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Preface

The study of group actions on manifolds is the meeting ground of a variety of
mathematical areas. In particular, interesting geometric insights can be obtained
by applying measure theoretic techniques. These notes provide an introduction
to some of the important methods, major developments, and open problems in the
subject. They are slightly expanded from lectures of R. J. Z. at a CBMS Conference
at the University of Minnesota, Minneapolis, in June, 1998. The main text presents
a perspective on the field as it was at that time, and comments after the notes of
each lecture provide suggestions for further reading, including references to recent
developments, but the content of these notes is by no means exhaustive.
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LECTURE 1

Introduction

When a group G acts on a manifold M , one would like to understand the
relation between:

• algebraic properties of the group G,

• the topology of M ,

• the G-invariant geometric structures on M , and

• dynamical properties of the action (such as dense orbits, invariant mea-
sures, etc.).

If we assume that G is a connected Lie group, then the structure theory (A1.3) tells
us there are two main cases to consider:

• solvable
Solvable groups are usually studied by starting with Rn and pro-
ceeding by induction.

• semisimple
There is a classification that provides a list of the semisimple
groups (SL(n,R), SO(p, q), etc.), so a case-by-case analysis is
possible. Alternatively, the groups can sometimes be treated via
other categorizations, e.g., by real rank.

The emphasis in these lectures is on the semisimple case.

(1.1) Assumption. In this lecture, G always denotes a connected, noncompact,
semisimple Lie group.

1A. Discrete versions of G

A connected Lie group may have discrete subgroups that approximate it. There
are two notions of this that play very important roles in these lectures:

• lattice
This is a discrete subgroup Γ of G such that G/Γ is compact (or,
more generally, such that G/Γ has finite volume).

• arithmetic subgroup
Suppose G is a (closed) subgroup of GL(n,R), and let Γ = G ∩
GL(n,Z) be the set of “integer points” of G. If Γ is Zariski dense
in G (or, equivalently, if G ∩ GL(n,Q) is dense in G), then we
say Γ is an arithmetic subgroup of G.

Discrete versions inherit important algebraic properties of G:

1



2 1. INTRODUCTION

(1.2) Example. Suppose Γ is a discrete version of G (that is, Γ is either a lattice
or an arithmetic subgroup).

1) Because Assumption 1.1 tells us that G is semisimple, we know G has no
solvable, normal subgroups (or, more precisely, none that are connected
and nontrivial). One can show that Γ also has no solvable, normal sub-
groups (or, more precisely, none that are infinite, if G has finite center).
This follows from the Borel Density Theorem (A6.1), which tells us that
Γ is “Zariski dense” in (a large subgroup of) G.

2) If G is simple, then, by definition, G has no normal subgroups (or, more
precisely, none that are connected, nontrivial, and proper). If we further-
more assume R-rank(G) ≥ 2 (i.e., G has a subgroup of dimension ≥ 2
that is diagonalizable over R) and the center of G is finite, then theorems
of G.A.Margulis link Γ and G more tightly:
(a) Γ has no normal subgroups (or, more precisely, none that are infinite

and of infinite index), and
(b) roughly speaking, every lattice in G is arithmetic.
(See Theorems A7.3 and A7.9 for precise statements.)

(1.3) Remark. Both of the conclusions of Example 1.2(2) can fail if we eliminate
the assumption that R-rank(G) ≥ 2. For example, in SL(2,R), the free group F2 is
a lattice, and some other lattices have homomorphisms onto free groups.

(1.4) Example (Linear actions). Let M = V , where V is a finite-dimensional vec-
tor space (over R or C). A linear action of G on M (that is, a homomorphism
G → GL(V )) is known as a (finite-dimensional) representation of G. These rep-
resentations are classified by the well-known theory of highest weights, so we can
think of the linear actions of G as being known.

If R-rank(G) ≥ 2 (and G is simple), then the linear actions of Γ are closely
related to the linear actions of G. Namely, the spirit, but not exactly the statement,
of the Margulis Superrigidity Theorem (A7.4) is that if ϕ : Γ → GL(V ), then either

• ϕ extends to a representation of G, or
• the image of ϕ is contained in a compact subgroup of GL(V ).

In other words, any representation of Γ extends to a representation of G, modulo
compact groups. This is another illustration of the close connection between G and
its discrete versions.

(1.5) Remark. An alternative formulation (A7.7) of the Margulis Superrigidity The-
orem says that (in spirit) each representation of Γ either extends to G or extends
to G after composing with some field automorphism of C.

1B. Nonlinear actions

These lectures explore some of what is known about the nonlinear actions of G
and its discrete versions. (As was mentioned in Example 1.4, the theory of highest
weights provides a largely satisfactory theory of the linear actions.) The connections
between G and Γ are of particular interest.

We begin the discussion with two basic examples of G-actions.

(1.6) Example. G acts on G/Γ, where Γ is any lattice. More generally, if G ↪→ H,
and Λ is a lattice in H, then G acts by translations on H/Λ.
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(1.7) Example. The linear action of SL(n,R) on Rn factors through to a (nonlin-
ear) action of SL(n,R) on the projective space RPn−1. More generally, SL(n,R)
acts on Grassmannians, and other flag varieties.

Generalizing further, any semisimple Lie group G has transitive actions on
some projective varieties. They are of the form G/Q, where Q is a “parabolic”
subgroup of G. (We remark that there are only finitely many of these actions, up
to isomorphism, because there are only finitely many parabolic subgroups of G, up
to conjugacy.)

(1.8) Remark. In the case of SL(n,R), any parabolic subgroup Q is block upper-
triangular:

Q =


∗ ∗

∗

0 ∗


A natural question that guides research in the area is:

To what extent is every action on a compact manifold (or perhaps
a more general space) built out of the above two basic examples? (1.9)

Unfortunately, there are methods to construct actions that seem to be much
less amenable to classification. The two known methods are Induction and Blowing
up; we will briefly describe each of them.

1B(a). Induction. Suppose some subgroup H of G acts on a space Y . Then
1) H acts on G× Y by

h · (g, y) = (gh−1, hy),

and
2) G acts on the quotient X = (G× Y )/H by

a · [(g, y)] = [(ag, y)].

The action of G on X is said to be induced from the action of H on Y .

(1.10) Remark.
1) Ignoring the second coordinate yields a G-equivariant map X → G/H,

so we see that X is a fiber bundle over G/H with fiber Y . Note that the
fiber over [e] = eH is H-invariant, and the action of H on this fiber is
isomorphic to the action of H on Y .

2) Conversely, if G acts on X, and there is a G-equivariant map from X to
G/H, then X is G-equivariantly isomorphic to an action induced from H.
Namely, if we let Y be the fiber of X over [e], then Y is H-invariant,
and the map (g, y) 7→ g · y factors through to a G-equivariant bijection
(G× Y )/H → X.

(1.11) Example. Let H be the stabilizer in SL(n,R) of a point in RPn−1, so

H =

 h =


λ ∗ · · · ∗
0
... A

0


∣∣∣∣∣∣∣∣∣ detA = λ−1


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Then h 7→ log |λ| is a homomorphism from H onto R, so every R-action yields an
action of H; hence, by induction, an action of SL(n,R).

The upshot is that every vector field on any compact manifold M yields an
SL(n,R)-action on a compact manifold M ′. Thus, all the complications that arise
for R-actions also arise for SL(n,R)-actions.

It is hopeless to classify all R-actions on compact manifolds, so Example 1.11
puts a damper on the hope for a complete classification of actions of simple Lie
groups. The following example discourages the belief in a classification theorem
even more.

(1.12) Example. Let Γ be a lattice in PSL(2,R), such that Γ has a homomorphism
onto a nonabelian free group F . By the same argument as in Example 1.11, we see
that every action of F on a compact manifold yields an action of PSL(2,R) on a
manifold (and the manifold is compact if PSL(2,R)/Γ is compact).

In SL(n,R), let

Q =


∗ ∗
∗ ∗

∗ · · · ∗
∗ · · · ∗

0 0
...

... ∗
0 0

 ,
where the box in the top left corner is 2 × 2, so Q has a homomorphism onto
PSL(2,R). Thus,

F -action → PSL(2,R)-action → Q-action → SL(n,R)-action.

So the free-group problem arises for every SL(n,R), not just SL(2,R).

1B(b). Blowing up (Katok-Lewis, Benveniste). Let Γ be a finite-index sub-
group of SL(n,Z), so Γ acts on Tn by automorphisms, and assume the action has
two distinct fixed points x and y.

1) First, blow up at these two fixed points. That is, letting Tp(Tn) be the
tangent space to Tn at p,
• replace x with {rays in Tx(Tn)}, and
• replace y with {rays in Ty(Tn)}.

Thus, x and y have each been replaced with a sphere.
2) Now, glue the two spheres together.

The upshot is that the union of two fixed points can be replaced by a projective
space with the usual action of SL(n,Z) on RPn−1.

(1.13) Remark.
1) Blowing up results in a different manifold; the fundamental group is dif-

ferent. (This will be discussed in Example 4.18 below.)
2) The construction can embed the action on a projective space (which is

not volume preserving) into a volume-preserving action.
3) The change in the manifold is on a submanifold of positive codimension.

The above construction is due to A. Katok and J. Lewis. It was generalized by
J. Benveniste along the following lines.
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(1.14) Example.
1) Embed G in a larger group H, let M = H/Γ, for some lattice Λ in H.
2) Assume G is contained in a subgroup L of H, such that L has a closed

orbit on H/Γ.
For some pairs of closed L-orbits, we can blow up transversally (that is, take the
set of rays in a subspace transverse to the L-orbit), and then glue to make a new
action. Varying the gluing results in actions that have nontrivial perturbations.

1C. Open questions

The examples in §1B(a) and §1B(b) suggest there is a limit to what can be
done, so we present a few problems that are likely to be approachable. Some will
be discussed in later lectures.

1) Are there actions of Γ on low-dimensional manifolds?
Low-dimensional can either mean low in an absolute sense, as in
dimension ≤ 3, or it can mean low relative to Γ, which is often
taken to be less than

(lowest dimension of a representation of G)− 1

For example, if Γ = SL(n,Z), then “low-dimensional” means
either ≤ 3 or < n− 1.

2) When are actions locally rigid?
Not all actions are locally rigid. For example, if the action is
induced from a vector field, then it may be possible to perturb
the vector field. (Note that perturbations may be non-linear
actions, even if the original action is linear.)

3) Suppose G preserves a geometric structure on M , defined by a structure
group H. Then what is the relation between G and H?

Sometimes, assuming thatG preserves a suitable geometric struc-
ture eliminates the examples constructed above.

4) Does every action have either:
• an invariant geometric structure of rigid type (at least, on an open

set), or
• an equivariant quotient G-manifold with such a structure?

5) If G acts on M , what can be said about the fundamental group π1(M)?
What about other aspects of the topology of M?

6) What are the consequences of assuming there is a G-invariant volume
form on M?

Approaches to these questions must bear in mind the constructions of §1B(a)
and §1B(b) that provide counterexamples to many naive conjectures.

Comments

Proofs of the fundamental theorems of G.A. Margulis mentioned in Exam-
ples 1.2 and 1.4 can be found in [9, 10, 11].

The blowing-up construction of §1B(b) is due to A. Katok and J. Lewis [7].
Example 1.14 appeared in the unpublished Ph.D. thesis of E. J. Benveniste [1].
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See [4] for details of a stronger result. A few additional examples created by a
somewhat different method of gluing appear in [6, §4].

Some literature on the open questions in Section 1C:

1) Actions on manifolds of low dimension ≤ 2 are discussed in Lecture 2
(and the comments at the end).

2) See [3] for a recent survey of the many results on local rigidity of group
actions.

3) Actions with an invariant geometric structure are discussed in Lectures 3,
5 and 6.

4) The examples of Katok-Lewis and Benveniste do not have a rigid geo-
metric structure that is invariant [2]. On the other hand, the notion
of “almost-rigid structure” is introduced in [2], and all known volume-
preserving, smooth actions of higher-rank simple Lie groups have an in-
variant structure of that type.

5) Results on the fundamental group of M are discussed in Lectures 4, 5
and 7.

6) Many of the results discussed in these lectures apply only to actions
that are volume preserving (or, at least, have an invariant probability
measure). Only Lecture 9 is specifically devoted to actions that are not
volume preserving.

See the survey of D. Fisher [5] (and other papers in the same volume) and the
ICM talk of F. Labourie [8] for a different view of several of the topics that will be
discussed in these lectures.
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LECTURE 2

Actions in Dimension 1 or 2

Suppose Γ is a lattice in a connected, noncompact, simple Lie group G. When
M has small dimension, one can sometimes prove that every action of Γ on M is
nearly trivial, in the following sense:

(2.1) Definition. An action of a group Γ is finite if the kernel of the action is a
finite-index subgroup of Γ.

2A. Finite actions

(2.2) Remark.

1) It is easy to see that an action of Γ is finite if and only if it factors through
an action of a finite group. More explicitly, every finite action of Γ on a
space M can be obtained from the following construction:

• let F be a finite group that acts on M , so we have a homomorphism
ϕ1 : F → Homeo(M), and

• let ϕ2 : Γ → F be any homomorphism.

Then the composition ϕ = ϕ1◦ϕ2 : Γ → Homeo(M) defines a finite action
of Γ on M .

2) It is known that an action of a finitely generated group on a connected
manifold is finite if and only if every orbit of the action is finite. (One
direction of this statement is obvious, but the other is not.)

It is useful to know that, in certain situations, the existence of a single finite
orbit implies that every orbit is finite:

(2.3) Proposition. Suppose that every n-dimensional linear representation of every
finite-index subgroup of the lattice Γ is finite. If a smooth action of Γ on a connected
n-manifold M has a finite orbit, then the action is finite.

The proof utilizes the following fundamental result:

(2.4) Lemma (Reeb-Thurston Stability Theorem). Suppose the group Λ is finitely
generated and acts by C1 diffeomorphisms on a connected manifold M , with a fixed
point p. If

• Λ acts trivially on the tangent space Tp(M), and

• there is no nontrivial homomorphism from Λ to R,

then the action is trivial (i.e., every point of M is fixed by every element of Λ).

9



10 2. ACTIONS IN DIMENSION 1 OR 2

Idea of proof. To simplify the proof, let us assume that the action is real analytic
(i.e., Cω). By choosing coordinates, we may assume M = Rn, and p = 0. To avoid
cumbersome notation, let us assume n = 1.

Now, for each λ ∈ Λ, there is some aλ ∈ R, such that

λ(x) = x+ aλx
2 + o(x2).

(Note that the leading term is x, because, by assumption, Λ acts as the identity on
the tangent space T0R.) For λ, γ ∈ Λ, it is easy to verify that

aλγ = aλ + aγ .

That is, the map λ 7→ aλ is a homomorphism. By assumption, this implies aλ = 0
for all λ ∈ Λ.

By induction on k, the argument of the preceding paragraph implies

λ(x) = x+ o(xk), for every k.

Since the action is real analytic, we conclude that λ(x) = x, so the action is
trivial.

Proof of Proposition 2.3. Because Γ has a finite orbit, we may choose a finite-
index subgroup Γ1 of Γ that has a fixed point p. Then Γ1 acts on the tangent
space TpM . This is an n-dimensional representation of Γ1, so, by assumption, we
may choose a finite-index subgroup Γ2 of Γ1 that acts trivially on TpM . Also,
since every n-dimensional representation of Γ2 is finite, it is clear that Γ2 has no
nontrivial homomorphisms into R. So the Reeb-Thurston Theorem implies that Γ2

fixes every point in M ; i.e., Γ2 is in the kernel of the action.

For lattices of higher real rank, the Margulis Superrigidity Theorem (A7.4)
implies that every 1-dimensional or 2-dimensional linear representation is finite.
Thus, we have the following corollary:

(2.5) Corollary. Suppose Γ is a lattice in a simple Lie group G with R-rank(G) ≥ 2
(and the center of G is finite). If a smooth Γ-action on a circle or a surface has a
finite orbit, then the action is finite.

In many cases, the Margulis Normal Subgroup Theorem (A7.3) tells us that
every normal subgroup of Γ is either finite or of finite index. In this situation,
any action with an infinite kernel must be finite, so we have the following useful
observation:

(2.6) Lemma. Suppose Γ is a lattice in a simple Lie group G, with R-rank(G) ≥ 2
(and the center of G is finite). If Γ acts on M , and the action of some infinite
subgroup of Γ is finite, then the action of Γ is finite.

2B. Actions on the circle

The conclusion of Corollary 2.5 can sometimes be proved without assuming
that there is a finite orbit. Let us start by stating the results for actions on a circle.

(2.7) Theorem (Witte). Suppose Γ is any finite-index subgroup of SL(n,Z), with
n ≥ 3. Then every C0 Γ-action on a circle is finite.

More generally, the conclusion is true whenever Γ is an arithmetic lattice with
Q-rank(Γ) ≥ 2. (Unfortunately, however, because of the assumption on Q-rank,
this result does not apply to any cocompact lattice in any simple Lie group.) It
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should be possible to replace the assumption on Q-rank with an assumption on
R-rank:

(2.8) Conjecture. Let Γ be a lattice in a simple Lie group G with R-rank(G) ≥ 2.
Then every C0 Γ-action on a circle is finite.

(2.9) Theorem (Ghys, Burger-Monod). Conjecture 2.8 is true for C1 actions.

Witte’s proof is algebraic, and uses the linear order of the real line. Ghys’s
proof studies the action of Γ on the space of probability measures on the circle,
and shows it has a fixed point. Burger and Monod prove a vanishing theorem for
bounded cohomology (namely, H1

bdd(Γ; R) injects into H1(Γ; R)), and obtain the
conjecture as a corollary (in cases where H1(Γ; R) = 0).

We will prove only the following less-general result, because it is all that we
need to obtain an interesting result for actions on surfaces.

(2.10) Theorem (Farb-Shalen). Conjecture 2.8 is true for Cω actions of a special
class of lattices.

2C. Farb-Shalen method

Corollary 2.5 assumes the existence of a finite Γ-orbit. B. Farb and P. Shalen
showed that, in certain cases, it suffices to know that a single element γ of Γ has a
finite orbit. An element with a finite orbit can sometimes be found by topological
methods, such as the Lefschetz Fixed-Point Formula.

(2.11) Definition (Farb-Shalen). Let Γ be a lattice in a simple Lie group G with
R-rank(G) ≥ 2. We call Γ big if there exist

• an element γ of Γ of infinite order, and
• a subgroup Λ of the centralizer CΓ(γ), such that Λ is isomorphic to a

lattice in some simple Lie group of real rank at least two.

(2.12) Remark.
1) Every finite-index subgroup of SL(n,Z) is big if n ≥ 5.
2) There exist big cocompact lattices in some simple Lie groups.
3) There are non-big lattices in simple Lie groups of arbitrarily large real

rank.

We can now state and prove Farb-Shalen’s theorem on the circle.

(2.13) Theorem (Farb-Shalen). If Γ is big, then every Cω action of Γ on the circle
is finite.

Proof. Because Γ is big, we may choose γ and Λ as described in the definition.
The classic Denjoy’s Theorem implies that there are two cases to consider.

Denjoy’s Theorem. If f is a C∞ diffeomorphism of S1, then
either

1) f has a finite orbit, or
2) f is C0-conjugate to an irrational rotation.

Case 1. Assume γ has a finite orbit. There is some k > 0, such that γk has a
fixed point. Because the action is Cω, the fixed points of γk are isolated, so the
fixed-point set of γk is finite. Also, because Λ centralizes γk, this fixed-point set
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is Λ-invariant. Thus, Λ has a finite orbit. Then Corollary 2.5 tells us that the
Λ-action is finite, so the entire Γ-action is finite (see Lemma 2.6).

Case 2. Assume γ is C0-conjugate to an irrational rotation. For simplicity, let
us assume, by replacing γ with a conjugate, that γ is an irrational rotation. The
powers of γ are dense in the group of all rotations, so Λ centralizes all the rotations
of S1. This implies that Λ acts by rotations, so the commutator subgroup [Λ,Λ]
acts trivially. Because [Λ,Λ] is infinite, we again conclude that the Γ-action is finite
(see Lemma 2.6).

(2.14) Remark. In the proof of Theorem 2.13, real analyticity was used only in
Case 1, to show that the fixed-point set of γk is finite. Without this assumption,
the fixed-point set could be any closed subset of S1 (such as a Cantor set).

2D. Actions on surfaces

(2.15) Conjecture. Let Γ be a lattice in a simple Lie group G with R-rank(G) ≥ 2.
Then every area-preserving C0 Γ-action on any (compact, connected) surface is
finite.

(2.16) Remark. The assumption that the action is area-preserving cannot be omit-
ted, because the natural action of SL(3,Z) on R3 factors through to a faithful action
on the sphere S2.

(2.17) Definition. Let Γ be a lattice in a simple Lie group G with R-rank(G) ≥ 2.
We call Γ very big if there exist

• an element γ of Γ of infinite order, and

• a subgroup Λ of the centralizer CΓ(γ), such that Λ is isomorphic to a big
lattice in some simple Lie group of real rank at least two.

(2.18) Remark.

1) Every finite-index subgroup of SL(n,Z) is very big if n ≥ 7.

2) There exist very big cocompact lattices in some simple Lie groups.

(2.19) Theorem (Farb-Shalen). Assume Γ is very big. Then a Cω action of Γ on
a surface S is finite if either

• χ(S) 6= 0 (non-vanishing Euler characteristic), or

• the action is area-preserving.

(2.20) Remark. The first theorem of this type was obtained by É.Ghys, who showed
that if Γ belongs to a certain class of noncocompact lattices (e.g., if Γ is a finite-
index subgroup of SL(n,Z), for n ≥ 4), then every Cω action of Γ on the 2-
sphere is finite. This is a corollary of his theorem that every nilpotent group of Cω

diffeomorphisms of S2 is metabelian.

The Farb-Shalen proof for actions on surfaces is based on the same idea as their
proof for actions on the circle. Given γ ∈ Γ, consider the fixed-point set Mγ . This
is an analytic set, i.e., it is closed and defined locally by zeros of analytic functions.
Analytic sets need not be manifolds (i.e., there may be singularities), but we have
the following basic lemma.
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(2.21) Lemma (Farb-Shalen). If V ⊂M is a nonempty analytic set, then ∃W ⊂ V ,
such that

1) W is a compact analytic submanifold of V , and

2) W is canonical: if f : M → M is any Cω diffeomorphism, such that
f(V ) ⊂ V , then f(W ) ⊂W .

Proof of the Farb-Shalen Theorem for surfaces. Choose γ and Λ as in
the definition of very big. If χ(S) 6= 0, it follows easily from the Lefschetz Fixed-
Point Formula (A8.1) that γk has a fixed point, for some k > 0. If χ(S) = 0, then
it is not so easy to get a fixed point, but, by using the entire group Γ, and the
assumption that the action is area-preserving, it is possible to apply a fixed-point
criterion of J. Franks (see Theorem A8.2).

Thus, we may assume that γk has a fixed point, for some k > 0. Then, by
applying Lemma 2.21 to the fixed-point set of γk, we see that Λ acts on either a
circle or a finite set. Because actions of big lattices on a circle (or on a finite set)
are finite, we conclude that Λ has a finite orbit, so the Λ-action on M is finite (see
Corollary 2.5). Hence, Lemma 2.6 implies that the Γ-action is finite.

(2.22) Remark. Using the Ghys-Burger-Monod Theorem (2.9) yields the conclusion
of the Farb-Shalen Theorem for actions of big lattices on surfaces, not only actions
of very big lattices.

Comments

See [20, Thm. 1] for a proof of Remark 2.2(2).
The Reeb-Thurston Stability Theorem (2.4) was first proved in [19]. See [17]

or [18] for a nice proof.
See [10] or [11] for an introduction to actions of lattices on the circle. Theo-

rem 2.7 was proved in [22]. Theorem 2.9 was proved by É.Ghys [9] and (in most
cases) M. Burger and N.Monod [1, 2]. For C2 actions, a generalization to all groups
with Kazhdan’s property (T ) was proved by A.Navas [12].

Conjecture 2.8 remains open. Indeed, there is not a single known example of
a (torsion-free) cocompact lattice Γ, such that no finite-index subgroup of Γ has a
faithful C0 action on the circle. On the other hand, Theorem 2.7 was generalized
to many noncocompact lattices in [13].

The Farb-Shalen method, including a proof of Theorem 2.19, was introduced in
[4]. It is now known that if Γ is a noncocompact lattice in a simple Lie groupG, such
that Γ contains a torsion-free, nonabelian, nilpotent subgroup, and R-rank(G) ≥ 2,
then every smooth, area-preserving Γ-action on any surface is finite. This was
proved by L. Polterovich [15] for surfaces of genus ≥ 1 (without assuming the
existence of a nonabelian nilpotent subgroup), and the general case was obtained
by J. Franks and M. Handel [7].

The results in Remark 2.20 appear in [8]. It was later shown by J.C. Rebelo
[16] that these results for Cω actions on S2 are also true for homotopically trivial
Cω actions on T2. This fills in the missing case of Theorem 2.19 (real-analytic
actions on T2 that are not area-preserving), for a class of noncocompact lattices
that includes all finite-index subgroups of SL(4,Z).

The fixed-point theorem (A8.2) of J. Franks appears in [6].
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B. Farb and H.Masur [3] showed that if Γ is a lattice in a simple Lie group G,
with R-rank(G) ≥ 2, then any action of Γ on a closed, oriented surface is homo-
topically trivial on a finite-index subgroup Γ′ (i.e., the homeomorphism induced by
any element of Γ′ is isotopic to the identity).

Moving beyond surfaces, Farb and Shalen [5] proved that if Γ is a finite-index
subgroup of SL(8,Z) (or, more generally, if Γ is a lattice of Q-rank at least 7 in a
simple Lie group), then every real-analytic, volume-preserving action of Γ on any
compact 4-manifold of nonzero Euler characteristic is finite.

Assume k < n (and n ≥ 3). S. Weinberger [21] showed that SL(n,Z) has
no nontrivial C∞ action on Tk, and K.Parwani [14] showed that any action of
SL(n + 1,Z) on a mod 2 homology k-sphere is finite. These proofs make use of
elements of finite order in the acting group.
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LECTURE 3

Geometric Structures

(3.1) Assumption. G is a noncompact, simple Lie group acting smoothly (and
nontrivially) on an n-manifold M .

In this lecture, we discuss just a few of the ideas that arise when the action of G
preserves a pseudo-Riemannian metric, or some other geometric structure on M .

3A. Reductions of principal bundles

Recall that the frame bundle PM is a principal GL(n,R)-bundle over M .

(3.2) Definition. Suppose P → M is a principal H-bundle, and L is a subgroup
of H. A reduction of P to L is any of the following three equivalent objects:

1) a principal L-subbundle Q of P ,
2) a section s : M → P/L, or
3) an H-equivariant map ϕ : P → H/L.

Proof of equivalence. (1 ⇒ 2) The quotient Q/L has a single point in each
fiber of P/L, so it defines a section of P/L.

(2 ⇒ 3) Let π : P → M be the bundle map. For each x ∈ P , the points
xL and s

(
π(x)

)
are in the same fiber of P/L, so there exists ηx ∈ H, such that

s
(
π(x)

)
= x ηxL. Although ηx is (usually) not unique, the coset ηxL is well defined,

so η defines a map η : P → H/L. For h ∈ H, it is clear that ηxh = h−1ηx, so η is
H-equivariant. (The inverse on h reflects the fact that we have a right action on P ,
but a left action on H/L.)

(3 ⇒ 1) Let Q = {x ∈ P | ϕ(x) = eL }.

(3.3) Remark.
1) A reduction is always assumed to be measurable. It may or may not be

required to have some additional regularity: C0, C∞, etc.
2) When we have chosen a measure µ on M , we ignore sets of measure 0:

the section M → P/L need only be defined a.e. on M .

(3.4) Definition. Let H be a subgroup of GL(n,R). An H-structure on M is a
reduction of PM to H.

(3.5) Remark. In applications, H is usually an algebraic group; i.e., it is Zariski
closed in GL(n,R).

(3.6) Example. If H = O(p, q), then an H-structure on M is equivalent to the
choice of a pseudo-Riemannian metric on M of signature (p, q).

17
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Proof. (⇐) We are given a pseudo-Riemannian metric 〈 | 〉 of signature (p, q).
For each m ∈ M , let Qm be the set of all frames {v1, v2, . . . , vp+q} of TmM , such
that the corresponding Cartan matrix of 〈 | 〉m is

1
. . .

1
−1

. . .
−1


.

I.e., we have

〈vi | vj〉 =


1 if i = j ≤ p

−1 if p < i = j

0 if i 6= j.

Then Q is an O(p, q)-subbundle of PM .

Any action of G on M by diffeomorphisms lifts to an action on the tangent
bundle TM . It also lifts to an action on the frame bundle PM . (The derivative
of a diffeomorphism takes a frame on M to another frame on M .) Thus, we can
speak of G-invariant H-structures on M .

(3.7) Question. If ω is an H-structure on M , then what is Aut(M,ω) (i.e., the
set of diffeomorphisms preserving ω)?

Especially, we would like to know whether Aut(M,ω) contains a copy of G. In
other words, is there a G-action on M that preserves the H-structure ω?

3B. Algebraic hull of a G-action on M

(3.8) Theorem. Let G act on a principal H-bundle P → M , with H an algebraic
group, and assume µ is an ergodic G-invariant measure on M .

Then there is an algebraic subgroup L of H, such that
1) there is a G-invariant reduction to L,
2) there is no G-invariant reduction to any proper algebraic subgroup of L,

and
3) whenever there is a G-invariant reduction to an algebraic subgroup J

of H, then J contains a conjugate of L.

(3.9) Remark. It is clear from (1) and (3) that the subgroup L is unique up to
conjugacy.

To prepare for the proof, we recall a few basic facts about tame actions.

(3.10) Definition.
1) A topological space Y is tame if it is second countable and T0. (Recall

that “T0” means ∀x, y ∈ Y , ∃ open subset U of Y , such that U contains
either x or y, but not both.)

2) An H-action on Y is tame if the orbit space Y/H is a tame topological
space.
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(3.11) Example.

1) Any proper action on a locally compact, second countable, Hausdorff
space is tame.

2) Any algebraic action on a variety is tame (see Corollary A4.4).

(3.12) Lemma.

1) Each atomic measure on a tame space Y is supported on a single point.
(“Atomic” means that Y cannot be decomposed into two sets of positive
measure.)

2) If f : M → Y is a G-invariant measurable function, G is ergodic on M ,
and Y is tame, then f is constant (a.e.).

Proof of Theorem 3.8. From the descending chain condition on Zariski-closed
subgroups of H, it is clear that there is a minimal algebraic subgroup L of H, such
that there is a G-invariant reduction to L. This subgroup L obviously satisfies (1)
and (2).

We now prove (3). Suppose

φ1 : P → H/L and φ2 : P → H/J

are both H-equivariant and G-invariant. Let

φ = (φ1, φ2) : P → H/L×H/J

and
φ : M → (H/L×H/J)/H.

Because H acts algebraically on the variety H/L × H/J , we know that the orbit
space (H/L × H/J)/H is tame. We also know that G is ergodic on M , so we
conclude that φ is constant (a.e.). This means the image of φ is (a.e.) contained in
a single H-orbit on H/L×H/J .

The stabilizer of a point in H/L×H/J is (conjugate to) L∩ (hJh−1), for some
h ∈ H, so we can identify theH-orbit withH/

(
L∩(hJh−1)

)
. Thus, after discarding

a set of measure 0 from M , we may think of φ as a map P → H/
(
L ∩ (hJh−1)

)
that is G-invariant and H-equivariant. Thus, φ is a G-invariant reduction of P to
L∩ (hJh−1). Then the minimality of L implies L∩ (hJh−1) = L, so L is contained
in a conjugate of J . Therefore, a conjugate of L is contained in J .

(3.13) Definition. The subgroup L of the theorem is the algebraic hull of the G-
action on P . It is well defined up to conjugacy.

(3.14) Remark. The above is the measurable algebraic hull. For actions with a dense
orbit, the same argument shows there is a Cr-hull with the same properties, but
the reductions are defined only on open, dense, G-invariant sets.

(3.15) Example (Computation of an algebraic hull). Suppose G acts on M , and ρ
is a homomorphism from G to H. Define an action of G on the trivial principal
bundle P = M ×H by

g · (m,h) =
(
gm, ρ(g)h

)
.

We will show that the algebraic hull of this action is the Zariski closure ρ(G) of
ρ(G) in H.
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Note that, for any subgroup L of H, a section of the trivial bundle P/L can
be thought of as being simply a map M → H/L. Furthermore, the section is
G-invariant iff the corresponding map is G-equivariant.

(⊂) Since ρ(G) fixes the point [e] in H/ρ(G), the constant map m 7→ [e] is G-
equivariant, so it yields a G-invariant section of P/ρ(G). Therefore, the algebraic
hull is contained in ρ(G).

(⊃) Let L ⊂ ρ(G) be the algebraic hull of the action. By definition, this
implies there is a G-invariant reduction to L, so there is a G-equivariant map
f : M → ρ(G)/L. Then f∗µ is an ergodic G-invariant measure on ρ(G)/L, so the
Borel Density Theorem (A6.1) implies that ρ(G) fixes a.e. point in ρ(G)/L. Hence,
ρ(G) is contained in some conjugate of L. Since the algebraic hull L is Zariski
closed, we conclude that it contains ρ(G).

3C. Actions preserving an H-structure

The following result places a strong restriction on the geometric structures that
can be preserved by a G-action. (Recall that n = dimM , so, by definition, if there
is an H-structure on M , then H ⊂ GL(n,R).)

(3.16) Theorem. If G preserves an H-structure and a finite measure on M , then
there is (locally) an embedding ρ : G→ H.

Moreover, the composite homomorphism

G
ρ−→ H ↪→ GL(n,R)

defines a representation of G that contains the adjoint representation of G.

The proof employs a lemma that is of independent interest:

(3.17) Lemma. If G acts on M with finite invariant measure and has no fixed
points (except on a set of measure 0), then, for almost every m ∈ M , the stabi-
lizer Gm of m is discrete.

Proof. For each m ∈ M , let s(m) be the Lie algebra of Gm. Then s(m) is a
linear subspace of the Lie algebra g, so s is a map from G to a Grassmannian
variety V. Because stabilizers are conjugate, it is easy to see that s : M → V is
G-equivariant, where the action of G on V is via the adjoint representation. Then
s∗µ is an AdG-invariant probability measure on V, so the Borel Density Theorem
(A6.1) implies that the image of s is (a.e.) contained in the fixed-point set of the
adjoint representation. Since G is simple, the only AdG-invariant subspaces of g
are {0} and g. But G has no fixed points, so the Lie algebra of a stabilizer cannot
be g. We conclude that the Lie algebra of almost every stabilizer is {0}.

Proof of Theorem 3.16. From the lemma, we know that the stabilizer of almost
every point of M is discrete, so, for (almost) every point m in M , the differential
of the map G→ Gm yields an embedding of g in TmM . Thus, TM contains, as a
subbundle, the vector bundle M × g with G-action defined by

g · (m, v) =
(
gm, (Ad g)v

)
.

From Example 3.15, we know that the algebraic hull of the action on the principal
bundle associated to this subbundle is the Zariski closure of AdG. The algebraic
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hull on PM , the principal bundle associated to TM , must have the algebraic hull
of this subbundle as a subquotient, so it contains AdG.

3D. Groups that act on Lorentz manifolds

The adjoint representation of G can almost never be embedded in a repre-
sentation with an invariant Lorentz metric, so Theorem 3.16 has the following
consequence.

(3.18) Corollary (Zimmer). If there is a G-invariant Lorentz metric on M , and
M is compact, then G is locally isomorphic to SL(2,R).

More generally, here is a list (up to local isomorphism) of all the Lie groups
that can act on a compact Lorentz manifold:

(3.19) Theorem (Adams-Stuck, Zeghib). Let H be a connected Lie group that acts
faithfully on a compact manifold M , preserving a Lorentz metric. Then H is locally
isomorphic to L× C, where C is compact, and L is either

i) SL(2,R),

ii) the ax+ b group (i.e., R× n R),

iii) a Heisenberg group (of dimension 2k + 1, for some k),

iv) a semidirect product R n (Heisenberg), or

v) the trivial group {e}.

(3.20) Remark.

1) In (iv), the possible actions of R on the Heisenberg normal subgroup can
be described explicitly, but we omit the details.

2) Conversely, if H is locally isomorphic to L×C, as in Theorem 3.19 (with
the additional restriction indicated in (1)), then some connected Lie group
locally isomorphic to H has a faithful action on a compact manifold M ,
preserving a Lorentz metric.

3) H is locally isomorphic to the full isometry group of a compact Lorentz
manifold iff H is as described in Theorem 3.19, but with option (ii)
deleted.

One can say a lot about G, even without assuming that M is compact:

(3.21) Theorem (Kowalsky). If there is a G-invariant Lorentz metric on M , and
G has finite center, then either:

i) the G-action is not proper, and G is locally isomorphic to SO(1, n) or
SO(2, n), or

ii) the G-action is proper, and the cohomology group Hk(M ; R) vanishes
whenever k ≥ n − p, where p = dimG/K is the dimension of the sym-
metric space associated to G.

(3.22) Example. Let M = (compact) × R. Then SL(3,R) cannot act on M pre-
serving a Lorentz structure (because Hn−1(M ; R) 6= 0).
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Comments

See [15] for a more thorough introduction to the use of ergodic theory in the
study of actions preserving a geometric structure. This is a very active field; Lec-
ture 6 and the references there present some additional developments.

An analogue of Theorem 3.16 for actions that preserve a Cartan geometry
appears in [4]

The algebraic hull first appeared in [13].
In the situation of Lemma 3.17, if we assume that R-rankG ≥ 2, and that the

action is ergodic, but not transitive (a.e.), then a.e. stabilizer is trivial, not merely
discrete [10].

See [1] for a detailed discussion of actions on Lorentz manifolds. Corollary 3.18
appears in [14]. Theorem 3.19 appears in [2, 11] (together with its converse).
Remark 3.20(3) appears in [3, 12]. Theorem 3.21 appears in [8].

The study of actions on Lorentz manifolds remains active. For example, see [6]
for a discussion of the Lorentz manifolds that admit nonproper actions by semisim-
ple groups of isometries.

Lorentz manifolds are pseudo-Riemannian manifolds of signature (1, n − 1).
Theorem 3.16 can be used to show that if G is a simple group acting by isometries
on a more general compact pseudo-Riemannian manifold M of signature (p, q), then
R-rankG ≤ min(p, q). A result of R. Quiroga-Barranco [9] describes the structure
of M in the extreme case where R-rankG = min(p, q). There has also been progress
[5, 7] in understanding actions on pseudo-Riemannian manifolds by simple groups
of conformal maps.
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LECTURE 4

Fundamental Groups I

This lecture is a first look at the relation between G and the fundamental group
of a manifold on which it acts. We will see more on this subject in Lectures 5 and 7.

(4.1) Assumption. In this lecture, we are given:

1) a connected, noncompact, semisimple Lie group G,

2) an action of G on a compact manifold M , such that the fundamental
group π1(M) is infinite, and

3) an ergodic, G-invariant probability measure µ on M .

We assume, for simplicity, that G is simply connected, so G acts on the universal
cover M̃ .

4A. Engaging conditions

(4.2) Remark.

1) The universal cover M̃ is a principal bundle over M , with fiber π1(M).

2) If Λ is any subgroup of π1(M), then M̃/Λ is another cover of M .

Choosing a fundamental domain yields a measurable section M → M̃/Λ. (The
section is continuous on a dense, open set if the fundamental domain is reasonably
nice.)

(4.3) Definition. By a reduction of M̃ to Λ, we mean a measurable section M →
M̃/Λ.

(4.4) Example. Let M = T2 = R2/Z2. The universal cover M̃ is R2, and a section
s : R2/Z2 → R2 is given by

s
(
[(x, y)]

)
=

(
{x}, {y}

)
,

where {·} denotes the fractional part.

(4.5) Example. Let H be a connected, simply connected group that acts on the
unit square [0, 1]2, fixing each point on the boundary.

• By gluing opposite sides of the square, we obtain an action of H on T2.

• The lift to an action on T̃2 = R2 is a tiling by copies of the original action:
for n ∈ Z2 and x ∈ [0, 1]2, we have g · (x+ n) = (g · x) + n.

Thus, there is an H-equivariant reduction of T̃2 to the trivial subgroup {e}.

An “engaging condition” is a property that prohibits this type of reduction.
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26 4. FUNDAMENTAL GROUPS I

(4.6) Definition. The action of G on M is:

1) totally engaging if there is no G-equivariant reduction of M̃ to any proper
subgroup of π1(M);

2) engaging if there is no G-equivariant reduction of M̃ to any proper sub-
group of finite index in π1(M);

3) topologically engaging if there is no G-equivariant reduction of M̃ to any
finite subgroup of π1(M).

(4.7) Remark. The definition of engaging is vacuous unless π1(M) has at least one
proper subgroup of finite index. Under the stronger hypothesis that π1(M) has
infinitely many subgroups of finite index, it is not difficult to see that

totally engaging =⇒ engaging =⇒ topologically engaging.

(4.8) Remark.

1) Suppose there is a G-equivariant reduction of M̃ to Λ ⊂ π1(M).
(a) If the action of G on M is totally engaging, then Λ = π1(M).
(b) If the action of G on M is engaging, then Λ is profinitely dense

in π1(M), i.e., Λ surjects into every finite quotient of π1(M). (This
implies that, although Λ may have infinite index in π1(M), it is a
“very big” subgroup of π1(M).)

2) For many actions, there does not exist a smallest subgroup Λ of π1(M),
such that there is a G-equivariant reduction of M̃ to Λ. This is because
the set of discrete subgroups usually does not have the descending chain
condition. Hence, we cannot define the “discrete hull” of an action on a
general manifold M .

3) The phrase “G-equivariant” in Definition 4.6 is an abuse of terminology
— we really mean “G-equivariant almost everywhere” (with respect to
the G-invariant measure µ).

Usually an action is ergodic for a good reason that is insensitive to finite covers.
For example, Anosov flows are ergodic, and the Anosov condition, being local, is
not affected by passing to a finite cover. So the following proposition shows that
engaging is a natural assumption from a dynamical point of view.

(4.9) Proposition. The G-action on M is engaging iff G is ergodic on every finite
cover of M .

Proof. (⇐) Suppose the action is not engaging. Then there is a G-equivariant
section s : M → M̃/Λ, for some finite-index, proper subgroup Λ of π1(M). Let
E = s(M) ⊂ M̃/Λ. Then:

• E is a G-invariant set, because s is G-equivariant, and
• E is neither null nor conull, because

µ(E) = µ(M) =
µ
(
M̃/Λ

)
|π1(M) : Λ|

is neither 0 nor µ
(
M̃/Λ

)
.
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Therefore, the G-action on M̃/Λ is not ergodic.
(⇒) Suppose G is not ergodic on the finite cover M̂ . This means there is a

G-invariant subset E of M̂ that is neither null nor conull. For m ∈M , let

k(m) = #
(
p−1(m) ∩ E

)
, where p : M̂ →M is the covering map.

Since E is a G-invariant set, it is clear that k is a G-invariant function. Since G
is ergodic on M , this implies that k is constant (a.e.). Hence, µ(E) is an integer
multiple of µ(M), so we may assume µ(E) is minimal among the (non-null) G-
invariant subsets of M̃ .

Assuming, without loss of generality, that M̂ is a regular cover, i.e., that M =
M̂/Λ, for some finite group Λ of deck transformations, we may let

Λ′ = {λ ∈ Λ | E = λE (a.e.) }.
It is immediate that Λ′ is a subgroup of Λ. Furthermore, it follows from the
minimality of µ(E) that µ(E∩λE) = 0, for every λ ∈ ΛrΛ′. This implies that the
image of E in M̂/Λ′ is a (G-invariant) fundamental domain for the covering map
M̂/Λ′ →M (a.e.). So the action is not engaging.

The following is an easy way to show that an action is topologically engaging. In
fact, this condition is usually taken to be the definition of “topologically engaging”
(which makes it possible to obtain some of the results without any mention of
measure theory).

(4.10) Proposition. Assume that the support of µ has nonempty interior. If G (or
even a single element of infinite order in G) acts properly on a dense, open subset O
of M̃ , then the action is topologically engaging.

Proof. Let Λ = π1(M) and assume, for simplicity, that O is Λ-invariant. The
action of G onO is tame, so it is also tame onO′ = O/Λ0, for any finite subgroup Λ0

of Λ.
Suppose s is a G-equivariant reduction of M̃ to Λ0. The image of O′ in M

is not null (because the support of µ has nonempty interior), so ergodicity implies
that it is conull. Therefore, s∗µ is an ergodic measure on O′, so, by tameness, it
puts all of its mass in a single G-orbit. Letting Gx be the stabilizer of a point in
this orbit, we see that

• G/Gx has finite volume (because s∗µ is a G-invariant probability mea-
sure), and

• Gx is compact (because G acts properly on O′).
This implies that G has finite volume, which contradicts our standing assumption
that G is noncompact.

4B. Consequences

After recalling the definition of amenability, we prove a theorem that illustrates
the use of engaging conditions.

(4.11) Definition. Let Λ be a discrete group.
1) The (left) regular representation of Λ is the action of Λ on the Hilbert

space `2(Λ) by (left) translation:

(λ · ϕ)(x) = ϕ(λ−1x).
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This is an action by unitary operators.

2) Λ is amenable if the regular representation of Λ has “almost invariant
vectors.” That is, for every finite subset F of Λ, and every ε > 0, there is
a unit vector v in `2(Λ), such that ∀λ ∈ F , we have ‖λv − v‖ < ε.

(See Remark A9.3 for alternative definitions of amenability.)

(4.12) Example. Z is amenable, because the normalized characteristic function of
a long interval moves very little under translations of a bounded size.

(4.13) Theorem. Suppose the action of G on M satisfies any of the engaging con-
ditions. If R-rank(G) ≥ 2, and G is simple, then π1(M) cannot be amenable.

Proof. For convenience, let Λ = π1(M). Then M̃ is a bundle over M with fiber Λ.
The group G acts by bundle automorphisms, so, when an element of G maps one
fiber to another, the only twisting of the fiber is via multiplication (on the left, say)
by an element of Λ.

Suppose Λ is amenable. We can view L2(M̃) as the sections of a bundle over M
with fiber `2(Λ). The conclusion of the preceding paragraph implies that the map
from fiber to fiber in L2(M̃) is via translation by an element of Λ (the regular
representation). Then, since

• Λ is amenable, and

• constant functions are in L2(M) (because M has finite measure),

we see, without too much difficulty, by choosing a constant section M → `2(Λ)
whose value is an almost invariant vector in `2(Λ), that L2(M̃) has almost invariant
vectors.

On the other hand, because R-rank(G) ≥ 2, we know that G has Kazhdan’s
property (T ), which means, by definition, that if a unitary representation of G has
almost invariant vectors, then the representation has invariant vectors. Therefore,
there is a G-invariant unit vector in L2(M̃). Equivalently, there is a G-invariant
set E of (nonzero) finite measure in M̃ .

Now, the proof of Proposition 4.9(⇒) implies there is a G-invariant reduction
to a finite subgroup of π1(M). This contradicts all of the engaging hypotheses.

The above proof uses an assumption of amenability to obtain almost invariant
vectors in the regular representation. For some nonamenable groups, there are
other representations that have almost invariant vectors.

(4.14) Proposition. Let H = SL(2,R), or SO(1, n) or SU(1, n). Then there is a
unitary representation (ρ,H) of H, such that

1) ρ has almost invariant vectors, and

2) H acts properly on H− {0}.

Sketch of proof. The existence of representations satisfying Statement (1) is a
consequence of the fact that H does not have Kazhdan’s property (T ). State-
ment (2) follows from the decay of matrix coefficients for unitary representations
of semisimple groups, proved by R. Howe, C.C.Moore, and T. Sherman.

This leads to the following result:
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(4.15) Theorem. Suppose the action of G on M satisfies any of the engaging con-
ditions. If R-rank(G) ≥ 2, then π1(M) cannot be an infinite discrete subgroup of
SO(1, n) or SU(1, n). In particular, π1(M) cannot be a surface group, a free group,
or the fundamental group of a real hyperbolic manifold.

Proof. Let Λ = π1(M), and suppose Λ is an infinite discrete subgroup of H =
SO(1, n) or SU(1, n). By restricting the representation (ρ,H) of H provided by
Proposition 4.14, we obtain a representation of Λ with the same properties. Let

L2
Λ(M̃ ;H) = {Λ-equivariant L2 functions M̃ → H}.

(We can think of this as the L2 sections of a bundle over M with fiber H.)
We have a representation of G by translations on L2

Λ(M̃ ;H), and the argument
in the first three paragraphs of the proof of Theorem 4.13 implies there is a G-
invariant vector in L2

Λ(M̃ ;H).
Since the action of Λ on Hr {0} is proper, the same tameness arguments used

in Lecture 3 provide a G-invariant section of a bundle whose fiber is a single Λ-orbit,
and we can identify this orbit with Λ/Λ0, where Λ0 is the stabilizer of some nonzero
vector f ∈ `2(Λ). This yields a G-equivariant reduction of M̃ to Λ0. Because the
stabilizer of every nonzero vector in H is finite (because the action is proper), we
know that Λ0 is finite. This contradicts the engaging condition.

4C. Examples: Actions with engaging conditions

(4.16) Example. Let M = H/Λ, where G embeds in the simple Lie group H as a
closed subgroup, and Λ is a lattice in H.

i) The action is topologically engaging. Because G acts properly on H, it acts
properly on the universal cover of H, which is the same as the universal cover M̃
of M . Therefore, it is obvious from Proposition 4.10 that the action is topologically
engaging.

ii) The action is engaging. Any finite cover of M is a coset space H/Λ′, for
some finite-index subgroup Λ′ of Λ. Because Λ′ is a lattice in H, the Moore Ergod-
icity Theorem (A3.3) implies that G is ergodic on H/Λ′. Therefore, the action is
engaging, by Proposition 4.9.

iii) The action is totally engaging. A cover of M is a coset space H/Λ′, for
some subgroup Λ′ of Λ. (Note that Λ′ can be any subgroup of Λ, perhaps of
infinite index, so it might not be a lattice in H.) Suppose s : H/Λ → H/Λ′ is a
G-equivariant section.

Because Λ is a lattice in H, there is an H-invariant probability measure µ on
H/Λ. The Moore Ergodicity Theorem implies that µ is G-ergodic, so s∗µ is an
ergodic G-invariant probability measure on H/Λ′.

Ratner’s Theorem (A2.3) implies that there is a closed, connected subgroup L
of H, such that s∗µ is supported on a single L-orbit. Because s∗µ must project
to µ, which gives measure 0 to any immersed submanifold of lower dimension, we
must have L = H.

However, Ratner’s Theorem also tells us that s∗µ is L-invariant, so, because
L = H, we conclude that s∗µ is H-invariant. Thus, H/Λ′ has an H-invariant
probability measure, namely s∗µ, so Λ′ is a lattice in H. Thus, Λ′ has finite index
in Λ, so H/Λ′ is a finite cover of H/Λ = M .
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Since the action is engaging, and s : M → H/Λ′ is a G-equivariant section, this
implies H/Λ′ = M , so Λ′ = Λ.

M.Gromov provided another important class of topologically engaging exam-
ples. We will see the proof in Lecture 5.

(4.17) Theorem (Gromov). If G preserves a connection and a volume form on M ,
and everything is real analytic, then the action is topologically engaging.

(4.18) Example. The Katok-Lewis and Benveniste examples constructed by blow-
ing up are not engaging. For example, there is a double-cover of the Katok-Lewis
example that, after throwing out a set of measure 0, consists of two copies of the
original action. (The set of measure 0 consists of the spheres along which the two
copies are glued together.) Therefore, the double cover is not ergodic, so the action
is not engaging.

Here is a construction of such a double cover. The Katok-Lewis example M
is constructed from a certain space X (obtained by blowing up two fixed points)
that contains two distinguished spheres A and B, by gluing A to B. Let X ′ be a
copy of X, with distinguished spheres A′ and B′. Now glue A to B′ and glue A′

to B, resulting in a space Y that is a double cover of M . (Identifying X with X ′

collapses Y to M .) If we remove A and B from Y , then the gluing is also removed,
so we obtain X and X ′ with their distinguished spheres removed.

On the other hand, it seems that all known examples of Katok-Lewis-Benveniste
type are topologically engaging, because there are covers on which the action of G
is proper. In particular, if the original manifold (before the blowing up) has a cover
that contains a dense, open set on which G acts properly, then this yields a cover
of the Katok-Lewis-Benveniste example with a dense, open subset on which G acts
properly.

The above example illustrates the difference between engaging and topological
engaging:

• For an action to be topologically engaging, there only needs to be some
subgroup of the fundamental group that yields a proper action, and the
rest of the fundamental group is irrelevant.

• In contrast, the condition for engaging sees all of the fundamental group
(if π1(M) is residually finite).

Comments

The notions of engaging and topologically engaging were introduced in [5]. See
Lecture 7 for additional references and a discussion of results from [3], where the
definition of totally engaging first appeared. A notion of engaging for actions of
discrete groups was introduced in [2].

Amenability and Kazhdan’s property (T ) appear in many texts. Thorough
discussions of the two topics can be found in [4] and [1], respectively.
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LECTURE 5

Gromov Representation

Suppose we have a volume-preserving action of G on a compact manifold M .
As in Lecture 4, we are interested in understanding the fundamental group of M .
If we assume that the action is real-analytic and has an invariant connection, a
theorem of M.Gromov provides a very interesting finite-dimensional representation
of π1(M). The image of this representation contains a copy of G in its Zariski
closure, and the representation can be used to show that the action of G on M is
topologically engaging.

5A. Gromov’s Centralizer Theorem

(5.1) Notation. Let M̃ be the universal cover of M and let Λ = π1(M).

(5.2) Remark. One can hope to learn something about Λ by constructing an in-
teresting finite-dimensional representation; that is, by finding an interesting ho-
momorphism from Λ to GL(n,R). Specifically, in this lecture, we would like to
find a representation ρ of Λ, such that the Zariski closure of ρ(Λ) is large. This
imposes a significant restriction on the possibilities for the fundamental group Λ.
For example, a superrigid lattice in a group H does not have any homomorphism
whose image has a large Zariski closure, because the Zariski closure of the image is
basically H (but, maybe with a compact group added on).

Given ρ ∈ Hom(Λ,H), where H is any algebraic group, one can form the
associated principal bundle Pρ over M with fiber H:

Pρ = (M̃ ×H)/Λ.

Note that G acts on Pρ (via its action on the factor M̃). The following observation
shows that if the algebraic hull of this action is “large,” then the Zariski closure
of ρ(Λ) must also be “large.”

(5.3) Lemma. For any ρ ∈ Hom(Λ,H), the algebraic hull of the G-action on Pρ is

contained in the Zariski closure ρ(Λ) of ρ(Λ).

Proof. Because
(
M̃ × ρ(Λ)

)
/Λ is a G-invariant subbundle of Pρ, which means Pρ

has a reduction to ρ(Λ), we know that the algebraic hull is contained in ρ(Λ).

The action of Λ by deck transformations on Vect(M̃), the space of vector fields
on M̃ , is a noteworthy representation of Λ. However, this representation is infinite
dimensional, so the above discussion does not apply to it. For connection-preserving
actions that are real analytic, the following important theorem provides an inter-
esting finite-dimensional subrepresentation of Vect(M̃), and we will see that the
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algebraic hull of the associated principal bundle is quite large (namely, it contains
a group that is locally isomorphic to G).

(5.4) Theorem (Gromov’s Centralizer Theorem). Assume

• G acts on a compact manifold M with fundamental group Λ,

• G is simple and noncompact (but not necessarily of higher rank), and

• M has a connection and a volume form, each of which is Cω and G-
invariant.

Let V be the set of all vector fields X in Vect(M̃), such that

a) X centralizes g and

b) X preserves the connection.

Then

1) V is Λ-invariant,

2) dimV <∞,

3) V centralizes g, and

4) ∀x ∈ M̃ , evx(V ) ⊃ T Gx, where evx : Vect(M̃) → TxM̃ is the evaluation
map X 7→ X(x).

(5.5) Remark. Condition (a) means that the vector field X is G-invariant. Condi-
tion (b) means that the connection is invariant under the local one-parameter group
generated by X.

(5.6) Example. Suppose M = G/Λ, so M̃ = G. Then g is the space of right-
invariant vector fields on G, so V is the space of left-invariant vector fields on G.

(5.7) Remark (Comments on the proof of Theorem 5.4).

• Conclusion (1) is obvious because Λ centralizes G and the connection is
Λ-invariant (being lifted from a connection on M).

• Conclusion (2) is the “rigidity of connections.” It follows from the fact
that any connection defines a Riemannian metric on the frame bundle,
and the fact that the isometry group of a Riemannian manifold is finite
dimensional.

• Conclusion (3) is immediate from the definition of V .

• Conclusion (4) is not at all obvious; it is not even clear that there is a
single nonzero vector field that commutes with G.

The proof of the theorem is difficult, because of Conclusion (4); a sketch will be
given in Section 5C. The crucial point is the computation of the algebraic hull
by using the Borel Density Theorem not just in the tangent bundle, but also in
higher-order frame bundles.

Here are some consequences:

(5.8) Corollary (Gromov). In the setting of Theorem 5.4, the fundamental group Λ
has a a finite-dimensional representation ρ, such that ρ(Λ) contains a subgroup
locally isomorphic to G.
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Proof. From (1) and (2), we know that the action of Λ on V defines a finite-
dimensional representation ρ.

Let P be the principal bundle associated to the vector bundle (M̃ ×V )/Λ. The
evaluation map ev : M̃ × V → TM̃ is Λ-equivariant, so, by passing to the quotient,
we obtain a vector-bundle map

ev : (M̃ × V )/Λ → TM.

From (3), it is clear that ev is G-equivariant. Then, by using (4), we see from the
proof of Theorem 3.16 that the algebraic hull of the action on P must contain a
group locally isomorphic to G. Since Lemma 5.3 tells us that this algebraic hull is
contained in ρ(Λ), this completes the proof.

(5.9) Example. Suppose G = SL(4,R) in the setting of Theorem 5.4. Then π1(M)
cannot be a lattice in SL(3,R).

Proof. Let Λ be a lattice in SL(3,R), and let ρ be any representation of Λ. The
Margulis Superrigidity Theorem (A7.4) implies that ρ(Λ) has a finite-index sub-
group that is locally isomorphic to SL(3,R) × (compact) — it certainly does not
contain SL(4,R).

We can now sketch the proof of Theorem 4.17:

(5.10) Corollary (Gromov). In the setting of Theorem 5.4, the action of G on M
is topologically engaging.

Idea of proof. By passing to a dense, open subset of M , let us assume that the
stabilizer of every point in M is discrete (cf. Lemma 3.17). Let

• P be the principal bundle associated to the vector bundle (M̃ × V )/Λ,
and

• Q be the principal bundle associated to T (G-orbits).

Then there is an embedding of M̃ in P , and Q is a quotient of a subbundle of P .
The bundle Q contains M ×G, where G acts diagonally: a · (m, g) = (am, ag).

Therefore, G is obviously proper on Q. So it is also proper on P . This implies that
G is proper on M̃ . (Actually, because of technicalities that have been ignored here,
one can conclude only that G is proper on a dense, open subset of M̃ .)

5B. Higher-order frames and connections

As background to the proof of Gromov’s Centralizer Theorem (5.4), we now
discuss how to think of a connection in terms of H-structures. As mentioned in
Example 3.6, a pseudo-Riemannian metric is more-or-less obviously equivalent to an
O(p, q)-structure; a connection is an H-structure for a higher-order frame bundle.

(5.11) Notation.
• Let φ, ψ : Rn → M be defined in a neighborhood of 0. We write φ ∼k ψ

if the derivatives up to order k agree in some neighborhood of 0. An
equivalence class is a k-jet . (In particular, a 0-jet is the same as a “germ”
of a function.)

• Jk(Rn, 0;M) is the set of all k-jets.
• P (k)(M) is the subset of Jk(Rn, 0;M) consisting of the k-jets of local

diffeomorphisms. It is called the kth-order frame bundle.
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(5.12) Remark. P (k)(M) is a bundle over M .

• The map P (k)(M) →M evaluates a k-jet at 0.

• The fiber over m is the set of all k-jets of local diffeomorphisms (Rn, 0) ↔
(M,m). Each point in the fiber is a “kth-order frame at m.”

Note that P (k)(M) is a natural bundle, by which we mean that every diffeomor-
phism of M yields a diffeomorphism of P (k)(M).

(5.13) Example. Consider P (1)(M). For [f ] ∈ P (1)(M), the derivative df0 : Rn →
TMm is an isomorphism, so P (1)(M)m is the set of all linear isomorphisms from Rn

to TMm. Thus, P (1)(M) is simply the frame bundle P (M).

(5.14) Definition. We let GL(k) be the set of all k-jets of local diffeomorphisms
(Rn, 0) ↔ (Rn, 0).

(5.15) Remark.

• GL(k) acts on P (k)(M) (on the right), so it is easy to see that P (k)(M)
is a principal GL(k)-bundle.

• GL(1) = {invertible 1st derivatives} = GL(n,R).

• The map f 7→ (df0, D2f0) yields a bijection from GL(2) onto GL(n,R)×S,
where S = S2(Rn; Rn) is the space of symmetric Rn-valued 2-tensors
on Rn. This shows that GL(2) is a semidirect product GL(n,R) n S, for
some action of GL(n,R) on the abelian group S.

(5.16) Exercise. Show GL(k) ∼= GL(n,R) n U , for some unipotent group U .

A reduction of P (k)(M) to a subgroup of GL(k) is a “kth-order geometric
structure.”

(5.17) Proposition. A torsion-free connection on M is equivalent to a reduction
of the GL(2)-bundle P (2)(M) to GL(n,R).

Proof. (⇐) Suppose we have a reduction of P (2)(M) to GL(n,R). This means
that, for each m ∈ M , we have a 2-jet [φ] : (Rn, 0) → (M,m); the 2-jet is not
well-defined, but it is well-defined up to composition with an element of GL(n,R),
because the reduction is to GL(n,R).

Given X,Y ∈ Vect(M) near m, we want to define the covariant derivative
DXY . Let

DXY = φ∗
(
∇φ−1

∗ X(φ−1
∗ Y )

)
,

where ∇ is the ordinary covariant derivative on Rn. The value of DXY does not
change if φ is replaced with φA, for any A ∈ GL(n,R), so D is well defined.

(5.18) Proposition. Suppose G acts on M , and let L(2) ⊂ GL(2) be the algebraic
hull of the action of G on P (2)(M). If L(2) is reductive, then there is a measurable
G-invariant connection.

Proof. Exercise 5.16 implies that any reductive subgroup of GL(2) is contained in
(a conjugate of) GL(n,R).
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(5.19) Remark.
1) If we use the Cr-algebraic hull, instead of the measurable hull, in Propo-

sition 5.18, then there is a connection that is Cr on an open dense subset
of M .

2) Assume R-rank(G) ≥ 2 (and G is simple). Then the measurable algebraic
hull of the G-action on any principal bundle is reductive with compact
center. Therefore, Proposition 5.18 implies that every action of G has a
measurable invariant connection.

5C. Ideas in the proof of Gromov’s Centralizer Theorem

Assume G acts on M , preserving a connection ω. To prove Theorem 5.4, we
need a method to generate vector fields on M̃ that preserve ω.

(5.20) Notation.

• Let P (k) be the kth-order frame bundle over M (with fiber GL(k)).
• The kth-order tangent bundle T (k)M is an associated vector bundle

for P (k); the fiber T (k)Mx is the space of (k − 1)-jets of vector fields
at x.

• Let L(k) be the algebraic hull of the G-action on P (k), the “kth-order
algebraic hull,” so L(k) ⊂ GL(k).

In Theorem 3.16, we showed that G embeds in L = L(1), and the homomor-
phism G → L contains Ad. We use the same argument, but in kth order instead
of first order.

(5.21) Proposition. We have L(k) ⊃ G, and, in the concrete representation of L(k)

on T (k)M , the representation of G contains Ad.

Proof. For each x ∈ M , we have g
(k)
x ⊂ T (k)Mx, where g

(k)
x is the space of

(k − 1)-jets of elements of the Lie algebra g, considered as a subspace of Vect(M).
Furthermore, the G-action on g(k) is the adjoint action. Therefore, the the desired
conclusion follows from Example 3.15, as in the proof of Theorem 3.16.

Because G also preserves the connection ω, we can say more about L(k). This
allows us to show, at each point of M , that there are enough automorphisms up to
order k to contain all of Ad(G).

(5.22) Notation. Let Aut(k)(M,ω;x) be the set of k-jets of local diffeomorphisms
at x that preserve ω up to order k.

(5.23) Proposition. We have Aut(k−2)(M,ω;x) ⊃ Adg(k) G.

Proof. The connection ω is a reduction of a GL(2)-bundle to GL(1). Since GL(2)

acts on connections at a point, the group GL(k) acts on (k − 2)-jets of connections
at a point.

Because G preserves the connection ω, it preserves a section of the bundle whose
fiber at each point is the space of (k−2)-jets of connections. Roughly speaking, this
means there is a reduction of the associated principal bundle to Aut(k−2)(M,ω;x).
Therefore

GL(k) ⊃ Aut(k−2)(M,ω;x) ⊃ L(k).
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Now the desired conclusion is obtained by combining this with Proposition 5.21,
which tells us that L(k) ⊃ Adg(k) G.

Three steps remain:

Step 1. Pass from Aut(k−2)(M,ω;x) to Aut(loc)(M,ω;x). That is, take the infini-
tesimal automorphisms and turn them into local automorphisms. This is achieved
by using the Frobenius Theorem (“rigid properties of connections”); passing from
infinitesimal automorphisms to local automorphisms is a well-developed topic in
Differential Geometry.

Step 2. Pass from local automorphisms on M̃ to global automorphisms. This is
based on analytic continuation. For vector fields preserving connections, this type
of result appears in Nomizu.

(5.24) Remark. We now know that there exist many new vector fields on M̃ pre-
serving ω.

• By “many,” we mean that the vector fields normalize g, and the repre-
sentation on g contains AdG.

• By “new,” we mean that these vector fields leave x fixed (or, we should
say that they vanish at x), so no two of them differ by an element of g.

Step 3. Go from normalizing to centralizing. This step uses the simplicity of G: an
element of the normalizer differs from the centralizer only by an element of G.

Comments

The results of M. Gromov discussed in this lecture originally appeared in [6].
(In particular, the key inclusion (4) of Theorem 5.4 is [6, 5.2.A2], and Corollary 5.10
is [6, 6.1.B1].) The survey [10] includes a discussion of this material.

See [3, 4] and [2] for detailed proofs of Gromov’s Centralizer Theorem (5.4)
and Corollary 5.10, respectively. Step 1 of the proof of Theorem 5.4 is the gist of
a result known as Gromov’s Open-Dense Theorem (see [4, Thm. 4.3(2)]). It first
appeared in [6, Thm. 1.6.F], and an exposition of the proof is given in [1].

It is conjectured [2, §5] that connection-preserving actions are not only topo-
logically engaging, but also “geometrically engaging,” which is a stronger property.

Remark 5.19(2) was proved in [9], by using the Cocycle Superrigidity Theorem
(6.8).

The classical work of K.Nomizu [8] discusses how to extend vector fields, as
required in Step 2 of the proof of Theorem 5.4.

See [7, Thm. 1.1] for a generalization of Corollary 5.8 that does not assume
the volume form on M is G-invariant. See [5] for an analogue of Corollary 5.8 that
requires only a Γ-action, rather than a G-action, where Γ is a higher-rank lattice.
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LECTURE 6

Superrigidity and First Applications

Suppose a simple Lie group G acts by bundle automorphisms on a principal
H-bundle P over M . The Cocycle Superrigidity Theorem is an explicit description
of this action, in the case where H is an algebraic group and R-rank(G) ≥ 2.

6A. Cocycle Superrigidity Theorem

Any (measurable) section s : M → P yields a trivialization of P (i.e., an iso-
morphism of P with the trivial H-bundle M ×H). The isomorphism from M ×H
to P is given by (m,h) 7→ s(m) · h.

(6.1) Question. Can we choose s so that the resulting action of G on M × H is
very simple?

Given m ∈ M and g ∈ G, the two points g · s(m) and s(gm) are both in the
fiber over gm, so they differ by an element of H; there is an element η(g,m) ∈ H
with

g · s(m) = s(gm) · η(g,m). (6.2)

Under the trivialization P ∼= M ×H defined by s, the G-action on M ×H is given
by

g · (m,h) =
(
gm, η(g,m)h

)
.

Hence, to address Question 6.1, we would like to find a section s that makes the
formula for η(g,m) as simple as possible.

(6.3) Definition. Let ρ be a homomorphism from G to H. We call the section s
totally ρ-simple if

g · s(m) = s(gm) · ρ(g) for every g ∈ G and m ∈M .

(6.4) Remark.
1) If s is totally ρ-simple, then the corresponding G-action on M × H is

given by
g · (m,h) =

(
gm, ρ(g)h

)
.

So a totally ρ-simple section “diagonalizes” the G-action.
2) Equation (6.2) implies that the function (g,m) 7→ η(g,m) satisfies the

cocycle identity

η(g1g2,m) = η(g1, g2m) η(g2,m).

Thus, a reader familiar with cocycles of dynamical systems may note
that the search for a totally ρ-simple section is exactly the search for a
homomorphism cohomologous to η (see Definition A5.1).

41
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(6.5) Example. Suppose G acts locally freely on M (i.e., the stabilizer of each
point in M is discrete). If we let

• T (G-orbits) be the subbundle of TM consisting of vectors that are tan-
gent to a G-orbit, and

• P be the frame bundle of T (G-orbits),
then there is a smooth totally Ad-simple section of P . To see this, note that,
for each x ∈ M , the differential of the map G → Gx is an isomorphism of the
Lie algebra g with T (G-orbits)x, because G acts locally freely. Therefore, letting
E = M × g, we have an isomorphism from E to T (G-orbits). For g ∈ G, v ∈ g, and
m ∈M , we have

d

dt

(
g exp(tv)m

)∣∣∣
t=0

=
d

dt

((
g exp(tv) g−1

)
· gm

)∣∣∣
t=0

=
d

dt

(
exp

(
t (Ad g)v

)
· gm

)∣∣∣
t=0

,

so the G-action on E is given by

g · (m, v) =
(
gm, (Ad g)v

)
.

We then clearly have a similar statement for the associated principal bundle P .

(6.6) Example. Suppose Γ is a lattice in G and σ : Γ → H is a homomorphism.
Let

P = Pσ = (G×H)/Γ,
a principal H-bundle over G/Γ. It is not difficult to show that

there is a homomorphism ρ : G→ H and a totally ρ-simple section of P
⇐⇒ σ extends to a homomorphism ρ : G→ H.

(The same homomorphism ρ can be used in both statements.)
Thus, in this example, the question of whether the action on the principal

bundle can be diagonalized is precisely asking whether a homomorphism defined
on Γ can be extended to be defined on all of G. That is the subject of the Margulis
Superrigidity Theorem (A7.4).

Because we are considering measurable sections, it is natural to ignore sets
of measure 0. Furthermore, a compact group can sometimes be an obstruction to
finding a totally ρ-simple section (just as there is a compact group in the conclusion
of the Margulis Superrigidity Theorem). These considerations lead to the following
useful notion:

(6.7) Definition (weaker). A section s : M → P is ρ-simple if there is a compact
subgroup C of H that centralizes ρ(G), such that, for every g ∈ G and almost every
m ∈M , we have

g · s(m) ∈ s(gm) · ρ(g) · C.
In other words, there is some c(g,m) ∈ C, such that

g · s(m) = s(gm) · ρ(g) · c(g,m).

We think of c(g,m) as being “compact noise,” that is, a small deviation from the
ideal result.

(6.8) Theorem (Zimmer Cocycle Superrigidity Theorem). Assume
• G acts ergodically on M , with finite invariant measure,
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• the action lifts to a principal H-bundle P over M , where H is an algebraic
group,1 and

• G is simple, with R-rank(G) ≥ 2.

Then, after passing to finite covers of G and M , there is a measurable ρ-simple
section s, for some continuous homomorphism ρ : G→ H.

(6.9) Remark.

1) In the case where P = Pρ is the principal bundle defined from a ho-
momorphism ρ : Γ → H as in Example 6.6, the Cocycle Superrigidity
Theorem reduces to the Margulis Superrigidity Theorem (A7.4).

2) There is an analogue of the Cocycle Superrigidity Theorem for Γ-actions,
where Γ is any lattice in G.

3) The Cocycle Superrigidity Theorem yields a section that is only known to
be measurable, not continuous. The lack of smoothness is a shortcoming
in applications to geometric questions.

4) In the terminology of cocycles, the Cocycle Superrigidity Theorem shows
that if a cocycle satisfies certain mild hypotheses, then it is cohomologous
to a homomorphism times a “noise” cocycle with precompact image.

5) For homomorphisms of lattices, the Margulis Superrigidity Theorem gives
us a description of the homomorphisms into compact groups (in terms of
field automorphisms of C), not only those with noncompact image (see
Corollary A7.7). Unfortunately, for a general action on a principal bun-
dle, we do not have an analogous description of the cocycles into compact
groups (the “compact noise”). The main obstacle to understanding such
a cocycle is the question of whether or not it is cohomologous to a cocycle
with countable image.

6B. Application to connection-preserving actions

Recall that an action of Γ on M is finite if the kernel of the action is a finite-
index subgroup of Γ (see Definition 2.1).

(6.10) Conjecture. Suppose Γ acts on a manifold M , and dimM is less than a
certain function of the dimension of the smallest nontrivial representation of G.
Then the Γ-action is finite.

We have already verified a special case (see Theorem 2.19):

(6.11) Theorem (Farb-Shalen). Conjecture 6.10 is true in the Cω category for cer-
tain lattices when dimM = 2.

Here is an example of another setting where one can prove the conclusion of
the conjecture:

(6.12) Theorem. Conjecture 6.10 is true for actions that have both an invariant
connection and a finite invariant measure.

1More precisely, H is a real algebraic group, or, more generally, the k-points of a k-group,
where k is a local field of characteristic 0.
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Proof. Step 1. There is a finite Γ-invariant measure on P . Since dimM is small,
the homomorphism ρ in the conclusion of the Cocycle Superrigidity Theorem is
trivial. Thus, there is a compact subgroup C of H, such that, for every γ ∈ Γ and
m ∈M , we have s(γm) ∈ γ · s(m)C. Hence, s(M)C is a Γ-invariant subset of P .

Now, the desired conclusion is obvious if C is trivial, because then s is a Γ-
equivariant embedding of M into P , so the invariant measure on M yields an
invariant measure on P . In general, s is a non-equivariant embedding of M into P ,
so the measure on M yields a non-invariant measure on P . However, averaging the
translates of this measure by elements of C yields an invariant measure.

Step 2. Γ preserves a Riemannian metric on P . Because there is a Γ-invariant
connection, the desired conclusion follows from the simple fact that any connection
on M defines a natural Riemannian metric on P .

Step 3. Completion of proof. The assertions of Steps 1 and 2 remain true when Γ
is replaced with its closure Γ in Diff1(M). This implies that Γ is a compact Lie
group. Then, because there is obviously a homomorphism from Γ to Γ, the Margulis
Superrigidity Theorem (A7.4) implies that dim Γ is “large.” Because there is an
explicit bound on the dimension of the isometry group of a Riemannian manifold
in terms of the dimension of the manifold, we conclude that dimM is “large.”

The functions we have called “large” in the above proof are explicit and quite
reasonable. For example, the following conjecture is true for connection-preserving
actions.

(6.13) Conjecture. If dimM < n, then any volume-preserving action of SL(n,Z)
on M is finite.

Note that the conjecture is sharp, because SL(n,Z) acts on Tn. Furthermore,
we know all the connection-preserving actions of minimal dimension:

(6.14) Theorem (Feres, Zimmer). Suppose SL(n,Z) acts C∞ on a compact mani-
fold M of dimension n, preserving a connection and a volume form. If n ≥ 3, then
M = Tn with the standard connection, and the action is the obvious one (or its
contragredient).

Sketch of proof. The Cocycle Superrigidity Theorem gives us a homomorphism
ρ : SL(n,R) → SL(n,R). If ρ is trivial, then the proof of Theorem 6.12 applies.
Thus, we may now assume ρ is the identity map (or the contragredient). There-
fore, the action on P is measurably isomorphic to the standard action. Use the
connection to obtain a smooth isomorphism from the measurable one.

6C. From measurability to smoothness

The proof of Theorem 6.12 illustrates the use of a geometric structure to
turn a measurable object into something better. In that case, the geometric
structure is a connection. Another useful structure is hyperbolicity, which has
been studied in this context by many people (e.g., S. Hurder, A.Katok, J. Lewis,
R. J. Zimmer, R. Spatzier, E. Goetze, R. Feres, C.B.Yue, N.Qian, G. A.Margulis),
D. Fisher, K.Whyte, and B. Schmidt. There are also situations in which Sobolev
space techniques can be used to improve regularity of the measurable object.

Another approach to getting a conclusion that is better than measurable would
be to modify the proof of the Cocycle Superrigidity Theorem itself to get a nicer
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section in some settings. The proof of the Margulis Superrigidity Theorem starts
by using the Multiplicative Ergodic Theorem (or amenability, or, in Furstenberg’s
approach, random products) to get a measurable map. Then machinery makes the
map better. All ways (such as the Multiplicative Ergodic Theorem, amenability,
and random products) to create a map from nothing seem to give measurable maps,
because those are the easiest to construct.

The Katok-Lewis and Benveniste examples of §1B(b) show that one cannot
expect to get a smooth section in all cases. However, in some reasonable generality,
one can hope to get a smooth section on an open set.

Comments

See [3] or [4] for a less brief introduction to cocycle superrigidity and its many
geometric applications.

The Cocycle Superrigidity Theorem was first proved in [12], under the assump-
tion thatH is simple and the cocycle is “Zariski dense” inH. (A detailed exposition
of the proof appears in [13, Thm. 5.2.5].) These restrictions on H were removed
in [17]. The proofs are modeled on ideas in the proof of the Margulis Superrigidity
Theorem. A recent generalization that applies to some groups of real rank one, and
is proved by quite different methods, appears in [7]. (See [1] for the first positive
results on cocycle superrigidity in real rank one.)

Regarding Remark 6.9(5), there exist cocycles that are not cohomologous to a
cocycle with countable image [11, Rem. 2.5].

Theorem 6.12 appears in [15, Thm. G] (in a more general form that replaces
the connection with any geometric structure of “finite type”).

Theorem 6.14 appears in [2, 16].
E.Goetze and R. Spatzier used hyperbolicity to obtain Cr smoothness in a co-

cycle superrigidity theorem [8] that is a key ingredient in the proof of a classification
theorem [9]. Other examples of the use of hyperbolicity to obtain regularity include
[6, 10]. See [14] for an example of the use of Sobolev techniques to pass from a
measurable metric to a smooth one.

R. Feres and F. Labourie [5] have a geometric approach to the proof of cocycle
superrigidity that represents progress in the direction requested in Section 6C. This
approach is also employed in [3].
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1984. ISBN 3-7643-3184-4, MR 0776417 (86j:22014)

[14] R. J. Zimmer: Lattices in semisimple groups and distal geometric structures,
Invent. Math. 80 (1985), no. 1, 123–137. MR 0784532 (86i:57056)

[15] R. J. Zimmer: On the automorphism group of a compact Lorentz manifold
and other geometric manifolds, Invent. Math. 83 (1986), no. 3, 411–424.
MR 0595205 (82i:22011)

[16] R. J. Zimmer: On connection-preserving actions of discrete linear groups,
Ergodic Theory Dynam. Systems 6 (1986), no. 4, 639–644. MR 0873437
(88g:57045)

[17] R. J. Zimmer: On the algebraic hull of an automorphism group of a princi-
pal bundle, Comment. Math. Helv. 65 (1990), no. 3, 375–387. MR 1069815
(92f:57050)



LECTURE 7

Fundamental Groups II (Arithmetic Theory)

It was pointed out in Example 1.6 that if Λ is a lattice in a connected Lie
group H that contains G, then G acts by translations on M = H/Λ. Hence, the
fundamental group π1(M) can be a lattice in a connected Lie group that contains G.

Conversely, we will see in this lecture that, under certain natural hypotheses,
π1(M) has to be almost exactly such a group — a lattice Λ in a connected Lie
group H that contains G locally (i.e., the Lie algebra of H contains the Lie algebra
of G). The proof uses the Cocycle Superrigidity Theorem in a crucial way, and
requires an engaging hypothesis.

7A. The fundamental group is a lattice

The following equivalence relation equates the fundamental group of M with
the fundamental group of any of its finite covers:

(7.1) Definition. Two abstract groups Λ1 and Λ2 are commensurable if some finite-
index subgroup of Λ1 is isomorphic to a finite-index subgroup of Λ2.

(7.2) Theorem (Zimmer, Lubotzky-Zimmer). Suppose G is simple and acts on M
with finite invariant measure µ, and R-rank(G) ≥ 2. Assume π1(M) is infinite and
linear (i.e., π1(M) is isomorphic to a subgroup of GL(n,R), for some n).

1) If the action is totally engaging, then π1(M) is commensurable to a lattice
in some connected Lie group H that contains G locally.

2) If the action is topologically engaging, then π1(M) contains a subgroup
that is isomorphic to a lattice in some connected Lie group H that con-
tains G locally.

See Theorem 7.9 for a more refined version of this result.

One main idea in the proof. We prove only (2). (If the action is totally engag-
ing, further arguments are needed to show that Λ is itself a lattice, instead of just
containing one.)

Let H = GL(n,R) and Λ = π1(M), so, by assumption, Λ is (isomorphic to) a
subgroup ofH. Applying the Cocycle Superrigidity Theorem (6.8) to the associated
principal H-bundle

P = (M̃ ×H)/Λ

yields a section s : M → P , a homomorphism ρ : G→ H, and a compact subgroup C
of H, such that

g · s(m) = s(gm) · ρ(g) · c(g,m).

Assume, for simplicity, that Λ is discrete, so the quotient Λ\H is a nice topological
space. From the definition of P , there is an H-equivariant projection q : P → Λ\H.
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Let ϕ = q ◦ s : M → Λ\H. Noting that q is G-invariant (because the action
of G is on the factor M̃ of P , not on H), we have

ϕ(m) = ϕ(gm) · ρ(g) · c(g,m).

By taking inverses to replace the right H-action on Λ\H with the left H-action on
H/Λ, we obtain a map ψ : M → H/Λ with

ψ(m) = c(g,m)−1 · ρ(g)−1 · ψ(gm);

i.e.,
ψ(gm) = ρ(g) · c(g,m) · ψ(m).

Recalling, from the statement of Theorem 6.8, that C centralizes ρ(G), we may
mod out C to get

θ : M → C\H/Λ
with

θ(gm) = ρ(g) · θ(m),
so θ is G-equivariant.

Therefore, θ∗(µ) is a G-invariant measure on C\H/Λ. (However, this measure
may be singular with respect to the Haar measure on C\H/Λ; the image of θ may
be a null set.) Ratner’s Theorem (A2.3) tells us there is a connected subgroup H ′

of H containing G, such that Λ′ = Λ ∩H ′ is a lattice in H ′, and (a translate of)
θ∗(µ) is the Haar measure on C ′\H ′/Λ′. Therefore,

Λ contains a lattice (namely, Λ′ = Λ ∩H ′) in a
connected Lie group (namely, H ′) that contains G.

This establishes (2).

(7.3) Remark. In the course of the proof, we assumed Λ is discrete in GL(n,R). In
general, some standard algebraic methods are used to convert Λ to a discrete group.

Filling a gap in the proof. The above proof of Theorem 7.2(2) is incomplete,
because we did not show that ρ is nontrivial. (If ρ(G) = {e}, then we only showed
that Λ ⊃ {e}, which is obviously not an interesting conclusion.) This is where we
use the engaging hypothesis.

Suppose ρ is trivial. Recall that this implies we have a section s : M → P with

g · s(m) = s(gm) · c(g,m),

so we have a G-equivariant map M → P/C. This means we have a G-invariant
reduction of P to C, so there is a G-invariant H-equivariant map P → H/C. From
the definition of P , we also have a G-invariant H-equivariant projection P → H/Λ.
Thus, we have a G-invariant H-equivariant map

τ : P → H/C ×H/Λ.

Because C is compact, the action of H on H/C is proper, so the action of H on
H/C×H/Λ is also proper, hence tame. Then, since G is ergodic on M , we conclude
that the image of τ is contained in a single H-orbit, which we may identify with
H/(Λ ∩ hCh−1) for some h ∈ H. Because Λ is discrete and hCh−1 is compact,
we know Λ ∩ hCh−1 is finite. Thus, τ is a G-invariant reduction of P to a finite
subgroup of Λ. Since P comes from M̃ , then it is not hard to show that M̃ also has
a G-invariant reduction to a finite subgroup of Λ. This contradicts any engaging
hypothesis.
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7B. Arithmeticity of representations of the fundamental group

Theorem 7.2 can be extended to provide a description of the linear represen-
tations of π1(M). Given a representation ρ : π1(M) → GL(n,C), the goal is to
describe ρ

(
π1(M)

)
in terms of arithmetic groups.

(7.4) Definition. A subgroup H of GL(n,C) is a Q-group if it is the set of zeros
of some collection of polynomials P (xi,j)with coefficients in Q.

(7.5) Example. B =

∗ ∗ ∗
0 ∗ ∗
0 0 ∗

 is a Q-group, because it is defined by the system

of polynomial equations

x2,1 = 0, x3,1 = 0, x3,2 = 0.

(7.6) Definition. An arithmetic group is a group commensurable to H ∩GL(n,Z),
for some Q-group H. Equivalently, one may say that an arithmetic group is a group
that is commensurable to a Zariski-closed subgroup of GL(n,Z) (where GL(n,Z)
inherits a Zariski topology because it is a subset of the variety GL(n,C)).

(7.7) Definition. Let S = {p1, p2, . . . , pr} be a finite set of prime numbers, and
ZS = Z[1/p1, . . . , 1/pr].

1) An S-arithmetic group is commensurable to H ∩ GL(n,ZS), for some
Q-group H.

2) An s-arithmetic group is commensurable to a subgroup Λ of GL(n,ZS)∩
H that contains GL(n,Z) ∩H, for some Q-group H. That is,

GL(n,Z) ∩H ⊂ Λ ⊂ GL(n,ZS) ∩H.

(7.8) Remark.

1) The Margulis Arithmeticity Theorem (A7.9) states that every irreducible
lattice in any semisimple group of real rank at least two is an arithmetic
group.

2) If H = [H,H], then any s-arithmetic subgroup Λ of H is a lattice in
some locally compact group H ′. Namely, H ′ is the closure of ΛHR in
HR ×

∏r
i=1HQpr

.

3) Under the assumption that H is semisimple, T.N. Venkataramana has
shown that any s-arithmetic subgroups is actually S′-arithmetic, for some
S′ ⊂ S. However, we do not want to assume H is semisimple, because,
even though G is semisimple, it can be embedded in a non-semisimple
group H, and G acts on H/Λ.

The following improvement of Theorem 7.2 does not require our usual assump-
tion that M is a manifold: M can be any second countable, metrizable topological
space that satisfies the usual covering space theory.

(7.9) Theorem (Lubotzky-Zimmer). Suppose G is simple and acts on M with fi-
nite invariant measure µ, and R-rank(G) ≥ 2. Let ρ : π1(M) → GL(n,C) be any
representation of π1(M), such that Λ = ρ

(
π1(M)

)
is infinite.

1) If the action is totally engaging, then ρ(Λ) is arithmetic (in some Q-
group H that contains G locally).
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2) If the action is engaging, then ρ(Λ) is s-arithmetic (in some Q-group H
that contains G locally).

3) If the action is topologically engaging, then ρ(Λ) contains an arithmetic
subgroup of some Q-group H that contains G locally.

(7.10) Remark.

1) The group H in the conclusion of Theorem 7.9 is closely related to the
Zariski closure of ρ(Λ), but it is not exactly the same group. They have
the same Levi subgroup, and the same representation of the Levi sub-
group on the Lie algebra, but their unipotent radicals may not be iso-
morphic.

2) The proof of Theorem 7.9 uses many representations of Λ: not only real
representations, but also p-adic representations and representations over
fields of positive characteristic. Even when M is a manifold, representa-
tions of positive characteristic are involved.

If M is not a manifold, it is easy to construct actions where the “fundamental
group” is S-arithmetic, but not arithmetic. For example, there is an action of G
on (G× Building)/Λ, where Λ is an S-arithmetic group. This action is engaging,
but not totally engaging.

(7.11) Open question. If M is a manifold, and we assume the action is engaging,
can π1(M) really be s-arithmetic without being arithmetic?

Comments

Theorem 7.2(2) was proved in [8]. Theorem 7.9 was proved in [4] (and implies
Theorem 7.2(1)). As suggested by our proof of Theorem 7.2, the papers also show
that the action on M admits a (measurable) G-equivariant map to the natural
action on a double-coset space C\H/Λ, where H is the Q-group in the conclusion
of Theorem 7.9, and Λ is an arithmetic subgroup. Analogues of these results for
actions of a lattice Γ in G were proved by D. Fisher [1]. In some cases where Λ
is nilpotent, it was shown by D.Fisher and K.Whyte [2] that C is trivial and the
equivariant map to H/Λ can be chosen to be continuous.

An action of G on a double-coset space C\H/Λ is said to be arithmetic, and
it is known [3] that if G acts on M with finite entropy, then the G-action has a
(unique) maximal arithmetic quotient. Thus, the above-mentioned results provide
a lower bound on this maximal arithmetic quotient.

These results on the fundamental group of M are similar in spirit to results [5,
7] on the arithmeticity of holonomy groups of foliations whose leaves are symmetric
spaces.

Y. Shalom [6] obtained some very interesting restrictions on π1(M) even when
G has rank 1.
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LECTURE 8

Locally Homogeneous Spaces

This lecture is not intended to be a survey of locally homogeneous spaces, but
just an indication of how two techniques of ergodic theory can be applied to handle
a number of particular directions in the subject.

8A. Statement of the problem

(8.1) Definition. Suppose M and X are spaces, and G is a pseudogroup of local
homeomorphisms of X. We say that M is locally modeled on (X,G) if there is an
atlas of local homeomorphisms from open sets in M to open sets in X, such that
the transition functions in X are elements of G.

(8.2) Example. Let X = Rn, and let G be the set of all local diffeomorphisms that
preserve the Rk-direction. Then a space modeled on (X,G) is a foliated manifold.
(More precisely, the manifold is n-dimensional, and the leaves of the foliation are
k-dimensional.)

We will discuss the following basic case:

(8.3) Assumption.
• X = G/H, where G is a Lie group and H is a closed subgroup, and
• G consists of the restrictions of elements of G to open sets in X.

(8.4) Definition. If M is locally modeled on (G/H,G), we say M is locally homo-
geneous and M is a form of G/H.

(8.5) Example. If G = SO(1, n) and X = Hn, then the forms of X are the hyper-
bolic manifolds. (Note that the definition of a hyperbolic manifold is not in terms
of curvature — it is a theorem that if M is a Riemannian manifold of constant
curvature −1, then M is of this form.)

(8.6) Example. Let
• G = Aff(Rn) ∼= GL(n,R) n Rn, and
• X = Aff(Rn)/GL(n,R) ∼= Rn.

Then the forms of X are the affinely flat manifolds.

(8.7) Problem. Given X = G/H, understand the forms of G/H.
1) For example, find all compact forms.
2) When does there exist a compact form?

Here is one important way to construct compact forms:

(8.8) Definition. If there is a discrete subgroup Γ of G, such that
• Γ acts properly discontinuously on G/H, and

53
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• Γ\G/H is compact,

then M = Γ\G/H is a compact form of G/H. This is called a compact lattice form
(or a complete form).

Even when G/H is a symmetric space, it was once a question whether or not
there always exists a compact lattice form, but this case was settled by Borel:

(8.9) Theorem (Borel). If G is semisimple and H is compact, then G/H has a
compact lattice form.

(8.10) Remark.

1) When H is compact, it is easy to see that Γ\G/H is a compact lattice
form iff Γ is a cocompact lattice in G.

2) On the other hand, when H is not compact, a lattice is never properly
discontinuous on G/H (for example, this follows from the Moore Ergod-
icity Theorem (A3.3)), so we need to look for other kinds of discrete
subgroups.

(8.11) Remark. Although there do exist examples of compact forms, the feeling
among researchers in the area is that there are not many of them. That is, the
known results suggest that if G is simple and H is a closed, noncompact subgroup,
then it is unusual for G/H to have a compact lattice form, or even to have a
compact form.

If H is compact, then all compact forms of G/H are compact lattice forms, but,
in general, the compact forms can be a significantly larger class than the lattice
forms, as is illustrated by the following example.

(8.12) Example. Let G = GL(k,R). It is not difficult to see that there is a cocom-
pact lattice Γ in G (because G is essentially SL(k,R) × R, and each factor has a
lattice). Let

M = G/Γ.

Thinking of G as an open subset of Rk×k in the natural way, it is easy to see
that multiplication by any element of Γ is a linear map, so it preserves the affine
structure on Rk×k. Hence,

M is affinely flat.

However, M is not a double-coset space of Aff(Rk×k). Indeed, it is believed, for
every n, that the fundamental group of a compact lattice form of Rn must have a
solvable subgroup of finite index, but the fundamental group Γ in our example is
very far from being solvable.

(8.13) Conjecture (L.Auslander). If M is a compact lattice form for

Aff(Rn)/GL(n,R) ∼= (Rn, as an affine space),

then π1(M) has a solvable subgroup of finite index.

(8.14) Remark. J.Milnor conjectured that the compactness assumption on M could
be eliminated, but G. A.Margulis found a counterexample to this stronger conjec-
ture: for n ≥ 3, he showed there exist free subgroups of Aff(Rn) that act properly
discontinuously on Rn.



8B. THE USE OF COCYCLE SUPERRIGIDITY 55

(8.15) Remark. The plausibility of the conjecture, contrasted with the example,
shows at least the potential for lattice forms and general forms to be very different.
Therefore, when it has been shown that a homogeneous space G/H does not have
any compact lattice forms, the existence of a general compact form remains an
interesting question.

Because the existence of compact forms is not well understood in general, it is
natural to consider special cases, such as homogeneous spaces G/H with both G
and H simple. As an example, here is a question about two of the many possible
ways to think of SL(k,R) as a subgroup of SL(n,R).

(8.16) Problem. Embed H = SL(k,R) in G = SL(n,R) (with 2 ≤ k < n) in one
of two ways, either:

1) in the top left corner:

 SL(k,R) 0

0 Id

, or

2) as the image of an irreducible representation ρ : SL(k,R) → SL(n,R).
Show G/H does not have any compact forms.

We will see how Ergodic Theory can be applied to study these two cases,
but even these simple examples are not fully understood, and completely different
ergodic-theoretic ideas have been used for the two different cases:

1) F. Labourie, S. Mozes, and R. J. Zimmer used superrigidity arguments in
a series of papers.

2) G.A.Margulis and H.Oh used a nonergodicity theorem based on the rate
of decay of matrix coefficients along certain subgroups.

The techniques are complementary, in that the method used in (2) does not apply
to any examples of type (1).

8B. The use of cocycle superrigidity

(8.17) Theorem (Labourie-Mozes-Zimmer). Embed H = SL(k,R) in G = SL(n,R)
in the top left corner (as in Problem 8.16(1)), and assume n ≥ 6. Then G/H has:

1) no compact forms if k ≤ n/2, and
2) no compact lattice forms if k ≤ n− 3.

Proof of (2). Suppose M = Γ\G/H is a compact lattice form, and let L ∼=
SL(n− k,R) be a subgroup of the centralizer CG(H). Note that:

• L acts on M (because L centralizes H), preserving a finite measure (be-
cause G, Γ, and H are unimodular, and Γ\G/H is compact).

• Furthermore, Γ\G is a principal H-bundle over M , and R-rank(L) ≥ 2
(because n− k ≥ 3).

Hence, we are in the setting to apply Cocycle Superrigidity.
For simplicity, assume k < n/2. (This simplifies the proof, because, in this

case, L is bigger than H, so there is no nontrivial homomorphism L → H. The
argument can be extended to eliminate this assumption.) Thus, the homomorphism
ρ : L → H in the conclusion of the Cocycle Superrigidity Theorem (6.8) is trivial,
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so there is an L-invariant reduction of the principal bundle Γ\G to a compact
subgroup C ⊂ H. That is,

there is an L-invariant section s : M → Γ\G/C.

Now take a tubular neighborhood of the section in the fiber direction: let H0 be a
set of nonzero, finite measure in H, with CH0 = H0, so s(M)H0 is a G-invariant
set of nonzero, finite measure in Γ\G/C. By taking the characteristic function of
this set, and pulling back to Γ\G, we obtain an L-invariant L2 function on Γ\G.

So the natural unitary representation of G on L2(Γ\G) has an L-invariant
vector. Because L is noncompact, the Moore Ergodicity Theorem (A3.3) implies
that there is a G-invariant vector in L2(Γ\G), so Γ is a lattice in G. This is
impossible, because H = SL(n− k,R) is not compact.

(8.18) Remark. Y.Benoist and G.A. Margulis (independently) showed that the ho-
mogeneous space SL(n,R)/SL(n− 1,R) has no compact lattice form if n is odd. It
seems that the case SL(3,R)/SL(2,R) is still open for non-lattice forms, and that
the cases SL(4,R)/SL(3,R) and SL(n,R)/SL(n − 2,R) are open even for lattice
forms.

8C. The approach of Margulis and Oh

(8.19) Definition. Let (ρ,H) be a unitary representation of G. For any nonzero
vectors v, w ∈ H, the function G → C defined by g 7→ 〈 ρ(g)v | w 〉 is a matrix
coefficient of ρ. For simplicity, we always assume v and w are K-invariant, where
K is a fixed maximal compact subgroup of G.

When G is a simple group with finite center, and ρ has no invariant vectors, the
Howe-Moore Vanishing Theorem (A3.1) tells us that each matrix coefficient tends
to 0 as g →∞. The rate of decay to 0 is an important subject of study.

(8.20) Definition. Fix a simple Lie group G with finite center, and a maximal
compact subgroup K. We say a subgroup H is tempered in G if ∃q ∈ L1(H), such
that for every unitary representation (ρ,H) of G with no invariant vectors, and all
K-invariant vectors v, w ∈ H, we have

|〈ρ(h)v | w〉| ≤ q(h) ‖v‖ ‖w‖. (8.21)

Some subgroups of G are tempered and some are not. (For example, G is not
a tempered subgroup of itself.) H. Oh proved a theorem that, in many cases, tells
us whether or not a subgroup is tempered.

(8.22) Example (Oh).
1) Embed SL(2,R) ↪→ SL(n,R) via an irreducible representation. The image

is a tempered subgroup of SL(n,R) iff n ≥ 4.
2) The subgroup SL(k,R), embedded in the top left corner of SL(n,R), is

not tempered.

The decay of matrix coefficients implies an ergodicity theorem (namely, the
Moore Ergodicity Theorem), but Margulis used the tempered condition to prove a
nonergodicity theorem:

(8.23) Theorem (Margulis). Suppose G acts on a measure space X with an invari-
ant measure that is σ-finite but not finite. If H is a tempered subgroup of G, then
H is not ergodic on X.
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Here is a more precise topological statement of the result. (Note that the
conclusion of the topological version clearly implies that H is not ergodic on X.)

(8.24) Theorem (Margulis). Suppose G acts on a noncompact, locally compact
space X, preserving a σ-finite Radon measure, such that there are no G-invariant
subsets of nonzero, finite measure. If H is a tempered subgroup of G and C is a
compact subset of X, then HC 6= X.

Proof. To simplify the notation somewhat, let us assume H = {ht} is a one-
parameter subgroup of G. Then, because

⋃1
t=0Kh

tC is a compact subset of X,
there is a positive, continuous function φ on X with compact support, such that

φ(htc) ≥ 1 for all c ∈ C and all t ∈ [0, 1], (8.25)

and, by averaging over K, we may assume that φ is K-invariant.
Suppose HC = X. (This will lead to a contradiction.) Then, by assumption,

for each x ∈ X, there is some Tx ∈ R, such that

hTx(x) ∈ C. (8.26)

Fix some large T ∈ R+. Because
⋃T+1

t=−(T+1)Kh
tC is compact, and X has

infinite measure, there is some K-invariant continuous function ψT on X, such that

‖ψT ‖2 = 1, (8.27)

0 ≤ ψT (x) ≤ 1 for all x ∈ X, (8.28)

and

|Tx| > T + 1 for all x in the support of ψT . (8.29)

We have

‖φ‖2
∫
|t|>T

q(t) dt ≥
∫

X

∫
|t|>T

φ(htx)ψT (x) dt dx ((8.21) and (8.27))

≥
∫

X

∫ 1

0

φ(hTx+tx)ψT (x) dt dx (8.29)

≥
∫

X

ψT (x) dx ((8.25) and (8.26))

≥ 1 ((8.27) and (8.28)).

However, because q ∈ L1(R), we know that limT→∞
∫
|t|>T

q(t) dt = 0. This is a
contradiction.

(8.30) Corollary. If H is a tempered, noncompact subgroup of G, then G/H has
no compact lattice form.

Proof. If Γ\G/H is compact, then there is a compact set C ⊂ Γ\G with CH =
Γ\G. This contradicts the conclusion of the theorem.

Combining this with Example 8.22(1) solves a special case of Problem 8.16(2):

(8.31) Example. Let G = SL(n,R), with n ≥ 4, and let H be the image of an
irreducible representation ρ : SL(2,R) → SL(n,R). Then G/H has no compact
lattice form.
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Comments

Recent surveys that describe work of Y.Benoist, T. Kobayashi, and others on
the existence of compact lattice forms include [4, 5].

An earlier survey that includes some discussion of non-lattice forms is [6]. Work
of A. Iozzi, H.Oh, and D.W.Morris on compact lattice forms of SO(2, n)/H and
SU(2, n)/H (where H may not be reductive) is described in [3].

The Auslander Conjecture (8.13) remains open; see [1] for a survey. Another
recent result is [2]. Margulis’ counterexample to Milnor’s Conjecture (8.14) appears
in [9].

The use of cocycle superrigidity described in Section 8B was developed in [13,
7, 8]. It inspired a related result of Y. Shalom [12, Thm. 1.7] that replaces the
semisimple group L with a more general nonamenable group.

Example 8.22 (and results that are much more general) appear in [11]. The
other results of Section 8C appear in [10].
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LECTURE 9

Stationary Measures and Projective Quotients

Suppose G acts continuously on a metric space X. (We do not assume X is a
manifold.) The results in almost all of the previous lectures have assumed there is
a finite G-invariant measure on X, but we will now discuss what to do when there
is no such measure.

(9.1) Example. Let Q be a parabolic subgroup of G, and let M = G/Q. Then G
acts on M , with no finite invariant measure (unless Q = G).

As a substitute for finite invariant measures, Section 9A provides an introduc-
tion to stationary probability measures. These will allow us to address the following
basic question in Section 9B:

(9.2) Question. How close is a general action to being a combination of two basic
types:

1) an action with finite invariant measure, and
2) the action on some G/Q?

9A. Stationary measures

(9.3) Assumption. In this chapter, µ always denotes an admissible probability
measure on G, which means that

• µ is symmetric (i.e., µ(A−1) = µ(A), where A−1 = { a−1 | a ∈ A }),
• µ is absolutely continuous (with respect to Haar measure), and
• supp(µ) generates G.

(9.4) Definition.

1) For any measure ν on X, the convolution of µ and ν is the measure µ ∗ ν
on X defined by

µ ∗ ν =
∫

G

g∗ν dµ(g);

i.e., (µ ∗ ν)(A) =
∫

G
ν(g−1A) dµ(g).

2) ν is called µ-stationary (or simply stationary) if µ ∗ ν = ν.

(9.5) Proposition (Basic properties of stationary measures).
1) If X is compact, then there exists a stationary measure.
2) Every stationary measure is quasi-invariant.
3) Suppose K is a compact subgroup of G. If µ is K-invariant, then every

stationary measure is K-invariant.
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Proof. (1) The function ν 7→ µ ∗ ν is an affine map on the space of probability
measures on X. The space of probability measures is a compact, convex set (in the
weak∗ topology on C(X)∗), so the classical Kakutani-Markov Fixed-Point Theorem
(A8.4) implies this affine map has a fixed point. Any fixed point is a stationary
measure.

(2) Let ν be a stationary measure, and suppose ν(A) = 0. Since ν is stationary
with respect to any convolution power µ∗n = µ ∗ µ ∗ · · · ∗ µ,

a) we see that ν(g−1A) = 0, for a.e. g ∈ supp(µ∗n), and
b) it is not difficult to show that g 7→ ν(g−1A) is continuous (because µ∗n

is absolutely continuous).
Therefore,

ν(g−1A) = 0, for every g ∈ supp(µ∗n).
Since µ is admissible, we know supp(µ) generates G; this implies

⋃
n supp(µ∗n) = G.

Therefore, ν(g−1A) = 0, for every g ∈ G, so ν is quasi-invariant.
(3) For k ∈ K, we have k∗ν = k∗(µ ∗ ν) = (k∗µ) ∗ ν = µ ∗ ν = ν.

In some cases, we can find all of the stationary measures:

(9.6) Example.
1) Suppose G is simple and X = G/Q for a parabolic subgroup Q. If µ is
K-invariant, then, since K is transitive on G/Q, Proposition 9.5 implies
that the only stationary measure is the unique K-invariant probability
measure on G/Q.

2) Suppose
• a semisimple Lie group G acts on a compact space X,
• P is a minimal parabolic subgroup of G, and
• K is a maximal compact subgroup of G.

Because P is amenable, there is a P -invariant probability measure λ
on X (see Appendix A9). Then ν = HaarK ∗ λ is µ-stationary, for any
K-invariant admissible measure µ. (This works because HaarK projects
to the stationary measure on G/P .) The following theorem shows that
this construction produces all of the stationary measures (if G is simple).

(9.7) Theorem (Furstenberg). If G is a simple Lie group, and µ is K-invariant
and admissible, then the map λ 7→ HaarK ∗ λ is an affine bijection between the
space of P -invariant probability measures on X and the (G,µ)-stationary measures
on X.

Thus, every stationary measure can be obtained by starting with a P -invariant
measure, and averaging over K.

(9.8) Remark.
1) If we change µ, the set of µ-stationary measures will change, but it can

be shown that the set of measure classes will not change (if G is a simple
Lie group). Thus, there is a natural collection of measures (“natural”
meaning that it depends only on G, not on the choice of µ), namely, the
measure classes that contain a stationary measure. Unfortunately, it may
not be obvious which measure classes are members of the collection, but
Theorem 9.7 provides a characterization that is often useful.
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2) Theorem 9.7 shows that, in the case where µ is K-invariant, the collection
of stationary measures does not depend on the choice of the specific
measure µ, but only the choice of the maximal compact subgroup K.

9B. Projective quotients

(9.9) Example. Suppose a parabolic subgroup Q of G acts on a compact space Y
with finite invariant measure λ. Induce the action to G (as in §1B(a)): i.e., let
X = (G× Y )/Q, where Q acts on both G (by right translations) and Y . Then X
is a G-equivariant bundle over G/Q with fiber Y . Because the base and fiber are
compact, we know that X is compact. By combining the stationary measure νG/Q

on the base with the invariant measure λ on the fibers, we obtain a quasi-invariant
measure on X; this measure is stationary. One should note that, in this example,
the fiber measures are invariant (that is, the maps from fiber to fiber are measure
preserving) — all the non-invariance is happening on the base G/Q.

(9.10) Problem.
1) Find conditions under which any X with a stationary measure is (up

to measurable isomorphism, or up to C∞ isomorphism) induced from a
measure-preserving action of a parabolic subgroup.

2) For R-rank(G) ≥ 2, does every (X, ν) have some G/Q as a quotient
(unless ν is invariant)? (We assume ν is stationary.) In other words, is
(X, ν) induced from some action (not necessarily measure preserving) of
some parabolic subgroup?

(9.11) Remark. For any G, there are actions not of the type described in (1).

(9.12) Remark. Problem 9.10(2) is open, but here is a counterexample in rank one.
Let Γ be a cocompact lattice in SL(2,R), such that Γ has a homomorphism

onto the free group F3 on three generators. Then F3 maps onto F2, and F2 embeds
in SL(2,R) as a lattice. The composition is a homomorphism from Γ into SL(2,R)
with a large kernel. By restricting the usual projective action of SL(2,R) on S1,
we obtain an action of Γ on S1. Induce the Γ-action to an action of SL(2,R):

Let X =
(
SL(2,R)× S1

)
/Γ. Then X is a circle bundle over SL(2,R)/Γ.

Suppose there is a measurable G-map X → G/Q, where Q is a proper parabolic
subgroup of G. (This will lead to a contradiction.) Because X, by definition,
contains a Γ-invariant copy of S1, there is a Γ-map f : S1 → G/Q. Let N be the
kernel of the composite homomorphism Γ → F2, so N acts trivially on S1. Then
N acts trivially on G/Q a.e. (with respect to f∗ν, where ν is the quasi-invariant
measure on S1), so N fixes some point in G/Q. Therefore, N is contained in
a conjugate of Q. Because Q is solvable, we conclude that N is solvable. This
contradicts the fact that infinite normal subgroups of lattices cannot be solvable
(because, by the Borel Density Theorem (A6.1), a normal subgroup of a lattice is
Zariski dense in G).

(9.13) Definition. Suppose G acts on X with stationary measure ν. Let λ be the
corresponding P -invariant measure provided by Theorem 9.7. We say the G-action
on X is P -mixing if the action of P on (X,λ) is mixing, i.e., if

λ(hnA ∩B) → λ(A)λ(B) as hn →∞ in P .
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(9.14) Theorem (Nevo-Zimmer). Suppose G acts on a compact space X with sta-
tionary measure ν. Assume

1) R-rank(G) ≥ 2, and
2) the action is P -mixing.

Then there is a parabolic subgroup Q and a Q-space Y with finite invariant measure,
such that X is the induced G-space.

(9.15) Remark. The conclusion can fail if either (1) or (2) is omitted.

9C. Furstenberg entropy

(9.16) Definition (Furstenberg entropy). Suppose G acts on the space X, with a
µ-stationary measure ν. Define

h(ν) = −
∫

X

∫
G

log
dg∗ν

dν
(x) dµ(g) dν(x).

(9.17) Lemma (Basic facts on Furstenberg entropy).
1) h(ν) ≥ 0.
2) h(ν) = 0 iff ν is G-invariant.
3) If X is induced from a finite measure-preserving action of a parabolic

subgroup Q, then h(X) = h(G/Q).

(9.18) Remark. Lemma 9.17(3) is a special case of the following more general fact
(but we do not need this generalization):

If f : (X1, ν1) → (X2, ν2) is G-equivariant, and v1 and ν2 are stationary,
then h(ν1) ≥ h(ν2). Furthermore, h(ν1) = h(ν2) iff there is a “relative
invariant measure.”

Theorem 9.14 has the following immediate consequence:

(9.19) Corollary. If R-rank(G) ≥ 2, then the set of Furstenberg entropies h(X) of
P -mixing actions of G is a finite set, namely

{h(G/Q) | Q is a parabolic subgroup of G }.

(9.20) Remark. The corollary is false in real rank one, even with the P -mixing
assumption.

If Q1 ⊂ Q2, then there is a G-map from G/Q1 to G/Q2, so h(G/Q1) >
h(G/Q2). Thus, we have the following corollary.

(9.21) Corollary. Assume R-rank(G) ≥ 2. Then ∃c > 0 such that:
1) For every P -mixing action of G on X, if h(X) < c, then there is a
Q-invariant probability measure on X, for some maximal parabolic sub-
group Q.

2) There exist P -mixing actions of G whose Furstenberg entropy is nonzero,
and less than c.

This implies that if R-rank(G) is large and the Furstenberg entropy of the
action is small, then the entire invariant measure program can be applied to the
action of a group L ⊂ Q with R-rank(L) ≥ 2.
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(9.22) Example. Let G = SL(n,R). Then any maximal parabolic subgroup Q is
block upper-triangular of the form

Q =

 ∗ ∗

0 ∗

 ,
so Q must contain a copy of SL

(
bn/2c,R

)
. Thus, the theory of measure-preserving

actions applies to the action of SL
(
bn/2c,R

)
.

In particular, if the action of G on X is engaging, and h(X) ≤ c, then Theo-
rem 7.2 implies that π1(X) contains an arithmetic subgroup of a group L, where
L ⊃ SL

(
bn/2c,R

)
. For larger and larger values of c, we obtain weaker and weaker

conclusions, until we reach the point at which we obtain no conclusion.

Comments

See [6] for a more thorough exposition of this material and related results.
The basic theory of stationary measures is due to H. Furstenberg [1, 2]. In

particular, Theorem 9.7 is [2, Thm. 2.1].
Theorem 9.14 was proved in [3] (along with Remarks 9.8(1) and 9.15). See [4]

for a more detailed discussion of applications to Furstenberg entropy.
A positive answer to Problem 9.10(2) is given in [5].
The example in Remark 9.12 admits a G-invariant, rigid, analytic geometric

structure (see [7, Thm. 1.2]).
The quotient map X → G/Q is usually not continuous. However, every smooth

G-action with a stationary, ergodic measure of full support admits a unique maximal
quotient of the form G/Q, with the quotient map smooth on an invariant, dense,
open, conull set. It is shown in [7] that if the action is real analytic and preserves a
rigid geometric structure of algebraic type, then this maximal quotient is non-trivial
(unless the stationary measure is G-invariant).
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LECTURE 10

Orbit Equivalence

Roughly speaking, the action of a group Γ1 on a space X1 is “orbit equivalent”
to the action of Γ2 on X2 if the orbit space X1/Γ1 is measurably isomorphic to the
orbit space X2/Γ2 (a.e.). It is sometimes the case that actions of two very different
groups are orbit equivalent, but, when Γ1 and Γ2 are lattices in certain simple Lie
groups, theorems of A. Furman and D.Gaboriau provide mild conditions that imply
Γ1 is isomorphic to Γ2.

10A. Definition and basic facts

(10.1) Assumption. All actions are assumed to be ergodic and non-transitive, with
a finite invariant measure.

(10.2) Remark. Abusing terminology, we will say a map ϕ : X1 → X2 is measure
preserving if it becomes measure preserving when the measures on X1 and X2 are
normalized to be probability measures.

(10.3) Notation. If G acts on X, we use Rel(X,G) to denote the equivalence rela-
tion on X defined by the G-orbits, so Rel(X,G) ⊂ X ×X.

(10.4) Definition. Suppose (G1, X1) and (G2, X2) are actions.
1) The actions are orbit equivalent if there is a measure-preserving bijection

ϕ : X1 → X2 with ϕ(G1-orbit) = G2-orbit (a.e.),

i.e., if Rel(X1, G1) ∼= Rel(X2, G2) (a.e.).
2) The actions are stably orbit equivalent if there is a measure-preserving

bijection

ϕ : X1 × I → X2 × I with ϕ
(
(G1-orbit)× I

)
= (G2-orbit)× I (a.e.),

where I is the closed unit interval [0, 1].

(10.5) Lemma (Basic facts).
1) If the G1-orbits and G2-orbits are uncountable (a.e.), then stable orbit

equivalence is the same as orbit equivalence.
2) If G1 and G2 are discrete, then the actions (G1, X1) and (G2, X2) are

stably orbit equivalent iff there are subsets A1 ⊂ X1 and A2 ⊂ X2 of
positive measure, such that

Rel(X1, G1)|A1
∼= Rel(X2, G2)|A2 .

(That is, after restricting to two sets of positive measure, we have an
orbit equivalence.)

3) If a discrete subgroup Γ of G acts on X, then the Γ-action on X is stably
orbit equivalent to the induced G-action.

67
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(10.6) Remark. A classical example similar to (3) is the construction of a flow built
under a function. It is clear that the orbits of the flow are the same as the orbits
of the discrete dynamical system, but with the points extended into intervals.

10B. Orbit-equivalence rigidity for higher-rank simple Lie groups

For amenable groups, the orbit structure tells us nothing about the group, and
nothing about the action:

(10.7) Theorem (Ornstein-Weiss). If G1 and G2 are infinite, discrete, amenable
groups, then any action of G1 is orbit equivalent to any action of G2.

The following theorem shows that the situation for simple Lie groups is exactly
the opposite.

(10.8) Theorem (Zimmer). Let G1 and G2 be noncompact, simple Lie groups, with
R-rank(G1) ≥ 2. If (G1, X1) is orbit equivalent to (G2, X2), then G1 is locally
isomorphic to G2, and, up to a group automorphism, the actions are isomorphic.

Proof. Suppose ϕ : X1 → X2 with ϕ(G1-orbit) = G2-orbit. For any g ∈ G1 and
x ∈ X1, the points ϕ(gx) and ϕ(x) are in the same G2-orbit, so there is some
c(g, x) ∈ G2 with

ϕ(gx) = c(g, x) · ϕ(x).
The resulting map c : G1 ×X1 → G2 is a cocycle, i.e., for all g, h ∈ G1, we have

c(gh, x) = c(g, hx) c(h, x), for a.e. x ∈ X1.

Thus, if we assume, for simplicity, that G1 and G2 have trivial center, then the
Cocycle Superrigidity Theorem (A5.2) tells us that the cocycle c is cohomologous
to a homomorphism ρ : G1 → G2. Since G1 and G2 are simple (with trivial center),
it is not difficult to see that ρ is an isomorphism. After identifying G1 with G2

under this isomorphism, the actions are isomorphic.

(10.9) Question. What about real rank one?

(10.10) Remark. Superrigidity arguments in real rank one (such as the proof of the
cocycle superrigidity theorem mentioned on page 45) typically use some kind of
integrability condition on the cocycle (e.g., that, for fixed g, the function c(g, x) is
an L1 function of x). But the cocycle obtained from an orbit equivalence cannot
be expected to have any regularity, beyond being measurable, so such an argument
does not apply. Nevertheless, see Remark 10.12 below for a positive result.

10C. Orbit-equivalence rigidity for higher-rank lattice subgroups

The following observation can be obtained easily from Theorem 10.8, by induc-
ing the actions to G1 and G2:

(10.11) Corollary (Zimmer). Suppose Γ1 and Γ2 are lattices in two simple Lie
groups G1 and G2, with R-rankG1 ≥ 2. If (Γ1, X1) is (stably) orbit equivalent
to (Γ2, X2), then G1 is locally isomorphic to G2.

(10.12) Remark. It would be interesting to extend Corollary 10.11 to lattices in
(some) groups of real rank one. A partial result is known: if (Γ1, X1) is orbit-
equivalent to (Γ2, X2), and Γi is a lattice in Sp(1, ni), for i = 1, 2, then n1 = n2.
The proof employs von Neumann algebras, rather than cocycle superrigidity.
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The conclusion only tells us that the ambient Lie groups G1 and G2 are iso-
morphic, not that the lattices themselves are isomorphic, but the following result
shows that, in general, one cannot expect more, because the many different lattices
in a single simple Lie group G all have actions that are stably orbit equivalent:

(10.13) Proposition. If Γ and Λ are lattices in G, then the Γ-action on G/Λ is
stably orbit equivalent to the Λ-action on G/Γ.

Proof. Induce to G: both yield the G-action on G/Γ × G/Λ. Since the induced
actions are isomorphic, hence stably orbit equivalent, the original actions are stably
orbit equivalent.

Here is an interesting special case:

(10.14) Example. Any two nonabelian free groups Fm and Fn have stably orbit
equivalent actions, because both are lattices in SL(2,R).

Furthermore, the actions of two different lattices (in the same group) can some-
times be orbit equivalent:

(10.15) Proposition. Let Γ and Λ be lattices in a simple Lie group G, and assume
R-rank(G) ≥ 2. The Γ-action on G/Λ is orbit equivalent to the Λ-action on G/Γ
(not just stably orbit equivalent) iff vol(G/Γ) = vol(G/Λ).

However, the above examples (actions of Γ on G/Λ) are the only reason for two
different lattices having orbit-equivalent actions:

(10.16) Theorem (Furman). Suppose Γ acts on (X,µ), where Γ is a lattice in a
simple Lie group G, with R-rank(G) ≥ 2, and

for every lattice Γ′ in G, there is no measure-preserving,
Γ-equivariant map X → G/Γ′.

If (Γ, X) is orbit equivalent to the action (Λ, Y ) of some discrete group Λ on some
space Y , then Γ is isomorphic to Λ, (modulo finite groups), and the actions are
isomorphic (modulo finite groups).

(10.17) Remark. Note that Λ is not assumed to be a lattice in Furman’s theorem.
It is not even assumed to be a linear group — it can be any group.

The quotients of standard actions have been classified. From this, it is of-
ten obvious that there is no quotient of the form G/Γ′, so we have the following
corollary.

(10.18) Corollary. The conclusion of the theorem is true for:
1) the natural action of SL(n,Z) on Tn,
2) the action of Γ on K/H, arising from an embedding of Γ in a compact

group K, and H is a closed subgroup, and
3) the action of Γ on H/Λ arising from an embedding of G as a proper

subgroup of a simple group H, and Λ is a lattice in H.

10D. Orbit-equivalence rigidity for free groups

Let R be a countable equivalence relation on X (i.e., each equivalence class is
countable), and assume µ(X) = 1. In our applications, we have R = Rel(X,Γ),
where Γ is discrete.
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(10.19) Definition (Cost of an equivalence relation).
1) Suppose Φ is a countable collection of measure-preserving maps ϕi : Ai →
Bi, where Ai, Bi ⊂ X, such that ϕi(x) ∼R x for a.e. x, and {Ai} covers X
(a.e.).
(a) Define

cost(Φ) =
∑

i
µ(Ai).

(b) We say Φ generates R if R is (a.e.) the smallest equivalence relation
that contains the graph of every ϕi.

2) Define

cost(R) = inf{ cost(Φ) | Φ generates R }.

Note that 1 ≤ cost(R) ≤ cost(Φ) ≤ #Φ, for any Φ that generates R.

(10.20) Proposition. If Γ is amenable, then cost
(
Rel(X,Γ)

)
= 1.

Proof. Since (X,Γ) is orbit equivalent to a Z-action (see Theorem 10.7), the equiv-
alence relation is generated by the action of a single transformation, so we may take
Φ to be a one-element set.

Observe that Φ defines the structure of a graph on each equivalence class. The
following result gives a condition, in terms of these graphs, that ensures a particular
set Φ of transformations attains the infimum.

(10.21) Theorem (Gaboriau). If the graph resulting from Φ on each equivalence
class is a tree (so, in particular, the equivalence relation is “treeable” in the sense
of S.Adams), then cost(R) = cost(Φ).

(10.22) Corollary. Let Fn be the free group on n generators. For a free action
of Fn on any space X, we have cost

(
Rel(X,Fn)

)
= n.

The following important result is in sharp contrast to the elementary observa-
tion of Example 10.14.

(10.23) Corollary. Free groups Fm and Fn do not have free orbit-equivalent actions
(unless m = n).

(10.24) Remark. It can be shown that cost
(
Rel(X,Γ)

)
= 1 for any action of a

lattice Γ in a simple group of higher rank.

10E. Relationship to quasi-isometries

(10.25) Definition. Let (X, d1) and (Y, d2) be locally compact metric spaces. A
quasi-isometry is a map ϕ : X → Y (not necessarily continuous), such that there
are positive constants C and K satisfying

1
C
d(x1, x2)−K ≤ d

(
ϕ(x1), ϕ(x2)

)
≤ C d(x1, x2) +K for all x1, x2 ∈ X

and ϕ(X) is K-dense in Y (i.e., the K-ball around ϕ(X) is all of Y ).

(10.26) Remark. A bijective map f is a quasi-isometry iff it is coarse bi-Lipschitz ,
meaning that if we ignore small length scales (i.e., distances less than some cut-
off K1), then both f and f−1 are Lipschitz. More precisely, there is a constant C1,
such that

d2

(
f(x1), f(x2)

)
< C1 d1(x1, x2) whenever d(x1, x2) ≥ K1,
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and similarly for f−1.

(10.27) Example.
1) Let M be a compact manifold. For any two metrics ω1 and ω2 on M ,

the identity map is a quasi-isometry from (M̃, ω̃1) to (M̃, ω̃2), so M̃ has
a canonical metric up to quasi-isometry.

2) Let Γ be a finitely generated group. For each finite generating set F , the
group Γ can be made into a metric space by identifying it with the vertices
of the Cayley graph Cay(Γ;F ). The resulting metric is not canonical,
because it depends on the generating set, but it is well defined up to
quasi-isometry.

(10.28) Proposition. If M is any compact, Riemannian manifold, then the funda-
mental group π1(M) is quasi-isometric to the universal cover M̃ .

(10.29) Example. Any two cocompact lattices in the same simple Lie group G are
quasi-isometric, because they are fundamental groups of manifolds with the same
universal cover, namely the symmetric space associated to G.

The situation is very different for lattices that are not cocompact:

(10.30) Theorem (Schwartz, Farb, Eskin). For non-cocompact, irreducible lattices,
quasi-isometry is the same as commensurability.

(10.31) Remark. More precisely, Theorem 10.30 states that:
1) Non-cocompact, irreducible lattices in two different semisimple Lie groups

(with no compact factors) are never quasi-isometric. (Here, by different,
we mean “not locally isomorphic.”)

2) Quasi-isometric non-cocompact, irreducible lattices in the same semisim-
ple Lie group are commensurable.

Furthermore, although it was not stated in (10.30), any finitely generated group
quasi-isometric to a non-cocompact lattice is isomorphic to it, modulo finite groups.

Here is a possible connection between quasi-isometry and stable orbit equiva-
lence:

(10.32) Problem. It is known that:
1) Γ and Λ are quasi-isometric iff there is an action of Γ × Λ on a locally

compact space X, such that each of Γ and Λ acts properly discontinuously
and cocompactly.

2) Γ and Λ have stably orbit equivalent actions iff there is an action of Γ×Λ
on a measure space Y with σ-finite invariant measure µ, such that each
of Γ and Λ acts properly with quotient of finite measure (i.e., Y/Γ and
Y/Λ have finite measure).

If one could find a σ-finite invariant measure on X (whose quotients by Γ and Λ
are finite), there would be a direct connection between quasi-isometry and stable
orbit equivalence.

Comments

See [9, 23] for lengthier surveys of orbit equivalence that discuss many of these
same topics, plus recent developments.
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The Bourbaki seminar [24] surveys exciting recent work of S. Popa (including
[19]) that uses the theory of von Neumann algebras to establish a cocycle super-
rigidity theorem and orbit-equivalence results for a class of actions of many groups.
An ergodic-theoretic approach to Popa’s Cocycle Superrigidity Theorem is given
in [7].

N.Monod and Y. Shalom [16] proved a variety of orbit-equivalence rigidity
theorems for actions of countable groups with non-vanishing bounded cohomology
H2

b

(
Γ, `2(Γ)

)
.

Theorem 10.7 appeared in [18]. See [12, Chap. 2] for an exposition of a gen-
eralization [1] to amenable equivalence relations that are not assumed a priori to
come from a group action.

Theorem 10.8, and Corollary 10.11 appeared in [27]. Remark 10.12 appeared
in [2].

Theorem 10.16, and Corollary 10.18 appeared in [6] (based on theory developed
in [5]). See [13] for a survey of Y. Kida’s similar results for actions of mapping class
groups.

The notion of cost (Definition 10.19) was introduced by G. Levitt [15], who
also pointed out Proposition 10.20. The other results of Section 10D are due to
D.Gaboriau [8]. See [12, Chap. 3] for an exposition.

See [4] for a survey of the many results that led to Theorem 10.30 and a
related theorem for cocompact lattices. (An alternate proof of the higher-rank case
appears in [3].) The proofs show that if G 6= SL(2,R), then every quasi-isometry
of an irreducible, noncocompact lattice in G is within a bounded distance of the
conjugation by some element of G that commensurates the lattice. Analogous
results have been proved for other classes of groups, such as S-arithmetic groups
[25, 26], graphs of groups [17], and fundamental groups of hyperbolic piecewise
manifolds [14].

The characterizations of quasi-isometry and stable orbit equivalence in (1) and
(2) of Problem 10.32 are due to M. Gromov [11, 0.2.C′2 and 0.5.E]. The property
in (2) is called measure equivalence; see [10] for an introduction to the subject
(including a proof of the relation with stable orbit equivalence) and a discussion of
recent developments.

Any two amenable groups are measure equivalent, but they need not be quasi-
isometric. Conversely, two quasi-isometric groups need not be measure equivalent
[9, p. 173], so Problem 10.32 does not always have a positive solution. Even so,
understanding the measure theory of quasi-isometries remains an interesting open
problem. Results of Y. Shalom [22] and R. Sauer [20] use the fact that an invariant
measure is easy to find when Γ and Λ are amenable.
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2005, pp. 391–423. ISBN 3-03719-009-4, MR 2185757 (2006k:37007)

[24] S.Vaes: Rigidity results for Bernoulli actions and their von Neumann algebras
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Appendix: Background Material

The lectures assume familiarity with the basic theory of Lie Groups, Topology,
and Differential Geometry. As an aid to the reader, this appendix provides precise
statements of some of the additional material that is used in the lectures. Note that
we usually do not state the results in their most general form, and our references
are usually not to the primary sources.

A1. Lie groups

This material can be found in [4] (and other texts that discuss real reductive
Lie groups).

(A1.1) Definition.
1) A connected Lie group is simple if and only if it has no nontrivial, con-

nected, proper, normal subgroups.
2) A connected Lie group is semisimple if and only if it has no nontrivial,

connected, solvable, normal subgroups.

(A1.2) Definition. Let G and H be connected Lie groups. We say G is locally
isomorphic to H if the Lie algebra of G is isomorphic to the Lie algebra of H.
(When G and H are connected, this is the same as saying that the universal cover
of G is isomorphic to the universal cover of H.)

(A1.3) Theorem (Structure theorem). Let G be a connected Lie group. Then:
1) G = LR, where L is a closed, connected, semisimple subgroup, and R is

a closed, connected, solvable, normal subgroup.
2) G is semisimple if and only if G is locally isomorphic to a direct product

of simple Lie groups.

(A1.4) Definition. Let G be a connected, semisimple Lie group.
1) Any maximal solvable subalgebra of the complex Lie algebra g⊗C is said

to be Borel .
2) A Lie subalgebra of g⊗ C is parabolic if it contains a Borel subalgebra.
3) A Lie subalgebra p of g is parabolic if its complexification p⊗C contains

a Borel subalgebra of g⊗ C.
4) A Lie subgroup P of G is if its Lie algebra p is a parabolic subalgebra

of g.

(A1.5) Remark (Alternative characterization of parabolic subgroups). Let G be a
connected, semisimple Lie group with finite center. For any a ∈ G, such that
Ad a is diagonalizable, let

Pa =
{
g ∈ G

∣∣ { anga−n | n ≥ 0 } is bounded
}
.
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It is easy to see that Pa is a subgroup of G. Furthermore, Pa is parabolic, and
every parabolic subgroup is of this form (for some Ad-diagonalizable a).

(A1.6) Proposition. If P is any parabolic subgroup of G, then G/P is compact.
In fact, if K is any maximal compact subgroup of G (and G has finite center),

then K is transitive on G/P .

The theory of roots provides a classification of the parabolic subgroups of any
given semisimple group G. In particular:

(A1.7) Proposition. Any connected, semisimple Lie group has only finitely many
parabolic subgroups, up to conjugacy.

A2. Ergodic Theory

(A2.1) Definition [9]. Suppose G acts on M , and µ is a measure on M .
1) We say µ is invariant if, for every g ∈ G, we have g∗µ = µ. (I.e.,
µ(g−1A) = µ(A) for every A ⊂M .)

2) We say µ is quasi-invariant if, for every g ∈ G, the measure g∗µ has the
same null sets as µ. (I.e., µ(g−1A) = 0 iff µ(A) = 0.)

3) A (quasi-)invariant measure µ is ergodic if every G-invariant, measurable
set is either null or conull. (I.e., for every G-invariant measurable set A,
either µ(A) = 0 or µ(M rA) = 0.) We may also say that the action of G
is ergodic (with respect to µ).

(A2.2) Example.
1) Any smooth volume form on a manifold M defines a measure that is

quasi-invariant under any group of diffeomorphisms of M .
2) In particular, if Λ is a closed subgroup of a Lie group H, then any sub-

group of H acts by translations on H/Λ, and volume is quasi-invariant.

(A2.3) Theorem (Ratner’s Measure-Classification Theorem [6]). Let
• H be a Lie group,
• G be a closed, connected, semisimple subgroup of H, with no compact

factors,
• Λ be any closed subgroup of H, and
• µ be an ergodic G-invariant probability measure on H/Λ.

Then there is a closed, connected subgroup L of H, such that
1) the support of µ is a single L-orbit in H/Λ,
2) µ is L-invariant, and
3) G ⊂ L.

A3. Moore Ergodicity Theorem

These results can be found in [9, Chap. 2].

(A3.1) Theorem (Howe-Moore Vanishing Theorem). Let
• G be a connected, simple Lie group with finite center,
• (ρ,H) be a unitary representation of G,
• {gn} be a sequence of elements of G, such that ‖gn‖ → ∞, and
• v1, v2 ∈ H.
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If 〈v1 | w〉 = 0, for every ρ(G)-invariant vector w ∈ H, then

〈ρ(gn)v1 | v2〉 → 0 as n→∞.

(A3.2) Corollary (Moore). Let
• G be a connected, simple Lie group with finite center,
• L be a closed, noncompact subgroup of G, and
• (ρ,H) be a unitary representation of G.

Then every ρ(L)-invariant vector in H is ρ(G)-invariant.

Proof. Take {gn} ⊂ L. If v1 = v2 is ρ(L)-invariant, then 〈ρ(gn)v1 | v2〉 = ‖v1‖2 is
independent of n.

(A3.3) Corollary (Moore Ergodicity Theorem). Let
• G and L be as in Corollary A3.2,
• Γ be a lattice in G, and
• µ be the G-invariant probability measure on G/Γ.

Then L is ergodic on G/Γ.

Proof. It is clear that the characteristic function of any L-invariant subset of G/Γ
is an L-invariant vector in the Hilbert space L2(G/Γ).

(A3.4) Corollary. In the situation of Corollary A3.3, Γ is ergodic on G/L.

A4. Algebraic Groups

See [8, Chap. 3] for basic results on algebraic groups over R (and other local
fields). The connection with ergodic theory (via tameness) is discussed in [9, §3.1].
(However, tame actions are called “smooth” there [9, Defn. 2.1.9].)

(A4.1) Definition.

• We use R[x1,1, . . . , xk,k] to denote the set of real polynomials in the k2

variables {xi,j | 1 ≤ i, j ≤ k }.
• For any Q ∈ R[x1,1, . . . , xk,k], and any k × k matrix g, we use Q(g) to

denote the value obtained by substituting the matrix entries gi,j into the
variables xi,j . For example:
◦ If Q = x1,1 + x2,2 + · · ·+ xk,k, then Q(g) is the trace of g.
◦ If Q = x1,1x2,2 − x1,2x2,1, then Q(g) is the determinant of the first

principal 2× 2 minor of g.

• A subset H of SL(k,R) is said to be Zariski closed if there is a subset Q
of R[x1,1, . . . , xk,k], such that

H = {h ∈ SL(k,R) | Q(h) = 0, ∀Q ∈ Q}.

In the special case where H is a subgroup of SL(k,R), we may also say
that H is an algebraic group (or, more precisely, a real algebraic group).

• The Zariski closed sets are the closed sets of a topology on SL(k,R); this
is the Zariski topology .
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(A4.2) Definition. Let G be a Zariski closed subgroup of SL(k,R). The natural
action of G on Rk factors through to an action of G on the projective space RP k−1.
Thus, there is a natural action of G on any G-invariant subset M of RP k−1; in this
setting, we say that G acts algebraically on M .

(A4.3) Proposition. If an algebraic group G acts algebraically on a subset M
of RP k−1, then every G-orbit is locally closed. I.e., every G-orbit is the inter-
section of an open set and a closed set.

(A4.4) Corollary. Every algebraic action is tame, in the terminology of Defini-
tion 3.10.

(A4.5) Definition. The zero sets of homogeneous polynomials in k variables define
a Zariski topology on RP k−1. The intersection of any Zariski open set with any
Zariski closed set is said to be a (quasi-projective) algebraic variety .

The following basic observation shows that homogeneous spaces of algebraic
groups are varieties:

(A4.6) Proposition (Chevalley’s Theorem). If L is a Zariski closed subgroup of an
algebraic group H, then, for some k, there exist

1) an embedding H ↪→ SL(k,R), with Zariski closed image, and
2) an H-equivariant embedding H/L ↪→ RP k−1 whose image is a variety.

A5. Cocycle Superrigidity Theorem

(A5.1) Definition. Assume a Lie group G acts measurably on a space M , with
quasi-invariant measure µ, and H is a Lie group.

1) A measurable function η : G ×M → H is a (Borel) cocycle if, for every
g1, g2 ∈ G, we have

η(g1g2,m) = η(g1, g2m) η(g2, x) for a.e. m ∈M.

2) Two cocycles η1, η2 : G×M → H are cohomologous if there is a measur-
able function ϕ : M → H, such that, for every g ∈ G, we have

η1(g,m) = ϕ(gm)−1 η2(g,m)ϕ(m) for a.e. m ∈M.

Note that being cohomologous is an equivalence relation.

(A5.2) Theorem (Cocycle Superrigidity Theorem [9, Thm. 5.2.5]). Assume:
• a connected, simple Lie group G acts on a space M , with invariant prob-

ability measure µ,
• H is a connected, noncompact, simple Lie group with trivial center,
• η : G×M → H is a cocycle,
• η is not cohomologous to any cocycle with its values in a connected, proper

subgroup of H, and
• R-rankG ≥ 2 and G has finite center.

Then η is cohomologous to a homomorphism. That is, there is a continuous homo-
morphism ρ : G→ H, such that η is cohomologous to the cocycle ρ′ : G×M → H,
defined by ρ′(g,m) = ρ(g).
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A6. Borel Density Theorem

(A6.1) Theorem (Borel Density Theorem [2, Cor. 4]). Let Γ be a lattice in a semi-
simple Lie group G, and assume G has no compact factors. If ρ : G→ GL(n,R) is
any finite-dimensional representation of G, then ρ(Γ) is Zariski dense in ρ(G).

(A6.2) Theorem (Generalized Borel Density Theorem [2, Lem. 3]). Suppose G is
a real algebraic group with no proper, normal, cocompact, algebraic subgroups.

If G acts algebraically on a variety V , then every G-invariant probability mea-
sure on V is supported on the fixed-point set.

A7. Three theorems of G. A. Margulis on lattice subgroups

Detailed proofs of these theorems appear in [5] and [9].

(A7.1) Definition. Let Γ be a lattice in a connected, noncompact, semisimple Lie
group G with finite center. We say Γ is irreducible if ΓN is dense in G, for every
closed, noncompact, normal subgroup of G.

(A7.2) Remark. Assume G is linear, and has no compact factors. Then Γ is re-
ducible iff Γ is commensurable to a direct product Γ1×Γ2, with Γ1 and Γ2 infinite.

(A7.3) Theorem (Margulis Normal Subgroup Theorem). Let Γ be an irreducible
lattice in a connected, semisimple Lie group G with finite center, and assume
R-rankG ≥ 2. Then Γ is simple, modulo finite groups.

More precisely, if N is any normal subgroup of Γ, then either
1) N is finite, or
2) Γ/N is finite.

(A7.4) Theorem (Margulis Superrigidity Theorem). Let
• Γ be an irreducible lattice in a connected, semisimple Lie group G with

finite center, such that R-rankG ≥ 2,
• ρ : Γ → GL(k,R) be a finite-dimensional representation of Γ, and

• H be the identity component of ρ(Γ).
Then there are

1) a finite-index subgroup Γ′ of Γ,
2) a compact, normal subgroup C of H, and
3) a continuous homomorphism ρ̂ : G→ H/C,

such that ρ(γ) ∈ ρ̂(γ)C, for every γ ∈ Γ′.

(A7.5) Remark. If G/Γ is not compact, and H has trivial center, then the sub-
group C in the conclusion of Theorem A7.4 is trivial.

(A7.6) Notation. Let σ be any Galois automorphism of C over Q. The automor-
phism σ∗ of GL(k,C) is obtained by applying σ to each entry of any matrix. I.e.,

σ∗
(
(ai,j)

)
=

(
σ(ai,j)

)
.

(A7.7) Corollary. In the setting of Theorem A7.4, assume that H is simple and
HC has trivial center, where

HC is the (unique) smallest complex Lie subgroup of GL(n,C) that contains H.
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Then there exist
1) a finite-index subgroup Γ′ of Γ,
2) a Galois automorphism σ of C over Q, and
3) a continuous homomorphism ρ̂ : G→ HC,

such that σ∗
(
ρ(γ)

)
= ρ̂(γ), for every γ ∈ Γ′.

(A7.8) Corollary. Let Γ, G, and ρ be as in Theorem A7.4. If G has no nontrivial
representation of dimension ≤ k, then ρ(Γ) is finite.

(A7.9) Theorem (Margulis Arithmeticity Theorem). Suppose Γ is an irreducible
lattice in a connected, noncompact, semisimple, linear Lie group G, such that
R-rankG ≥ 2. Then there is a closed, semisimple subgroup G′ of SL(k,R), for
some k, such that Γ is commensurable with G′ ∩ SL(k,Z).

A8. Fixed-point theorems

(A8.1) Theorem (Lefschetz Fixed-Point Formula [3, §36]). Let
• f be a homeomorphism of a compact n-manifold M , and
• If =

∑n
k=0(−1)k

(
trace of f on the homology group Hk(M ; Q)

)
.

If If 6= 0, then f has at at least one fixed point in M .

(A8.2) Theorem (Franks [1]). Let f be a homeomorphism of the torus T2. If
• f is homotopic to the identity,
• f is area preserving, and
• the mean translation of f is 0, i.e.,∫

[0,1]×[0,1]

(
f̃(x)− x

)
dx = 0,

where f̃ : R2 → R2 is a continuous lift of f to the universal cover,
then f has at least one fixed point.

(A8.3) Corollary. Let Γ be an irreducible lattice in a connected, semisimple Lie
group G with finite center, and assume R-rankG ≥ 2. For any area-preserving
action of Γ on T2, there is a finite-index subgroup Γ′ of Γ, such that every element
of Γ′ has a fixed point.

(A8.4) Theorem (Kakutani-Markov Fixed-Point Theorem [10, §2.1]). Let
• A be an abelian group of (continuous) affine maps on a Banach space B,

and
• C be a nonempty, compact, convex, A-invariant subset of B.

Then A has at least one fixed point in C.

A9. Amenable groups

The main results of this section (that is, all but some parts of Remark A9.3)
can be found in [9, §4.1 and §7.2]. See [7] for a much more extensive treatment of
the subject.
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(A9.1) Definition. A Lie group H is amenable if the left regular representation
of H on L2(H) has almost-invariant vectors. I.e., for every compact subset C of H,
and every ε > 0, there is a unit vector v ∈ L2(H), such that

‖cv − v‖2 < ε, for every c ∈ C,

where (cv)(x) = v(c−1x) for x ∈ H.

(A9.2) Proposition. If an amenable Lie group H acts continuously on a compact,
metrizable topological space X, then there is an H-invariant probability measure
on X.

(A9.3) Remark. There are many characterizations of amenability. For example, the
following are equivalent:

1) H is amenable.
2) If H acts continuously on a compact, metrizable topological space X,

then there is an H-invariant probability measure on X.
3) If H acts continuously, by affine maps, on a Frechet space, and C is a

nonempty, H-invariant, compact, convex subset, then H has at least one
fixed point in C.

4) There is a left-invariant mean on the space Cbdd(H) of all real-valued,
continuous, bounded functions on H. (I.e., there is a left-invariant, posi-
tive linear functional that is nonzero on the constant function 1.)

5) There exist Følner sets in H. I.e., for every compact subset C of H and
every ε > 0, there is a subset F of H, with 0 < µ(F ) <∞, such that

µ
(
F 4 cF

)
< εµ(F ), for every c ∈ C,

where µ is the left Haar measure on H.

It is easy to see from (2) that compact groups are amenable, and combining a
version of the Kakutani-Markov Fixed-Point Theorem (A8.4) with (3) implies that
abelian groups are amenable. More generally:

(A9.4) Proposition.
1) If a Lie group H has a closed, solvable, normal subgroup R, such that
H/R is compact, then H is amenable.

2) If P is any minimal parabolic subgroup of any connected, semisimple Lie
group, then P is amenable.
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