and M I  is 
its semisimple part; and 
t z l ( F ,  G4) such that G is (isomorphic to) the twisted group ^GI. 

Step 1: The class of t is in the image of the map H 1  (F ,  M4) + H1(F, G4). It 
is well known that the image of the map H \ F , P ~ )  + H1(F, G4) consists of 
the classes of the 1-cocycles i ]  with the property that the twisted group ^GI  has 
a parabolic F-subgroup of the same type as P i .  Thus, we may assume that t 
z1(F,'P4). Then, since the unipotent radical of P4 has trivial cohomology in di- 
mension 1, we may assume 

t z'(F, R ' ^ M ~ ) .  

Since the center of the universal cover of M4 has order 4 and since the center of 
the universal cover of G4 has order 3, which is relatively prime, we know that M4 
is simply connected. It is easy to check that R4 is of the form RKIF(Gm) and that 
R4 n M4 is the entire center of M4, which is isomorphic to (Z/2Z) x (Z/2Z),  
so R4 n M4 is precisely the 2-torsion part 2R4 of R4. Hence 

Therefore 

Since t z ( F , R ^ M ~ ) ,  the desired conclusion now follows from the exact 
sequence 

H'(F,M~) + H ' ( F , R ~ M ~ )  + H' (F, F) . 

Step 2: Completion of the proof. Recall that M I  is the standard subgroup of G4 
generated by the roots *a2, . . . , *a5. Thus, M4 is a simply connected, quasisplit 
group of type ' D ~  and so is F-isomorphic to Sping( fo) ,  where fo is a quasisplit 
quadratic form on F8. From Step 1, we may assume that 



Almost-Minimal Nonuniform Lattices of Higher Rank 

Then the semisimple F-anisotropic kernel M of G is the twisted group 

= (spin8( fo) 2' Spin8( f )  

for some quadratic form f on F ~ .  

Proof of Theorem 7.1. Let: 

S be a 1-dimensional F-split torus in G; 
M be the corresponding semisimple F-anisotropic kernel, so we may identify 
M with Spin( f )  for some quadratic form f on F~ with nontrivial discriminant 
(see Lemma 7.2); 
K be the (unique) quadratic extension of F over which G becomes a group of 
inner type; 
L be a totally imaginary quadratic extension of F (such that L # K); 
a a F such that L = F[&]; and 
R be the central toms in the reductive group CG(S), so CG(S) = RM is an 
almost-direct product and R is isogenous to R A - / ~  G,,, . 
Since L # K, we know that G remains outer over L. It is well known [PlRa, 

p. 3851 that there are only two possibilities for the Tits index of a group of type 
2 ~ 6  over a totally imaginary number field, as follows. 

Furthermore, since the roots a1 and a 6  are circled in the Tits index over F, they 
must also be circled in the Tits index over L. Therefore, G is quasisplit over L ;  
this means that M is quasisplit over L. Hence, after a change of basis to diagonal- 
ize the form appropriately, we may write 

Let f = (al,  -ala,a2, -a2a) be the restriction of f to the first four coordi- 
nates. By normalizing, we may assume a \  = 1. Then f '  is the norm form of the 
quaternion algebra D = (a, -0.2)~. (In other words, f '  is the 2-fold Pfister form 
(1, -a) <9 (1,a2).) Hence, 

Spin4(f1) S SLl(D) x SLl(D). (7.4) 

Let M I  and Mz be the two simple factors of Spin4( f '). 
Writing f = f '@  f ", we see that Mi is normalized by Spin4( f ') . Spin4( f "), 

which contains a maximal torus of M.  So M I  is a standard subgroup. Since all 
roots of M are conjugate under the Weyl group, we may assume Mi  = Ga2 is the 
standard subgroup generated by the roots Â±a2 

Let H be the identity component of CG(M1). Because M I  is defined over F, 
we know that H is defined over F, Furthermore, since MI  = Go,, it is easy to see 
that H is the standard subgroup of G generated by the roots 



Thus, H is semisimple and simply connected (see Remark 3.16) and is of type 'A,-. 
Also, since H contains the F-split torus S, we know that H is F-isotropic. 

All that remains is for us to show, for every Archimedean place v of F, that 
Fu-rankH 2 2. 

Case 1: Assume G is inner over Fu. This assumption implies K c Fu. Since H 
contains the 2-dimensional torus R ,  which splits over K (because it is isogenous 
to RKIF Gm),  we have Fu-rankH 2 2. 

Case 2: Assume f is isotropic over Fu. Since SO4( f ') is isotropic and since its 
two simple factors Mi  and M2 are isogenous by (7.4), we see that M2 is isotropic. 
Since M 2  centralizes M I  and is contained in M,  we see that M2 is contained in the 
F-anisotropic kernel of H.  Thus, the F-anisotropic kernel of H is isotropic over 
Fu, so Fu-rankH > 2. 

Case 3: The remaining case. Recall that f = f '  @ f ". Since f '  is anisotropic 
over Fu, we must have Fu 2 R, and we may assume all of the coefficients o f f '  = 
(a,, -a,a, a2, -a2a) are positive in Fu. 

Since G is isotropic over Fv (indeed, it has been assumed to be isotropic over F ) ,  
we see, from the Tits classification [Ti, pp. 58-59] of real forms of E6, that 
/Â¥-ran G 2 2. Hence, M is isotropic over Fu, so f is isotropic over Fu. Thus, 
some coefficient off "must be negative. On the other hand, because G is outer over 
Fu, we know that the discriminant off  is not 1, so the coefficients o f f "  cannot all 
be negative. Thus f "  has both positive and negative coefficients, so Spin4( f ") is 
isotropic over Fu. Since Spin4( f ") obviously centralizes Spin4( f ') 3 Mi and is 
contained in M,  we see that Spin4( f ") is contained in the F-anisotropic kernel of 
H.  Thus, the F-anisotropic kernel of H is isotropic over Fu, so Fu-rank H 2 2. 0 

7.5. THEOREM. If G is an absolutely almost-simple F-group of type 'E::,, then 
G contains an isotropic, simply connected, absolutely almost-simple F-subgroup 
H of type ^D4 or 'D4. 

Proof. We fix 

a maximal F-split torus S of G ,  
a maximal F-torus T that contains S, and 
an ordering of the roots of G (with respect to the maximal torus T) .  

Let 
p  = -(a1 + 2a2 + 2 ~ ! 3  + 3a4 + 2a5 + ~ ' 6 )  

be the minimal root of G ,  so that G has the following extended Tits index. 

The standard subgroup Gu of G generated by the roots * p  is isomorphic to SL2 
over F, so S c G,,. 
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We may assume G is simply connected (because the center of the universal 
cover of G has order 3, which is relatively prime to the order of the center of any 
group of type D4). Let 

K be the (unique) quadratic extension of F over which G becomes a group of 
inner type, and 
M = [CG(S), CG(S)] be the semisimple F-anisotropic kernel of G, so M is 
generated by the roots {Â±ai  Â±a3 Â±a4 Â±a5 Â±a6} 

Therefore M is of type ' ~ 5  and becomes inner over K. Hence, as is well known 
[PlRa, Prop. 2.18, p. 881, we have 

where D is a central division algebra of index d = 6/m over K, with involution T 

of the second kind, such that F is the fixed field of the restriction of T to K and f 
is a nondegenerate Hermitian form on Dm. 

Claim: D is a cubic division algebra over K (and m = 2). (This is known, but 
we provide a proof for completeness.) We know that G is a twisted form G = ̂ G^ 
of a quasisplit, almost-simple, simply connected F-group Gq of type 2 ~ 6  splitting 
over K, where { is a 1-cocycle with coefficients in the adjoint group GY. In fact, 
there is a 1-dimensional F-split torus Sq of G^ such that we may take { to have 
its values in c G q ( s y )  (cf. [PlRa, Prop. 6.19, p. 3391). Write CG';(Sq) = S^M4, 
where My is semisimple. Now H'(F, c ~ ~ ( s Q ) / M ~ )  = 0 (because the coefficient 
group is an F-split torus), so we may take { to have its values in MI. Therefore 
M = ̂ My. 

Let Z be the center of G I  (note that Z is contained in My), and let 

be the connecting morphism. There is a cubic extension E of F such that the 
image of a{ in H ~ ( E ,  Z)  is trivial [PlRa, Prop. 6.14, p. 3341. This means that the 
image of { in H ~ ( E , M Y )  lifts to an element of H ' ( E , M ~ ) ,  so M is isomorphic 
over E to SU6(K . E, f', T'), where T' is the Galois automorphism of K . E over 
E and f '  is a Hermitian form on (K . E ) ~ .  Therefore, D BK (K . E )  is a matrix 
algebra. So D is either K or a cubic division algebra over K. 

To complete the proof of the claim, we need only show D # K. Assume the 
contrary. Then T is the Galois automorphism of K over F, f is a Hermitian form 
on K 6, and M 2 SU6(K, f ,  T).  For any Archimedean place v of F, the Tits clas- 
sification [Ti, pp. 58-59] implies 

so Fu-rankM ̂ _ 1; thus, f is Fu-isotropic. Then, since any Hermitian form in 2 3 
variables is isotropic at every non-Archimedean place, the Hasse principle tells us 
that f is F-isotropic. This contradicts the fact that M is the F-anisotropic kernel, 
which completes the proof of the claim. 

Choose a basis {el,e2} of D~ that is orthogonal with respect to f .  By making a 
change of coordinates, we may assume el = (1,O) and Â£ = (0,l). Then, letting 



Let d = dc1d2 E D. Then Lemma 3.12 implies that we may assume d l  = 1 and 
d2 = d (by replacing T with i n t ( d l )  o r).  That is, 

f = (1,d). 

For convenience, let us identify M with SU2(D, f, r) .  
It is not difficult to see that there exists x D such that r (x)x 6 F. Thus, 

for a generic choice of the orthogonal basis {el, e2} (or merely multiplying e2 by 
a generic element of D), we have d 6 F. Since ~ ( d )  = d, this implies d 6 K. 
Therefore: 

E = K[d] is a maximal subfield in D (so it is cubic over K); 
E is stable under T;  and 
L = F[d] is a subfield of D that is cubic over F. 

Consider the subgroup M' = SU2(E, f, r 1 e )  of M. Writing K = F [A] for 
some a F and letting T be the quaternion algebra T = (a, -d)F over F, we have 

Let I? be an algebraic closure of K. Then D mK I? '= M~(I?) ,  and the iso- 
morphism may be taken so that E mK I? maps to the diagonal matrices. Then the 
algebra M2(E), viewed as a subalgebra of M2(D) mK I? E ~ d ) ,  consists of 
matrices of the form 

Hence, M' is the standard subgroup generated by the roots Â±PI Â±p3 Â±p4 where 

Let H be the subgroup of G generated by M' and Ga,. One easily checks that H 
has type D4, contains GÃ§ and is simply connected (see Remark 3.16). 

We now verify that H is defined over F. Let a be a Galois automorphism of F 
over F. Since M' is defined over F, we know that the set {*PI, u 3 ,  w4} of roots 
of M' is invariant under a.  Then, since 

and p is fixed by a (because GÃ = SL;), the argument leading up to (6.3) shows 
that a ( a2 )  is a root of H. Thus, the set of roots of H is invariant under a. 

Since S c GÃ c H, we know H is F-isotropic. Also, since H contains M', it is 
a trialitarian group. 
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7.6. COROLLARY. I f  G is of type E6,  then G is not minimal. 

Proof. The conclusion is immediate from Theorem 7.1 if G is of type 'E:,:. 
When G is of type 'E$,  it suffices to observe that the subgroup H provided by 

Theorem 7.5 satisfies Fu-rankH 2 2 for every Archimedean place v of F. This 
follows from Theorem 6.1, but it is also easy to give a short direct proof. Note 
that, because H is a trialitarian group of rank 1, its Tits index is as shown in Fig- 
ure 6A; thus, the root % is circled. So CUT. is also circled in the Tits index of H 
over Fu. From the Tits classification [Ti, pp. 56-58] of groups of type D4 over R, 
we see that this implies at least two roots are circled, so Fu-rank H > 2. Â 

ACKNOWLEDGMENTS. We thank an anonymous referee for detailed comments 
that clarified and shortened some of the proofs and strengthened Theorem 7.5. We 
also thank Gopal Prasad for suggesting that our main theorem should be proved 
over general number fields. D.W.M. would like to thank Skip Garibaldi for help- 
ful discussions. 

References 

[B] N. Bourbaki, Lie groups and Lie algebras, Elem. Math. 26 (2002), chap. 4-6. 
[El P. Eberlein, Geometry of nonpositively curved manifolds, Chicago Lectures in 

Math., Univ. of Chicago Press, Chicago, 1996. 
[GPe] S. Garibaldi and H. P. Petersson, Groups of outer type E6 with trivial Tits 

algebras, Transform. Groups 12 (2007), 443-474. 
[HI S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure 

Appl. Math., 80, Academic Press, New York, 1978. 
[KMRT] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, 

Amer. Math. Soc. Colloq. Publ., 44, Amer. Math. Soc., Providence, RI, 1998. 
[LMo] L. Lifschitz and D. W. Moms, Bounded generation and lattices that cannot act 

on the line, Pure Appl. Math. Q. 4 (2008), 99-126. 
[Mall G. A. Margulis, Arithmeticality of nonuniform lattices, Funct. Anal. Appl. 7 

(1973), 245-246. 
[Ma21 - , Arithmeticity of nonuniform lattices in weakly noncompact groups, 

Funct. Anal. Appl. 9 (1975), 31-38. 
[Ma31 - , Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. 

(3), 17, Springer-Verlag, Berlin, 1991. 
[Mos] G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44-55. 

[PSSu] R. Parimala, R. Sridharan, and V. Suresh, Hermitian analogue of a theorem of 
Springer, J. Algebra 243 (2001), 780-789. 

[PlRa] V. Platonov and A. Rapinchuk, Algebraic groups and number theory, Pure Appl. 
Math., 139, Academic Press, Boston, 1994. 

[Ragl] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergeb. Math. Grenzbeb. 
(3), 68, Springer-Verlag, New York, 1972. 

[Rag21 - , On the congruence subgroup problem, Inst. Hautes Etudes Sci. Publ. 
Math. 46 (1976), 107-161. 

[Rag31 - , On the congruence subgroup problem II, Invent. Math. 85 (1986), 
73-117. 



[Sch] W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss., 270, 
Springer-Verlag, Berlin, 1985. 

[SpSt] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on algebraic groups 
and related finite groups (A. Borel et a]., eds.), Lecture Notes in Math., 131, 
pp. 167-266, Springer-Verlag, Berlin, 1970. 

[Ti] J. Tits, Classification of algebraic semisimple groups, Algebraic groups and 
discontinuous subgroups (A. Borel and G. D. Mostow, eds.), Proc. Sympos. Pure 
Math., 9, pp. 33-62, Amer. Math. Soc., Providence, RI, 1966. 

V. Chemousov 
Department of Mathematical and Statistical Sciences 
University of Alberta 
Edmonton, Alberta T6G 2G1 
Canada 

chemous @math .ualberta.ca 

L. Lifschitz 
Department of Mathematics 
University of Oklahoma 
Norman, OK 73019 

LLifschitz @math .ou.edu 

D. W. Morris 
Department of Mathematics and Computer Science 
University of Lethbridge 
Lethbridge, Alberta T1K 3M4 
Canada 


