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Abstract. Let G = SL(n, R) (or, more generally, let G be a connected, noncompact, simple Lie 
group). For any compact Lie group K, it is easy to find a compact manifold M ,  such that there 
is a volume-preserving, connection-preserving, ergodic action of G on some smooth, principal 
K-bundle P over M. Can M can be chosen independent of K? We show that if M = H / A  is a 
homogeneous space, and the action of G on M is by translations, then P must also be 
a homogeneous space H'/A1.  Consequently, there is a strong restriction on the groups K that 
can arise over this particular M. 
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1. Introduction 

In geometric terms, the Margulis Superrigidity Theorem [4, pp. 245-246 and 3321 
provides an explicit description of a certain class of equivariant principal bundles. 
The following weak version of this result records merely the conclusion that there 
are only finitely many possible structure groups. 

DEFINITION 1.1. A smooth action of a Lie group G on a manifold M is ergodic if 
every G-invariant Borel subset of M is either null or conull. (That is, either the set or 
its complement has measure 0, with respect to a Lebesgue measure on M.) A G-space 
M is irreducible if the action of each closed, noncompact, normal subgroup of G is 
ergodic on M .  

THEOREM 1.2 (Margulis Superrigidity Theorem). For any connected, semisimple, 
linear Lie group G, with R-rankG 2 2,  there is a corresponding finite set 1-i = 

{ H I ,  . . . , H,,} of connected, linear Lie groups, such that i f  

- M = r \ G  is an irreducible homogeneous G-space of finite volume, 
- H is a connected, linear Lie group, 
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- P is a principal H-bundle over M,  and 
- the action of G on M lifts to an ergodic action of G on P by bundle 

automorphisms, 

then H is isomorphic to one of the groups in 1-i. 

Theorem 1.2 has been generalized to allow G-spaces that are not homogeneous, 
under the additional assumption that H is semisimple, with no compact factors 
[9, Theorem. 5.2.5, p. 981. (We note that G,  being semisimple, has only finitely 
many normal subgroups.) 

THEOREM 1.3 (Zimmer). I f  

- G is a connected, semisimple, linear Lie group, with R-rank G 2, 
- M is an irreducible G-space with G-invariant finite volume, 
- H is a connected, semisimple, linear Lie group, with no compact factors, 
- P is a principal H-bundle over M,  and 
- the action of G on M lifts to an ergodic action of G on P by bundle 

automorphisms, F 

then H is locally isomorphic to a normal subgroup of G. 

This latter result does not address the case where the semisimple Lie group H 
is compact. It is perhaps surprising that the answer is completely different in this 
situation. Indeed, there is no restriction at all on the possible structure groups: for 
any compact Lie group K, it is easy to construct a G-equivariant principal K-bundle 
P, on which G acts irreducibly. 

PROPOSITION 2.4 (1)'. Let G be a noncompact, linear Lie group. For any compact 
Lie group K, there is a smooth, irreducible, volume-preserving action of G on some 
principal K-bundle P over some manifold M.  

For our construction in 2.4(1), the manifold M depends on the compact group K. 
This suggests the following problem: 

PROBLEM 1.4. Let 

- G be a connected, semisimple, linear Lie group, with no compact factors, such 
that R-rank G 2 2, and 

- M be a smooth manifold of finite volume, on which G acts irreducibly, by 
volume-preserving diffeomorphisms. 

Find all the connected, compact Lie groups K, for which there is a principal 
K-bundle P over M, such that the action of G on M lifts to an ergodic action of 
G on P, by bundle automorphisms. In particular, is there a choice of M for which 
every such group K is possible? 
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Our construction in 2.4(1) yields a principal bundle P with a G-invariant connec- 
tion (cf. 1.7), so it is also natural to consider the following geometric version of the 
problem: 

PROBLEM 1.5. Consider Problem 1.4, with the additional requirement that there is 
a G-invariant connection on the principal bundle P. 

We investigate this geometric question in the special case where M is one of the 
known actions of G that arise from an algebraic construction. (It has been conjec- 
tured that every irreducible G-space is isomorphic to one of these known actions, 
modulo a nowhere-dense, G-invariant set. This may suggest that our results could 
be helpful in understanding the general case.) 

DEFINITION 1.6. Suppose 

- G is a subgroup of a Lie group H, 
- A is a lattice in H, and 
- C is a compact subgroup of H that centralizes G, 

Then G acts (on the right) on the double-coset space M = \ \ H / C ,  and we call M a 
standard G-space. 

EXAMPLE 1.7. In the setting of Definition 1.6, if C acts freely on A\H, then 
P = A\H is a principal C-bundle over M. In many cases (for example, if H is a 
connected, noncompact, simple group), the Mautner phenomenon [6] implies that G 
acts irreducibly on P. 

There is a G-invariant connection on P.  To see this, note that, because 
GK % G x K is reductive in H, there is an AdH(GA")-invariant complement m to c 
in 6. Then m defines a GK-invariant complement to the vertical tangent space 

T(P)vert. 

We show that if M is a standard G-space, then P must also be a standard G-space 
(see 3.9), so the possible choices of K are severely restricted; Kmust arise from purely 
algebraic considerations. 

THEOREM 3.13'. Suppose 

- G is a connected, semisimple, linear Lie group, with no compact factors, 
- M = \ \ H / C  is an ergodic, standard G-space, such that H is connected and 

semisimple, with no compact factors, 
- K is a connected, compact Lie group, and 
- P is a principal K-bundle over M ,  such that 

the action of G on M lifts to an ergodic action of G on P by bundle auto- 
morphisms, and 
there is a G-invariant connection on P. 
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Then there exist 

- a finite-index subgroup A. of A, 
- a connected, compact Lie group N ,  
- a homomorphism a'. A. Ã‘> N, with dense image, 
- a quotient C of CÂ¡ and 
- a finite subgroup F of the center of K, 

such that K / F  C x N.  

Combining this with the Margulis Superrigidity Theorem 1.2 yields the following 
result. 

COROLLARY 3.14'. In the setting of Theorem 3.13', suppose that R-rankH > 2, 
and that A is irreducible. Then there is a finite set K = { K l ,  . . . , K,,} of compact, 
connected Lie groups, depending only on H, such that K is isomorphic to one of the 
groups in K .  

2. The Measurable Category 

As is well known, Theorems 1.2 and 1.3 can be restated in the language of Borel 
cocycles (cf. [9, Proposition 4.2.13, p. 701 and [9, Theorem 5.2.5, p. 981). 

DEFINITION 2.1. Suppose a Lie group G acts measurably on a Borel space M, with 
a quasi-invariant measure p, and H is a (second countable) locally compact group. 

- A Borel measurable function a: M x G Ã‘ H is a Borel cocycle if, for each 
g ,  /I G, we have a(x ,  gh) = a(x ,  g )  a(xg, h )  for a.e. x e M. 

- A Borel cocycle a is strict if the equality holds for every x ,  instead of only for 
almost every x .  

- If a: M x G Ã‘ H i s  a strict Borel cocycle, then the skew-product action M x, H 
of G is the action of G on M x H, given by ( m ,  h)g = (mg, h a.(nz, g)) .  

Any Borel cocycle is equal, almost everywhere, to a strict Borel cocycle 
[9, Theorem B.9, p. 2001, so, abusing terminology, we will speak of the skew-product 
action M x, H even if a is not strict. 

The following statement strengthens Theorem 1.2 by incorporating the additional 
conclusion that the subgroup H must be compact. 

THEOREM 1.2'. For any connected, semisimple, linear Lie group G,  with 
R-rank G > 2, there is a corresponding finite set Ji = {Hi,  . . . , H,,} of connected, 
compact Lie groups, such that i f  

- H is a connected, linear, Lie group, 
- r is an irreducible lattice in G, 
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- a: (T\G) x G Ã‘ H is a Borel cocycle, and 
- the skew-product action (r\G) xy, H is ergodic, 

then H is isomorphic to one of the groups in 'H. 

THEOREM 1.3' (Cocycle Superrigidity Theorem). Let 

- G be a connected, semisimple, linear Lie group, with no compact factors, such that 
R-rank G 2 2, 

- M be an irreducible, ergodic G-space with finite invariant measure, 
- H be a connected, semisimple, linear Lie group, with no compact factors, and 
- a: M x G Ã‘ H be a Borel cocycle. 

I f  the skew-product action M xy, H i s  ergodic, then H i s  locally isomorphic to a normal 
subgroup of G .  

Recall that if P is a principal K-bundle over a manifold M ,  then any action of G 
on P by bundle automorphisms yields a Borel cocycle a: M x G + K, such that P is 
G-equivariantly measurably isomorphic to the skew product M xz K (cf. [9, 
pp. 66-67]). This suggests the following measurable version of Problem 1.4. 

PROBLEM 2.2. Let 

- G be a connected, semisimple, linear Lie group, with no compact factors, such 
that R-rank G 2 2, 

- M be a smooth manifold of finite volume, on which G acts irreducibly, by 
volume-preserving diffeomorphisms, and 

- K be a connected, compact Lie group. 

Describe the Borel cocycles a: M x G Ã‘ K, such that the skew-product action 
M x a K is ergodic. In particular, are there choices of G, M,  and K for which no such 
cocycle exists? (We assume that every G-orbit on M is a null set, for otherwise 
Theorem 1.2' applies.) 

PROPOSITION 2.3. For any noncompact, linear Lie group G ,  and any compact 
(second countable) group K, there is an irreducible, ergodic G-space M with finite 
invariant measure, and a Borel cocycle a: M x G Ã‘ K, such that the skew-product 
M xX K is ergodic (and irreducible). 

Proof. Embed G in some SL(n, R). For each natural number k ,  let Hk = 

SL(n + k ,  K) and let A<- be a (cocompact) torsion-free lattice in H k .  Let 

and 
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The group G acts diagonally on Mo. From vanishing of matrix coefficients 
[9, Theorem 2.2.20, p. 231, we know that the diagonal embedding of G is mixing 
on each finite subproduct of M y ,  so (by approximating arbitrary sets by finite 
unions of cylinders) we conclude that G is mixing on the entire product My.  In 
particular, every closed, noncompact subgroup of G is ergodic on M y ,  so My is 
irreducible. 

By construction, Hk contains G x SO(k), so there is a free action of KO on Mo 
that centralizes the diagonal action of G. Then, because K is isomorphic to a 
closed subgroup of KO, we know that there is a free action of K on My that cen- 
tralizes the diagonal action of G. Let M = Mo/K,  so Mo is a principal K-bundle 
over M. 

COROLLARY 2.4. 

(1) I f  K is a Lie group, then the G-space M can be taken to be a smooth, compact 
manifold, and the skew product M x a  K can be realized as a principal K-bundle 
over M.  

(2) I f K  is restricted to the class of Lie groups, then there is a G-space M i  that works 
for all K simultaneously. (That is, there is no need to vary M a s  K ranges over the 
set of compact Lie groups.) 

( 3 )  Similarly, i f  K is restricted to the class of compact, abelian groups that are 
not necessarily Lie, then there is a G-space M2 that works for all K simulta- 
neously. 

Proof. (1) Because K c SO(k), for some k ,  we may use Ak\Hk, which is a smooth 
manifold, instead of Mo, in the construction. 

(2) Let Kl be the direct product of one representative from each isomorphism class 
of compact Lie groups. There are only countably many compact Lie groups, up to 
isomorphism [l,  Corollary lO.l3], so Kl is compact and second countable. From 
the proposition, there is an ergodic G-space M1 with finite invariant measure and 
a Kl-valued cocycle a, with ergodic skew product. Now, for any K, we simply let 
a be the composition of a1 with the projection from Kl to K. 

(3) By the argument of (2), it suffices to show that there is a compact abelian group 
Ao, such that every compact abelian group is a quotient of Ao. To see this, let A be 
the direct sum of countably many copies of Q and countably many copies of Q/Z, 
then let An be the Pontryagin dual of A. Every countable Abelian group is iso- 
morphic to a subgroup of A (because every countable Abelian group is isomorphic 
to a subgroup of a countable, divisible, Abelian group [2, Theorem 24.1, p. 1061 and 
every countable, divisible, Abelian group is isomorphic to a subgroup of A [2, 
Theorem 23.1, p. 104]), so, by duality, every compact Abelian group is isomorphic 
to a quotient of Ao. 

The following observation is well known, but does not seem to have previously 
appeared in print. 
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Remark 2.5. Assume G is noncompact and has Kazhdan's property T (for 
example, let G = SL(3, R) [9, Theorem 7.4.2, p. 146]), and let T = R/Z be the circle 
group. From Proposition 2.3, we know there is an ergodic G-space M, with finite 
invariant measure, and a Bore1 cocycle a: M x G Ã‘ T, such that M x a  T is ergodic. 
Then a is not cohomologous to any cocycle b, such that b(M x G) is countable. To 
see this, we argue by contradiction: let A be the subgroup of T generated by 
a(M x G), and suppose, after replacing a with a cohomologous cocycle, that A is 
countable. Then we may think of a as a cocycle into A (with the discrete topology on 
A). Because G has Kazhdan's property T, and A is Abelian, we conclude that a is 
cohomologous to a cocycle whose values lie in a compact (thus, finite) subgroup of A 
[9, Theorem 9.1.1, p. 1621. Thus, we may assume a(M x G) is finite. But then M xy  T 
is clearly not ergodic. This contradicts the choice of a. 

3. The Geometric Category 

THEOREM 3.1. Let 

- H be a connected Lie group, 
- M = A\H, for some lattice A in H,  such that H acts faithfully on M, 
- G be a connected, semisimple Lie subgroup of H ,  with no compact factors, 
- K be a compact Lie group, 
- E Ã M be a smooth principal K-bundle, such that the action of G on M lifts to a 

well-defined (faithful) action of a cover G of G by bundle automorphisms of E. 

Assume that 

- G is ergodic on M, and 
- G preserves a connection on E. 

Then there exist 

- a closed subgroup N of K, 
- a GI-invariant principal N-subbundle E' of E, and 
- a Lie group H' ,  with only finitely many connected components, 

such that 

(1) H' is a transitive group of diffeomorphisms of El, 
(2) H' contains N as a normal subgroup, 
(3) H ' / N  is isomorphic to H ,  
(4) the action induced by H' on E 1 / N  = M is the action of H on M, 
(5 )  H' contains GI, and 
(6) G' is ergodic on E'.  

Therefore, there is a lattice A' in H ' ,  such that 

(a) E' is GI-equivariantly diffeomorphic to A1\H', and 
(b) M is G-equivariantly diffeomorphic to Af\H'/N. 
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Remark 3.2. Because K centralizes G', we see that G' is ergodic on E'k, for every 
k K. Therefore, { E'k \ k K }  is an ergodic decomposition for the G'-action on E. 
In particular, if G' is ergodic on E, then E' = E, so N = K. 

Remark 3.3. The proof shows that if K is connected and G' is ergodic on E, then 
H' may be taken to be connected. In general, H' is constructed so that H1 = (H1)ON. 

Proof. We begin by establishing some notation. 

- Let m be the connection form of some GI-invariant connection [3, pp. 63-64]. 
- Let Q = Dm be the curvature form of the connection [3, pp. 771. 
- We view 6 as the Lie algebra of left-invariant vector fields on H, so each 

element of fi is well-defined as a vector field on A\H = M. 
- For each X e. 6, we use A" to denote the lift of X to a horizontal vector field 

on E. 
- For Z e f, let 2 be the corresponding vertical vector field on E induced by the 

action of K (so m(Z) = 2). 
- For any X g, let X' be the corresponding vector field on E induced by the 

action of G'. 

By definition, Q is a horizontal 2-form on E taking values in f .  For each e e E, the 
connection provides an identification of the horizontal part of the tangent space TeE 
with f ) ;  therefore, we may think of Q as a map h :  E -+ HomR(fi A f ) ,  f). From 
[3, Proposition II.5.1(c), p. 76 and comments on p. 771, we have 

& = ( A d f i k l ) o h e f o r e v e r y e e E  and k e K .  (3.4) 

Step 1. We have 

(1) beg = he for every e e. E and g G'; and 
(2) there is some d> e HomR(fi A 6, f), such that he e. {(Adfik) o d>lk e. K } ,  for every 

e E. 

For any X t) and g, a e. H, and defining R,: H + H by Rg(h) = hg, the left- 
invariance of X implies d(Rg\(Xa) = ( (AdHg-l )~)ga  [3, Proposition 1.5.1, p. 511; 
therefore, for g e G' and e e E, 

the horizontal part of dge(Xe) is ((Ad^-iv^)eg. 

Then, because the connection is G'-invariant (and G commutes with the K-action 
' 

on E), we have 
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so h is GI-equivariant. Then, since the action of GI on E preserves a probability 
measure, but the action on HomiR(f) A 4 ,  f) is algebraic, the Bore1 Density Theorem 
implies that h is constant on almost every ergodic component of the GI-action on E 
(see [5, Corollary 3.11). Because almost every G-orbit on M is dense, this implies that 
we may choose some en ? E, such that f2 is constant on eoG1, and the projection of 
enG1 to M is dense. 

Let El be the closure of eOG1, and let 4 = he(,. Because h is continuous, we know 
that h is constant on El. Because K is compact, the projection 4: E Ã‘ M is a proper 
map, so n(E1) is closed in M. Since it is also dense, we conclude that n(E') = M; thus, 
E = E'K. Now, for any e e E '  and k e K, we have 

hek = ( A ~ K  k-I) o f ie (see (3.4)) 
= (AdKkpl) o fie(, (h is constant on El) 
= ( A d K k l )  o 4 (definition of 4). 

This implies that 

(1) f2 is constant on Elk, for each k e K, so f2 is GI-invariant, and 
(2) f2 {(AdKk) o 0 1 k e K}, for every e e EIK = E. 

Step 2. We may assume that h is constant. Let 

- 4 be as in Step 1, 
- E'  = {e e E \ he = 4}, and 
- N = { k e K  (AdKk)o4=d)}. 

The Implicit Function Theorem (together with (3.4) and Conclusion (2) of Step 1) 
implies that E' is a smooth submanifold of E. Then, from (3.4), we see that 
E' is a principal N-subbundle of E. Because 0 is GI-invariant, this subbundle is 
GI-invariant . 

Because N is compact, we know that AdKN is completely reducible, so there is an 
(AdKN)-equivariant projection p:f Ã‘ n; let cut = p  o cu. Then a/ is a n-valued 
1-form. Because p is (AdK N)-equivariant, we have REwt = (AdN k l )  o d for all 
k N, so [3, Proposition 11.1.1, p. 641 implies that wt is the connection form of a 
connection on El. Since the connection corresponding to cu is G-invariant, and G1 
centralizes K, it is easy to see that the connection corresponding to cu' is also 
GI-invariant. 

If N # K, then, by replacing E with the subbundle El, we may replace K with a 
smaller subgroup. By the descending chain condition on closed subgroups of K, this 
cannot continue indefinitely. 

A 

Thus, we may assume N = K. Then El = E, so Q. is constant on E, as desired. 

Step 3. The vector space 6 + f is a Lie algebra. Note that [f, 61 = 0 (cf. [3, Proposi- 
tion 11.1.2, p. 65]), so we need only show [If,m c F+f .  Fix X, Y l f ) ,  and let 
Z = -~Q(x,  Y). Then, from [3, Corollary 11.5.3, p. 781, we have 
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so we see that 

as desired. 

Step 4. We have g' c 6. For X, Y, Z g, and letting denote summation 
over the set of cyclic permutations of (X, Y, Z), we have the following well-known 
calculation: 

- fi ([X, Y], Z )  = - Y D ( [ X ,  Z )  (definition of A) 
= -xQ([X,  71, Z )  (Q is horizontal) 
= - E O.([X, Y], Z )  

+ p ( f 2 ( Y ,  Z)) 
(Q(7, Z )  = h(Y, Z) is constant) 

= 3 dn(X, F, Z )  [3, Proposition 11.3.1 1, p. 361 
= 3 DQ(X, Y, Z )  (2,  Y, and Z are horizontal) 
= O  (Bianchi Id. [3, p. 781). 

Thus, as is well known, ^ I g A g  is a 2-cocycle for the Lie algebra cohomology of g 
(with coefficients in the module f with trivial g-action) [8, (3.12.5), p. 2201. From 
Whitehead's Lemma [8, Theorem 3.12.1, p. 2201, we know that ~ ~ ( g ;  f) = 0, so there 
is some a Homdg,  f), such that 

A(x, Y) = a ( [ ~ ,  Y]) for all X, Y g. 

For g e G and X, Y e g, we have 

~ ( [ x ,  y]) = ax, Y) (definition of a) 
= h ( ( ~ d ~ g - l ) X ,  (AdHg-l)Y) (3.6), b is constant) 
= a([(AdH gP1)X, (AdH g-l) Y]) (definition of o-) 

= a ^ A d ~  gpl)[X, Y1) ( A d H g l  is an automorphism of if), 
Then, because [g, g] = g, we conclude that a((Adg)X - X) = 0, for every g G and 
X g. Because G is semisimple, we have [G, g] = g, so we conclude that afg) = 0. 
Combining this with the definitions of a and h, and the fact that the form f2 is 
horizontal, we have 

for every X, Y g. 
For any fixed eo E E, define T: g + f by r(X) = a>(xf(eo)). Then, because 

[3, Proposition 11.11.4, p. 1061, we conclude, from (3.7), that T :  g -+ f is a 
homomorphism. Since G has no compact factors, this implies T = 0. Because en 
is an arbitrary element of E, we conclude that a>@') = 0, so every vector field in g' 
is horizontal. Therefore g' = ij c 5. 
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Step 5 .  Completion of the proof. Let Hi be the connected Lie group of diffeomor- 
phisms of E corresponding to the Lie algebra & + f .  Because K centralizes 6 [3, Pro- 
position 11.1.2, p. 651 and (obviously) K is normalized by K, we see that K is 
normalized by Hi. Let H' = HiK (so Hi is the identity component of H', and Hi 
is a finite-index subgroup of H');  then K is a normal subgroup of H'. Furthermore, 
because g' c 6 c 6 '  we have G' c H'. 

Because 8' = filn = & + < we see that H' is transitive on E, with discrete stabilizer, 
so there is a discrete subgroup A' of H', such that E is HI-equivariantly diffeo- 
morphic to A\H' .  Then, because G c H', we know that E is GI-equivariantly diffeo- 
morphic to A\H1.  Then, because 

and H' = HiK, we see that the action induced by H '  on A1\H'/K E E/K = M is the 
action of H on M. This implies that H'/K is a cover of H.  Also, because there is an 
H-invariant probability measure on M = A\H, and K is compact, this implies that 
there is an H'-invariant probability measure on A'\H1; thus, A' is a lattice in H'. 

Let L be the smallest normal subgroup of Hi that contains G'. (Note that L is also 
normal in H' (because H' = H-nd K centralizes G'), so A'L is a subgroup of HI.) 
Let 

- H" be the identity component of the closure of A'L. 
- N'=  KnA'H",  and 
- E" = A'\A.'H" c E. 

Note that A' normalizes HI', so A'H" is a (closed) subgroup of H'. 
Because G is ergodic on M ,  we may assume that A'G'K is dense in H'. Then, 

because A'H" is closed and contains A'G', we conclude that A W K  = H'. This 
means E1'K = E, so E" projects onto all of M. 

We claim that E" is a principal N'-bundle over M. It is clear that E" is N'-invariant, 
so E" is a principal N'-bundle over E"/N'. Thus, we need only show that the natural 
map E"/N' + E/K = M is injective. For &, & A', h i ,  h2 H", and k K, such 
that &h\k = &h2, we have 

so k 6 N '  as desired. 
Arguing as in the last three paragraphs of Step 2, we see that we may assume 

N' = K. Then El' = E, so AIL is dense in A'\H1. From the Mautner Phenomenon 
[6] ,  we conclude that G is ergodic on A1\H' = E. 

All that remains is to show that H1/K acts faithfully on M. (This implies that 
H1/K is isomorphic to H.) Thus, we wish to show that K is the kernel of the action 
of H' on A'\H1/K. Now H' is transitive on A'\H'/K, with stabilizer A'K, Thus, the 
kernel of the action is a (normal) subgroup of the form LK, where L is a subgroup of 
A'. (We wish to show L is trivial.) Let K e L. Then, because L is discrete and G is 
connected, we must have Â̂¡ c AK. Since K is compact, but G has no compact 
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factors, we conclude that AÂ¡ = A. Therefore L G  = L, so Lm' = LA' c A'. Because 
G is ergodic on E = A'\H1, we may assume that G'A' is dense in H'. So LH' c A'. 
Since H' is faithful on A1\H', we know A does not contain any nontrivial normal 
subgroups of H'.  Therefore L"' must be trivial, so L is trivial, as desired. 0 

Remark 3.8. If G is ergodic on E, and the center of K is discrete, then combining 
Step 2 with (3.4) yields the conclusion that h = 0; thus, under these assumptions, 
every G'-invariant connection on E is flat. 

The following corollary generalizes Theorem 3.1, by allowing M to be a 
double-coset space A\H/C, instead of requiring it to be a homogeneous space A\H. 
However, we add the additional assumption that G is ergodic on the bundle P. 
See Remark 3.12 for a discussion of some other less important assumptions in the 
statement of this more general result. 

COROLLARY 3.9. Let 

- H be a connected Lie group, 
- A be a torsion-free lattice in H,  such that H acts faithfully on A\H, 
- C be a compact subgroup of H, 
- M =  \\H/C, 
- G be a connected, semisimple Lie subgroup of H, with no compact factors, 
- K be a connected, compact Lie group, 
- P Ã‘ M be a smooth principal K-bundle, such that the action of G on M lifts to a 

well-defined ( fai thful)  action of  a cover G' of G by bundle automorphisms of  P. 

Assume that 

- G is ergodic on A\H, 
- G is ergodic on P, and 
- G preserves a connection on P. 

Then there exist 

- a Lie group HI, with only finitely many connected components, 
- a lattice A'in HI, 

- a compact subgroup C of H', 
- a Gf-equivariant diffeomorphisnz 4:  A'\H'/C' -+ P, and 
- a continuous, surjective homomorphism p: H' Ã‘> H, with compact kernel, 

such that, letting K' = p l ( c ) ,  we have 

(1 )  H' contains G', and G acts ergodically on A\H' ,  
(2) G' centralizes K', and C is a normal subgroup of K', 
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( 3 )  (f) conjugates the action of K ' / C  on A'\H1/C' to the action of K on P ,  and 
(4) (f) factors through to a diffeomorphism that conjugates the action of G' on 

A'\H'/K' to the action of G on M = A\H/K. 

Proof. Let 

- (T: A\H Ã‘> ^\H/C be the natural quotient map; 
- t,: P Ã‘ A\H/C be the bundle map; and 

- E = {(x, P )  G ( A \ H ) x P  I 4 4  = HP)}. 

Then E is the principal K-bundle over A\H obtained as the pullback of P. Note that 

- G1 acts (diagonally) on E, via (x, p)g = (xg,pg),  and 
- K acts on E, via (x, p)k = ( x , p k ) .  

Warning: G' may not be ergodic on E (see 3.15). 

Step 1. G preserves a connection on E. Let co be the connection form of a GI- 
invariant connection on P, and define eof ) ( v ,  w) = cop(w) f for e = (x, p) E and 

v ,  w) T(q)(Â£ c T,.(A\/f) @ Tp(P). 

Because co is a connection form, it is easy to see, from the characterization of 
connection forms [3, Proposition 2.1 . l ,  p. 641, that coE is the connection form of a 
connection on E. Because co is G'hvariant, it is clear that coE is G'-equivariant. 

Step 2. Let 

- N, E', H', and A' be as in Theorem 3.1, 
- $: A'\H' Ã‘ E' be an H'-equivariant diffeomorphism, so $1  A1\H'-E, 
- p: H' + H be the surjective homomorphism, with kernel N, that results from 

3.1(4), and 
- t,': A'\H' Ã‘ A\H be the affine map induced by p. 

Step 3. K' = p l ( C )  is compact, and G' centralizes K'. Because G normalizes C, 
we know, by pulling back to HI, that GI normalizes K'. Furthermore, because both 
Nand K'/N E C are compact, we know that K' is compact. Since G' has no compact 
factors, and normalizes K', we conclude that G centralizes K'. 

Step 4. $ factors through to a diffeomorphism that conjugates the action of G on 
A\H'/K'  to the action of G on A\H/C. From the definition of p, we see that the 
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G'-equivariant map i / /  induces a diffeomorphism that conjugates the action of K' on 
A'\H'/N to the action of p(K') = C on A\H. Thus, it factors through to a 
G'-equivariant diffeomorphism between the orbit spaces of these actions. 

Step 5. There is a closed subgroup C' of K', such that for el, 6 2  ? E', we have 
n2(e1) = 7c2(e2) if and only if el e2C1; hence 712 o $ factors through to a GI-equivariant 
diffeomorphism 4:  A'\H1/C' + P. For e El, let 

Because G centralizes K', and because, from its definition, 712 is obviously G'- 
equivariant, we have 4(eg) = 4(e) for e e E'  and g G'. Then, because G' is ergodic 
on E', we conclude that 4 is essentially constant. By continuity, it must be constant: 
let C = d(e) for any e E'. 

From the definition of 4 ,  we see that if el E e2C', then n2(e1) = q(e2). Conversely, 
suppose q(e1) = ̂ i{e-i}. Write el = $(A1h1) and ez = $(A1h2), for some hi, h e H'. 
Because !,(n^(el)) = [(n2(e3)), we see, from the commutative diagram (3.10), that 
C1(A'/zi) C1(A'h2)C. Thus, from the definitions of C' and K', we conclude that 

Then, because n2(e1) = 1t~(e2), we conclude, from the definition of C', that el e2C'. 
For cl, c2 C', and any e E', we have 

ndec1~2) = w(ec1) = 712(e), 

so clc2 e C'. Therefore, C' is a subgroup of K'. Because H' acts continuously, and 712 

is continuous, we know that C is closed. 
Because 712 o \l/ is GI-equivariant, and G is ergodic on P, we see that 712 o is 

surjective. Hence 

Step 6. C is normal in K', with K ' /C  E K, and 4 conjugates the action of K'/C' on 
A1\H'/C to the action of K on P. Fix some e e E'. From the commutative diagram 
(3.10), and the definition of Kt, we see that w(eK') is a fiber of C; hence, Step 5 
implies that C'\K1 is diffeomorphic to a fiber of C. Because K is connected, we know 
that the fiber is connected, so we conclude that C'\K1 is connected. Therefore 
K' = (K'y C'. 

Let X e f', and let X' be the corresponding vector field on A\H' induced by the 
action of K' on A'\H1. Any element Z of f induces a vertical vector field 2 on P, 
and f constitutes the entire vertical tangent space at each point. Thus, for any fixed 
XQ e A'\H1, there is some Z e f ,  such that we have d(712 o $ ) ( X ' )  = Now, 
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" 
each of the maps  xi^>- d(m o I))#) and x i ~ r  Zn2($~so~l is G'-equivariant (because G' 
centralizes both K and K),  so these maps are equal on the orbit xoG'. We may 
choose XQ so that this orbit is dense, and then we conclude, by continuity, that 

d(m2 o I)).#) = &,w(.vo)) for all x e A'\H'. (3.1 1) 

This implies that X' factors through to a well-defined vector field on A\H'/C'. 
Hence (Ad c)X X +  c', for all c C'. Because Xis  an arbitrary element of f, this 
implies that (K')' normalizes C'. Because K' = (K')Â¡C' we conclude that K' normali- 
zes C'. Furthermore, because d(7i2 0 I)) maps f to f (see 3.1 I), we know that TQ o I) 
conjugates the action of K' on A'\H' to the action of K on P. Hence, d> conjugates 
the action of K ' /C on Ar \H ' /C to the action of K on P. 

Remark 3.12. Some of the technical assumptions in Corollary 3.9 are not very 
important; they can be satisfied by passing to a finite cover, or making other similar 
minor adjustments. 

(1) One might assume only that M is connected, rather than that H is connected. 
Then Ao\HO/Co is a finite cover of M,  where A. = A n HÂ and Co = C n 7/Â¡  

(2) The assumption that H acts faithfully on A\H is only a convenience; one could 
always mod out the kernel of this action. 

(3) If one does not assume that A is torsion free, then Selberg's Lemma [7, Corollary 
6.13, p. 951 implies that A has a torsion-free subgroup A. of finite index. The 
space Ao\H/C is a finite cover of M. 

(4) If one does not assume that K is connected, then P / P  is a finite cover of M. 
(5) If one does not assume that G is ergodic on \\H, then we can construct a closed, 

connected subgroup Ho of H, such that, after replacing A by a conjugate 
subgroup, 
- Ho contains G, 
- (A n Ho)\Ho/(C n Ho) is a finite cover of M ,  and 
- G is ergodic on (A n Ho)\Ho. 

To see this, write H = LKR, where R is the radical of H, K is the maximal com- 
pact, semisimple quotient of H, and L is a connected, semisimple subgroup of H, 
with no compact factors. Let 

- Ho be the identity component of the closure of AL[R, L], 
- An = A n  Ho, and 
- Co = C n  Ho. 

We know that G is ergodic on \\H/C (because G' is ergodic on P), so, by repla- 
cing A with a conjugate subgroup, we may assume that AGC is dense in H; then 
AH& = H. Let 

- A~ = A n ( H ~ c ) ,  
- Hl = AIHo, and 
- Cl = CfIH, .  
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Let us show that the natural map Al\H1/Cl + A\H/C = M is a bijection. 

- Because AHoC = H,  and Ho c H I ,  we know that the map is surjective. 
- Suppose th\c e H I ,  with 1. A,  h H I ,  and c C. Then 

so A A n (HoC) = Al c Hi .  Therefore c H i .  So we conclude that the map is 
injective. 

Hence, A A H l / C i  is diffeomorphic to M. 
Now H l / H o  is discrete, and contained in the compact group CHo/Ho,  so it must 

be finite. That is, Ho has finite index in H I .  Therefore, An has finite index in A I ,  and 
Co has finite index in C l .  Hence, Ao\Ho/Co is a finite cover of Al\Hl/Cl S M. The 
Mautner phenomenon [6] implies that G is ergodic on Ao\Ho. 

COROLLARY 3.13. In the setting of Corollary 3.9, suppose H i s  semisimple, with no 
compact factors. Then there exist 

- a finite-index subgroup A. of A ,  
- a connected, compact Lie group N,  
- a homomorphism a: A. Ã‘ N, with dense image, 
- a quotient C of CÂ¡ and 
- a finite subgroup F of the center of K, 

such that K/F E C x N.  
Proof. Let N = ker(p)O, so (HI)Â = HN. Because N is a compact, normal 

subgroup of H', and H has no compact factors, we see that (H')' is isogenous to 
H x N. By modding out a finite group, let us assume (HI)' = H x N. 

Let A. = A n (H')', and let a: A. Ã‘ N be the projection into the second factor of 
H x N. Because G has no compact factors, we must have G c H. Since G is ergodic 
on A'\H', and, hence, on Ao\(H')', this implies that HAo is dense in (HI)', so a(Ao) is 
dense in N. 

We have (K1)O = p-l(C)O = CÂ x N, and Cb = C n (K')' is a normal subgroup of 
(K')Â¡ such that (K1)O/Cb E K. Therefore, 

where '%' denotes isogeny, that is, an isomorphism modulo appropriate finite 
groups. 

COROLLARY 3.14. In the setting of Corollary 3.9, suppose that H is semisimple, 
with no compact factors, that R-rank H 2 2, and that the lattice A is irreducible. Then 
there is a finite list K l ,  . . . , K,, of compact groups, depending only on H, such that K is 
isomorphic to Kj, for some j. 

Proof. We apply Corollary 3.13. There are only finitely many connected, compact 
Lie groups of any given dimension, and dim K = ( d i m 0  + (dim N), so it suffices to 
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find bounds on dim C and dim N that depend only on H. We have dim C < dim H. 
Given H, the Margulis Superrigidity Theorem (1.2) implies that there are only 
finitely many choices for N, up to isomorphism, so dim N is bounded. 

In Corollary 3.14, one may replace the assumption that H is simple with the 
weaker assumption that 

- H is semisimple, and 
- the lattice A is irreducible. 

EXAMPLE 3.15. If M = A\H/K and P = A\H, then the principal bundle E 
constructed in the proof of Corollary 3.9 is GI-equivariantly diffeomorphic to K x P, 
with (k,p)g = (k,pg). So G is not ergodic on E (unless K is trivial). 
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